首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ni–Cu–Ce0.8Sm0.2O1.9 anode-supported single cells were developed for the direct utilization of methane. An yttria-doped zirconia and Ce0.8Sm0.2O1.9 bi-layer electrolyte and a La0.6Sr0.4Co0.2Fe0.8O3 − δ cathode layer were fabricated by slurry spin-coating. Cu was added to the anode by impregnation with a nitrate solution. The effects of Cu on the electrochemical performance of the anode were investigated in dry methane with respect to times of impregnation. Impregnation with Cu twice was determined to be optimal. Incorporating Cu into the anode improved electrochemical performance of the cells, reducing ohmic resistance and suppressing carbon deposition. At 700 °C, the single cell exhibited a maximum power density of 406 mW/cm2 in dry methane. At a current density of 500 mA/cm2, the cell maintained 98.6% of its initial voltage after operation for 900 min.  相似文献   

2.
In this work, gadolinium is used to modify nickel catalyst, which can improve the properties of nickel oxide particle and inhibit its sintering and grain growth. Interface contact between nickel catalyst and YSZ is significantly improved and fine anode microstructure can be obtained when gadolinium is used to modify Ni-YSZ anode. Fine interface contact of GdNi-YSZ anode can accelerate charge transfer process and steam formation process, which leads to high activity for electrochemical oxidation of hydrogen and low impedance resistance. The remarkable characteristic of GdNi-YSZ anode cell is that the cell performance for humidified methane fuel is greatly improved due to the high anode activity for methane reforming and electrochemical oxidation of hydrogen. The maximum power density of GdNi-YSZ anode cell with humidified methane as fuel can reach 1.59 W/cm2 at 800 °C and 0.46 W/cm2 at 650 °C. High performance of GdNi-YSZ anode cell with humidified methane as fuel leads to much H2O produced during the electrochemical oxidation process, which can depress carbon deposition and improve the cell stability for humidified methane fuel.  相似文献   

3.
Carbon deposition on a Ni‐based anode is troublesome for the direct power generation from methane‐based fuels using solid oxide fuel cell. In this paper, a redox‐stable double‐perovskite Sr2MoFeO6‐δ (SMFO) is applied as an independent on‐cell reforming catalyst over a Ni‐YSZ anode to improve coking resistance. The morphology, catalytic activity and electrochemical performance for wet methane/coal‐bed gas (CBG) are investigated. A Ni‐YSZ anode supported cell with SMFO generates a high power output of 1.77 W·cm?2 and exhibits favorable stability operated on wet CH4 at 800°C. Post‐mortem micro‐structural analyses of cells indicate the cell operated on CBG shows coking probably due to the heavy carbon compounds in CBG.  相似文献   

4.
High-entropy alloy (HEA) anode and reforming catalyst, supported on gadolinium-doped ceria (GDC), have been synthesized and evaluated for the steam reforming of methane under SOFC operating conditions using a conventional fixed-bed catalytic reactor. As-synthesized HEA catalysts were subjected to various characterization techniques including N2 adsorption/desorption analysis, SEM, XRD, TPR, TPO and TPD. The catalytic performance was evaluated in a quartz tube reactor over a temperature range of 700–800 °C, pressure of 1 atm, gas hourly space velocity (GHSV) of 45,000 h?1 and steam-to-carbon (S/C) ratio of 2. The conversion and H2 yield were calculated and compared. HEA/GDC exhibited a lower conversion rate than those of Ni/YSZ and Ni/GDC at 700 °C, but showed superior stability without any sign of carbon deposition unlike Ni base catalyst. HEA/GDC was further evaluated as an anode in a SOFC test, which showed high electrochemical stability with a comparable current density obtained on Ni electrode. The SOFC reported low and stable electrode polarization. Post-test analysis of the cell showed the absence of carbon at and within the electrode. It is suggested that HEA/GDC exhibits inherent robustness, good carbon tolerance and stable catalytic activity,` which makes it a potential anode candidate for direct utilization of hydrocarbon fuels in SOFC applications.  相似文献   

5.
In this study, performance of solid oxide fuel cell (SOFC) connected with paper-structured catalyst (PSC) was evaluated in the direct feed of wet oleic fatty acid methyl ester (oleic-FAME, C19H36O2), which is a mono-unsaturated component of practical biodiesel fuels (BDFs), in the steam to carbon ratio (S/C) range between 2.0 and 3.5, and high current density of 1 A cm−2 (at 0.7 V) was recorded at 800 °C. Long term stability of oleic-FAME fueled SOFC was achieved by the incorporation of PSC into SOFC even under severe operating condition prone to coking (direct feed of unsaturated hydrocarbon with carbon number 19 and low S/C ratio of 2.0). After 100 h test, coking was not observed in both SOFC anode and PSC.  相似文献   

6.
《Journal of power sources》2006,157(1):318-324
The electrooxidation of methoxy methane (dimethyl ether) was studied at different Pt-based electrocatalysts in a standard three-electrode electrochemical cell. It was shown that alloying platinum with ruthenium or tin leads to shift the onset of the oxidation wave towards lower potentials. On the other hand, the maximum current density achieved was lower with a bimetallic catalyst compared to that obtained with a Pt catalyst. The direct oxidation of dimethoxy methane in a fuel cell was carried out with Pt/C, PtRu/C and PtSn/C catalysts. When Pt/C catalyst is used in the anode, it was shown that the pressure of the fuel and the temperature of the cell played important roles to enhance the fuel cell electrical performance. An increase of the pressure from 1 to 3 bar leads to multiply by two times the maximum achieved power density. An increase of the temperature from 90 to 110 °C has the same effect. When PtRu/C catalyst is used in the anode, it was shown that the electrical performance of the cell was only a little bit enhanced. The maximum power density only increased from 50 to 60 mW cm−2 at 110 °C using a Pt/C anode and a Pt0.8Ru0.2/C anode, respectively. But, the maximum power density is achieved at lower current densities, i.e. higher cell voltages. The addition of ruthenium to platinum has other effect: it introduces a large potential drop at relatively low current densities. With the Pt0.5Ru0.5/C anode, it has not been possible to applied current densities higher than 20 mA cm−2 under fuel cell operating conditions, whereas 250 and almost 400 mA cm−2 were achieved with Pt0.8Ru0.2/C and Pt/C anodes. The Pt0.9Sn0.1/C anode leads to higher power densities at low current densities and to the same maximum power density as the Pt/C anode.  相似文献   

7.
An innovative, nanostructured composite, anode electrocatalyst, material has been developed for the electrolytic splitting of (100%) H2S feed content gas operating at 135 kPa and 150 °C. A new class of anode electrocatalyst with general composition, RuO2–CoS2 has shown great stability and desired properties at typical operating conditions. This configuration showed stable electrochemical operation over the period of 24 h and also exhibited a maximum current density of (0.019 A/cm2). The kinetic behaviors of various anode-based electrocatalysts demonstrated that, exchange current density, which is a direct measure of the electrochemical reaction, increased with RuO2–CoS2-based anodes. Moreover, high levels of feed utilization were possible using these materials. Electrochemical performance, current density, and sulfur tolerance were enhanced compared to the other tested anode configurations. The structural, microstructural and surface behavior of RuO2–CoS2 anode electrocatalyst was investigated in detail.  相似文献   

8.
Alkaline-acid direct glycerol fuel cells (AA-DGFC) were fabricated and primarily proven to be used as portable power generating devices. Pt/C catalyst was used as electrocatalyst for both anode and cathode. The optimal operating condition for cathode was firstly tested. Then the effects of types of backing and microporous layer on the cell performance and stability were investigated to obtain the optimal electrode structure. The cell performance was determined by using both chronoamperometry technique at a constant voltage of 0.4 V, and cell polarization with impedance measurement. The maximum peak power density obtained from the cell was 375 mW cm−2 and the highest average current density discharged from the cell was 451 mA cm−2. Non-wetproof carbon cloth is suitable as the backing layer for both the anode and cathode. Although MPL did not directly affect the cell performance, it greatly improved stability of the current discharged during chronoamperometric test. The cathode favors hydrophilic MPL, while hydrophobic MPL was preferred on the anode.  相似文献   

9.
A Ni/ yttria-stabilized zirconia (YSZ) cermet anode was modified by coating with samaria-doped ceria (SDC, Sm0.2Ce0.8O2) sol within the pores of the anode for a solid oxide fuel cell (SOFC) running on hydrocarbon fuel. The surface modification of Ni/YSZ anode resulted in an increase of structural stability and enlargement of the triple phase boundary (TPB), which can serve as a catalytic reaction site for oxidation of carbon or carbon monoxide. Consequently, the SDC coating on the pores of anode made it possible to have good stability for long-term operation due to low carbon deposition and nickel sintering.The maximum power density of an anode-supported cell (electrolyte; 8 mol% YSZ and thickness of 30 μm, and cathode; La0.85Sr0.15MnO3) with the modified anode was about 0.3 W/cm2 at 700 °C in the mixture of methane (25%) and air (75%) as the fuel and air as the oxidant. The cell was operated for 500 h without significant degradation of cell performance.  相似文献   

10.
A La0.6Sr0.4Fe0.8Co0.2O3–Ce0.8Gd0.2O1.9 (LSFCO–CGO) composite anode material was investigated for the direct electrochemical oxidation of methane in intermediate temperature solid oxide fuel cells (IT-SOFCs). A maximum power density of 0.17 W cm−2 at 800 °C was obtained with a methane-fed ceria electrolyte-supported SOFC. A progressive increase of performance was recorded during 140 h operation with dry methane. The anode did not show any structure degradation after the electrochemical testing. Furthermore, no formation of carbon deposits was detected by electron microscopy and elemental analysis. Alternatively, this perovskite material showed significant chemical and structural modifications after high temperature treatment in a dry methane stream in a packed-bed reactor. It is derived that the continuous supply of mobile oxygen anions from the electrolyte to the LSFCO anode, promoted by the mixed conductivity of CGO electrolyte at 800 °C, stabilises the perovskite structure near the surface under SOFC operation and open circuit conditions.  相似文献   

11.
A novel carboxylated multiwalled carbon nanotubes/carbon nanofibers (CNTs/CNFs) composite electrode was fabricated by electrospinning. Heat pressing process was applied to improve the interconnection of fiber aggregates, mechanical stability and reduce the contact resistance. Optimal dose of carbon nanotubes was selected to fabricate the anode in microbial fuel cells after comparing with plain electrospinning CNFs anode and commercial carbon felt (CF) anode. As a result, the optimal anode delivered a maximum power density of 362 ± 20 mW m−2, which is 110%, 122% higher than that of carbon nanofibers and carbon felt anodes. Cyclic voltammograms, Tafel and electrochemical impedance spectroscopy tests also verified that the prepared electrode has largest catalytic current (148 μA cm−2) and exchange current density i0 (6.3 × 10−5 A cm−2), as well as smallest internal resistance (∼40 Ω). The as-prepared anode exhibited a better conductivity, excellent biocompatibility, good hydrophilicity and superior electrocatalytic activity, which was not only beneficial to the attachment and reproduction of microorganisms, but also promoted extracellular electron transfer between bacteria cells and the anode. This result shows that electrospinning has a promising perspective in fabricating high performance electrodes for microbial fuel cells.  相似文献   

12.
The Cu–Ni–YSZ cermet anodes for direct use of methane in solid oxide fuel cells have been fabricated by electroplating Cu into a porous Ni–YSZ cermet anode. The uniform distribution of Cu in the Ni–YSZ anode was obtained by electroplating in an aqueous solution mixture of CuSO4·5H2O and H2SO4 for 30 min with 0.1 A of applied current. When the Cu–Ni–YSZ anode was exposed to methane at 700 °C, the amount of carbon deposited on the anode decreased as the amount of Cu in the Cu–Ni solid solution increased. The power density (0.24 W/cm2) of a single cell with a Cu–Ni–YSZ anode was slightly lower in methane at 700 °C than the power density (0.28 W/cm2) of a single cell with a Ni–YSZ anode. However, the performance of the Ni–YSZ anode-supported single cell degraded steeply over 21 h because of carbon deposition, whereas the Cu–Ni–YSZ anode-supported single cell showed enhanced durability up to 200 h.  相似文献   

13.
《Journal of power sources》2006,162(2):1172-1181
A Ni/scandia-stabilized zirconia (ScSZ) cermet anode was modified by coating with nano-sized gadolinium-doped ceria (GDC, Gd0.2Ce0.8O2) prepared using a simple combustion process within the pores of the anode for a solid oxide fuel cell (SOFC) running on methane fuel. X-ray diffraction (XRD) and scanning electron microscopy (SEM) were employed in the anode characterizations. Then, the short-term stability for the cells with the Ni/ScSZ and 2.0 wt.%GDC-coated Ni/ScSZ anodes in 97%CH4/3%H2O at 700 °C was checked over a relative long period of operation. Open circuit voltages (OCVs) increased from 1.098 to 1.179 V, and power densities increased from 224 to 848 mW cm−2, as the operating temperature of an SOFC with 2.0 wt.%GDC-coated Ni/ScSZ anode was increased from 700 to 850 °C in humidified methane. The coating of nano-sized Gd0.2Ce0.8O2 particle within the pores of the porous Ni/ScSZ anode significantly improved the performance of anode supported cells. Electrochemical impedance spectra (EIS) illustrated that the cell with Ni/ScSZ anode exhibited far greater impedances than the cell with 2.0 wt.%GDC-coated Ni/ScSZ anode. Introduction of nano-sized GDC particles into the pores of porous Ni/ScSZ anode will result in a substantial increase in the ionic conductivity of the anode and increase the triple phase boundary region expanding the number of sites available for electrochemical activity. No significant degradation in performance has been observed after 84 h of cell testing when 2.0 wt.%GDC-coated Ni/ScSZ anode was exposed to 97%CH4/3%H2O at 700 °C. Very little carbon was detected on the anodes, suggesting that carbon deposition was limited during cell operation. Consequently, the GDC coating on the pores of anode made it possible to have good stability for long-term operation due to low carbon deposition.  相似文献   

14.
Various Ni–LaxCe1−xOy composites were synthesized and their catalytic activity, catalytic stability and carbon deposition properties for steam reforming of methane were investigated. Among the catalysts, Ni–La0.1Ce0.9Oy showed the highest catalytic performance and also the best coking resistance. The Ni–LaxCe1−xOy catalysts with a higher Ni content were further sintered at 1400 °C and investigated as anodes of solid oxide fuel cells for operating on methane fuel. The Ni–La0.1Ce0.9Oy anode presented the best catalytic activity and coking resistance in the various Ni–LaxCe1−xOy catalysts with different ceria contents. In addition, the Ni–La0.1Ce0.9Oy also showed improved coking resistance over a Ni–SDC cermet anode due to its improved surface acidity. A fuel cell with a Ni–La0.1Ce0.9Oy anode and a catalyst yielded a peak power density of 850 mW cm−2 at 650 °C while operating on a CH4–H2O gas mixture, which was only slightly lower than that obtained while operating on hydrogen fuel. No obvious carbon deposition or nickel aggregation was observed on the Ni–La0.1Ce0.9Oy anode after the operation on methane. Such remarkable performances suggest that nickel and La-doped CeO2 composites are attractive anodes for direct hydrocarbon SOFCs and might also be used as catalysts for the steam reforming of hydrocarbons.  相似文献   

15.
The grievous carbon deposition in Ni-based anode limits its practical application in solid oxide fuel cells for methane conversion. In this work, nano-layer MgO decorated Ni-based anode is successfully prepared by in-situ reduction of Ni0.9-xCu0.1MgxO solid solution. Peak power density of 670 mW cm−2 at 700 °C in humid methane is achieved using Ni0.875Cu0.1-0.025MgO/Sm0.2Ce0.8O2 anode thanks to the improved active surface and the special modulation effect of MgO nano-layer on anode reactions. Interestingly, synchrotron vacuum ultraviolet photoionization mass spectra and high temperature X-ray photoelectron spectra jointly suggest that the effect of MgO on carbon resistance differs with the operating temperatures, which accelerates the steam reforming of CH4 via improving dissociative adsorption of acidic gas H2O at ∼500 °C, while depresses CH4 cracking to carbon and improves the formation of light olefin at ∼700 °C. In addition, possible methane reaction paths over such anode are derived.  相似文献   

16.
Natural gas is one of the most attractive fuels for solid oxide fuel cell (SOFC), while the anode activity for methane fuel has a great influence on the performance and stability of SOFC. Samarium is a good catalyst promoter for methane reforming. In this work, samarium is used to modify nickel catalyst, which results in small nickel oxide particles. The SmNi-YSZ (yttria-stabilized zirconia) anode has smaller particles and better interfacial contact between nickel and YSZ compared with conventional Ni-YSZ anode. The fine structure of SmNi-YSZ anode results in high activity for electrochemical oxidation of hydrogen and low polarization resistance of the cell. The performance of SmNi-YSZ anode cell with humidified methane as fuel is greatly improved, which is similar to that with hydrogen as fuel. The maximum power densities of SmNi-YSZ anode cell are 1.56 W cm−2 for humidified hydrogen fuel and 1.54 W cm−2 for humidified methane fuel at 800 °C. The maximum power density is increased by 221% when samarium is used to modify Ni-YSZ anode for humidified methane fuel at 650 °C. High cell performance results in good stability of SmNi-YSZ anode cell and the cell runs stably for more than 600 min for humidified methane fuel.  相似文献   

17.
《Journal of power sources》2003,114(2):264-276
Mesocarbon microbead (MCMB 2528) and CC composite have been investigated as anodes for lithium-ion batteries using half-cells with lithium counter electrode and three electrode cell systems containing LiCoO2 cathode and lithium reference electrodes in 1 M LiPF6 electrolyte (EC/DMC 1:1 v/v). The test results show that the practical capacity of CC composite anode is 50% higher than that of MCMB-based anode (based on total anode weight). The irreversible capacity loss of CC composite is significantly lower than that of MCMB carbon. Lithium-ion cells made with CC composite anode can accept repeated overdischarge without performance deterioration. The extra capacity of CC composite can be utilized to improve energy density and safety issues related to overcharge of lithium-ion cells. Differential scanning calorimetry (DSC) results indicates that the thermal stability of fully charged CC composite anode (lithiated anode) is much better than that of fully charged MCMB anode.  相似文献   

18.
One of the effective ways to improve the conductivity and structural stability of binary metal oxide nanostructures is to tightly composite them with nano-carbon materials with excellent conductivity. However, the introduction of low density carbon materials also reduces the energy density of batteries. Therefore, we provides a new idea to enhance the lithium storage performance of carbon/binary transition metal oxide anode materials by multi-element co-doping carbon. ZnMn2O4 provides high lithium storage capacity; non-metallic heteroatoms in milk-derived carbon greatly improve the conductivity of carbon materials; metal heteroatoms in milk-derived carbon increase the density of carbon materials. Multicomponent co-doping carbon can build up the mass specific capacity, ratio performance, cyclic life and mechanical properties of binary metal oxides/porous carbon nanocomposites. As the anode materials of lithium-ion batteries, the ZnMn2O4/MC (milk-derived carbon) hybrids deliver a high reversible capacity of 1352 mAh g−1 after 400 cycles at 0.1 A g−1, and a remarkable long-term cyclability with 635 mAh g−1 after 300 cycles at 1.0 A g−1.  相似文献   

19.
Solid oxide fuel cell (SOFC) has been studied as one of the most amazing development in energy production that could work directly with hydrocarbon fuel without reforming procedure. This study was conducted to analyse the micro-tubular solid oxide fuel cell (MT-SOFC) in terms of its performance by utilising methane as the fuel, subsequently compared with hydrogen. MT-SOFC that was investigated in this work consisted of thin cathode layer, coated onto co-extruded anode/electrolyte dual-layer hollow fibre (HF); in which its anode was made of nickel (Ni), coupled with cerium-gadolinium oxide (CGO) as an electrolyte, whereas the cathode was lanthanum strontium cobalt ferrite (LSCF) and CGO. The physical analyses carried out were three-point bending test and scanning electron microscopy (SEM). X-ray diffraction (XRD) analysis was further conducted to examine the carbon deposition in HFs. In evaluating the performance of HFs, current-voltage (IV) measurement, as well as impedance analysis of various temperatures range from 500 °C to 700 °C were performed. Based on the results, the OCV, maximum power density and ohmic ASR of MT-SOFC exposed to methane fuel, were at 0.79 V, 0.22 W cm−2 and 0.31 Ω cm2; compared to the other that was exposed to hydrogen fuel, recorded at 0.89 V, 0.67 W cm−2 and 0.19 Ω cm2 respectively. This indicates that there was a significant reduction in cell performance when methane was used as the fuel, due to the carbon deposition as proven by SEM, three-point bending and XRD.  相似文献   

20.
Yttria-doped strontium titanium oxide (Sr0.92Y0.08TiO3−δ; SYT) was investigated as an alternative anode material for solid oxide fuel cells (SOFCs). The SYT synthesized by the Pechini method exhibits excellent phase stability during the cell fabrication processes and SOFC operation and good electrical conductivity (about 0.85 S/cm, porosity 30%) in reducing atmosphere. The performance of SYT anode is characterized by slow electrochemical reactions except for the gas-phase diffusion reactions. The cell performance with the SYT anode running on methane fuel was improved about 5 times by SDC film coating, which increased the number of reaction sites and also accelerated electrochemical reaction kinetics of the anode. In addition, the SDC-coated SYT anode cell was stably operated for 900 h with methane. These results show that the SDC-coated SYT anode can be a promising anode material for high temperature SOFCs running directly on hydrocarbon fuels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号