首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
The heat transfer and flow characteristics of a photoelectrochemical (PEC) hydrogen generation reactor are investigated numerically. Four different reactor designs are considered in this study. The solar irradiation is separated into short and long wavelength parts depending on the energy band gap of the photoelectrode used. While short wavelength part is used to generate electron and hole pairs, the long wavelength part is used to heat the system. Because the energy required for splitting water decreases as temperature is increased, heating the reactor by using the long wave energy increases the system efficiency. Thus, how the long wavelength energy is absorbed by the reactor is very important.The results show that more long wavelength energy kept inside the reactor can increase the solar-to-hydrogen efficiency, ηSH. For Fe2O3 photoelectrode, careful reactor design can increase ηSH by 11.0%. For design D under 4000 W/m2 irradiation and a quantum efficiency of 30%, ηSH is found to be 14.1% and the hydrogen volume production rate is 166 L/m2 h for Fe2O3. Effects of several parameters on the PEC hydrogen reactor are also discussed.  相似文献   

2.
Photoelectrochemical (PEC) water splitting provides a prominent strategy for harnessing solar energy in the production of sustainable hydrogen fuel from water. Over the past few decades, extensive efforts have been devoted to develop advanced electrodes for efficient PEC water splitting. This review presents the recent progress in the development of efficient photoanodes through two major approaches: surface modification, including co-catalyst-loading, passivation, and defect engineering; and bulk modification, including hybridization, dopant engineering, and structural control. By virtue of bulk and surface modification a considerable improvement in PEC activity has been obtained so far. Photocurrent response of various anodes observed in the range of 0.063 mA cm−2 – 8.5 mA cm−2 (as listed in Table 1) require further improvement to upgrade the overall performance efficiency of PEC cells.This review also provides a systematic overview of the fundamentals of PEC water splitting, as well as the key challenges and notable achievements made so far in terms of electrode design and material modification. Finally, future research perspectives that will further advance this field are discussed. The contribution of this paper is to provide fundamental information about bulk and surface modifications, which will aid in the design of advanced electrodes for high-performance PEC cells.  相似文献   

3.
The investigation is focused on the synthesis of nanostructured TiO2–CuO admixed photoelectrode and its use as a photoelectrode of high-efficiency PEC solar cells for hydrogen production. TiO2, in the nanostructured form, has been prepared by hydrolysis of titanium(IV) isopropoxide solution. An improvement in the nanostructured TiO2 photoelectrode carried out in the present work corresponds to admixing CuO to improve the spectral response. In the present study, photo-electrochemical (PEC) and hydrogen evolution characteristics of new types of ns-TiO2–CuO admixed/Ti septum-based semiconductor septum photo-electrochemical (SC-SEP PEC) solar cell has been studied. The CuO admixed ns-TiO2 exhibited a high photocurrent and photovoltage of 18.6 mA/cm2 and 680 mV, respectively. The ns-TiO2–CuO electrode exhibited a higher hydrogen gas evolution rate of 14.00 l/h m2.  相似文献   

4.
A novel method of triple line focused on solar-powered receiver/reactor with a thermal storage medium for methanol steam reforming (MSR) hydrogen production is proposed in this paper. The photo-thermal-chemical energy conversion and coupling equations of the receiver/reactor are established, and the dynamic regularity between solar radiation and the hydrogen production characteristics is obtained by numerical simulation. The results show that a high solar radiation intensity helps to stabilize the duration of the reaction. For every 100 W m−2 increase in the solar radiation intensity, the duration of the reaction maintained at the phase change point temperature of the phase change material (PCM) increases by approximately 11%. The daily hydrogen production performance of the system in Kunming (102°43′E and 25°02′N) during typical solar days is studied. The average annual total hydrogen production per unit of the lighting area is approximately 1300 m3. This research can guide similar issues related to solar thermochemical technology.  相似文献   

5.
Efficient photoelectrochemical (PEC) water splitting is crucial for future energy and sustainable world. We here report on the improvement of PEC activity of anodic TiO2 nanotubes (TNTs) by enhancing tube ordering and subsequent electrochemical reduction. TNTs were prepared by two-step anodic oxidisation from an organic electrolyte containing fluoride ions. The effects of first-step anodisation time on the ordering of TNTs and subsequent electrolytic reduction were investigated on the PEC performance under simulated solar light spectrum. The photocurrent densities of TNTs anodised for 1 h, 4 h and subsequently reduced are about 25.12 μA cm−2, 51.76 μA cm−2 and 126.89 μA cm−2, respectively, at 1.23 V vs RHE and their conversion efficiency of light to electrical energy achieved are about 0.016%, 0.04% and 0.08% respectively. Electrochemical impedance spectroscopy (ESI) curves revealed the improved PEC water splitting confirmed by sharper charge carrier separation and enhanced charge transfer in highly ordered pristine and black TNTs. This improvement of PEC in dopant-free TNT is at the first instance interpreted by enhancing TNT ordering and uniformity achieved by prolonging of the first-step anodisation time and its effect on the electronic band structure of TNTs. This significant effect on PEC performance of pristine TNT under visible light absorption takes place due to the induced surface defects and slower recombination rates of hole and electron. This demonstrates an efficient economic materials production appraoch for PEC hydrogen production.  相似文献   

6.
An integrated solar water splitting tandem cell without external bias was designed using a FeOOH modified TiO2/BiVO4 photoanode as a photoanode and p-Cu2O as a photocathode in this study. An apparent photocurrent (0.37 mA/cm2 at operating voltage of +0.36 VRHE) for the tandem cell without applied bias was measured, which is corresponding to a photoconversion efficiency of 0.46%. Besides, the photocurrent of FeOOH modified TiO2/BiVO4–Cu2O is much higher than the operating point given by pure BiVO4 and Cu2O photocathode (∼0.07 mA/cm2 at +0.42 VRHE). Then we established a FeOOH modified TiO2/BiVO4–Cu2O two-electrode system and measured the current density-voltage curves under AM 1.5G illumination. The unassisted photocurrent density is 0.12 mA/cm−2 and the corresponding amounts of hydrogen and oxygen evolved by the tandem PEC cell without bias are 2.36 μmol/cm2 and 1.09 μmol/cm2 after testing for 2.5 h. The photoelectrochemical (PEC) properties of the FeOOH modified TiO2/BiVO4 photoanode were further studied to demonstrate the electrons transport process of solar water splitting. This aspect provides a fundamental challenge to establish an unbiased and stabilized photoelectrochemical (PEC) solar water splitting tandem cell with higher solar-to-hydrogen efficiency.  相似文献   

7.
In this paper, an experimental study is performed for hydrogen and oxygen production by new photo-catalytic and electro-catalytic water splitting systems. An effective method for hydrogen production by solar energy without consumption of additional reactants is a hybrid system which combines photo-chemical and electro-catalytic reactions. Experiments are performed in batch and dual cell quasi-steady operation with different light intensities and zinc sulfide photo-catalyst concentrations. The photo-reactor in batch operation achieves 6 mL h−1 of hydrogen production with 3% w/v of catalyst. The hydrogen production rate corresponds to a quantum efficiency of 75% as measured through illumination of zinc sulfide suspensions in a dual cell reactor.  相似文献   

8.
A novel hybrid plant for a mixture of methane and hydrogen (enriched methane) production from a steam reforming reactor whose heat duty is supplied by a molten salt stream heated up by a concentrating solar power (CSP) plant developed by ENEA is here presented. By this way, a hydrogen stream, mixed with natural gas, is produced from solar energy by a consolidated production method as the steam reforming process and by a pre-commercial technology as molten salts parabolic mirrors solar plant. After the hydrogen production plant, the residual heat stored in molten salt stream is used to produce electricity and the plant is co-generative (hydrogen + electricity).The heat-exchanger-shaped reactor is dimensioned by a design tool developed in MatLab environment. A reactor 3.5 m long and with a diameter of 2″ is the most efficient in terms of methane conversion (14.8%) and catalyst efficiency (4.7 Nm3/h of hydrogen produced per kgcat).  相似文献   

9.
Current hydrogen and carbon production technologies emit massive amounts of CO2 that threaten Earth's climate stability. Here, a new solar-thermal methane pyrolysis process involving flow through a fibrous carbon medium to produce hydrogen gas and high-value graphitic carbon product is presented and experimentally quantified. A 10 kWe solar simulator is used to instigate the methane decomposition reaction with direct irradiation in a custom solar reactor. From localized solar heating of fibrous medium, the process reaches steady-state thermal and chemical operation from room temperature within the first minute of irradiation. Additionally, no measurable carbon deposition occurs outside the fibrous medium, leaving the graphitic product in a form readily extractable from the solar reactor. Parametric variations of methane inlet flow rate (10–2000 sccm), solar power (0.92–2.49 kW) and peak flux (1.3–3.5 MW/m2), operating pressure (1.33–40 kPa), and medium thickness (0.36–9.6 mm) are presented, with methane conversion varying from 22% to 96%.  相似文献   

10.
A hydrogen production method is proposed, which utilizes solar energy powered thermodynamic cycle using supercritical carbon dioxide (CO2) as working fluid for the combined production of hydrogen and thermal energy. The proposed system consists of evacuated solar collectors, power generating turbine, water electrolysis, heat recovery system, and feed pump. In the present study, an experimental prototype has been designed and constructed. The performance of the cycle is tested experimentally under different weather conditions. CO2 is efficiently converted into supercritical state in the collector, the CO2 temperature reaches about 190 °C in summer days, and even in winter days it can reach about 80 °C. Such a high-temperature realizes the combined production of electricity and thermal energy. Different from the electrochemical hydrogen production via solar battery-based water splitting on hand, which requires the use of solar batteries with high energy requirements, the generated electricity in the supercritical cycle can be directly used to produce hydrogen gas from water. The amount of hydrogen gas produced by using the electricity generated in the supercritical cycle is about 1035 g per day using an evacuated solar collector of 100.0 m2 for per family house in summer conditions, and it is about 568.0 g even in winter days. Additionally, the estimated heat recovery efficiency is about 0.62. Such a high efficiency is sufficient to illustrate the cycle performance.  相似文献   

11.
We report, the fabrication of molybdenum disulphide (MoS2) wrapped silicon nanowires (Si NWs) for visible light driven water splitting applications. The morphological and elemental studies ensure the vertical alignment of Si NWs wrapped with 2D layered MoS2. The photoelectrocatalytic (PEC) results evidence the significant enhancement in performance of MoS2/Si NWs based hybrid photocathode with ~300 mV (under reversible hydrogen electrode (RHE)) anodic shift in onset potential as that of pristine Si NWs (+0.194 V vs. RHE), and the current density of −26.5 mA/cm2 was achieved at the applied bias of 0 V vs. RHE. Further, the electrochemical impedance studies ensure the interface resistance-free charge transfer between Si NWs and electrolyte via 2D MoS2 layer which provokes rapid hydrogen production. The wrapping of Si NWs with MoS2 protects the superlative photocathode from harsh acid electrolyte environment. The overgrown MoS2 triangular particles with active sulphur edge sites are found to eventually augment the solar hydrogen evolution rate. Further, the PEC performance of our MoS2/Si NWs is also comparable with stable Pt/Si NWs photoelectrode. It is note-worthy that, MoS2/Si NWs hybrid heterostructure would be a potential candidate in future large scale, low cost and day-to-day solar water splitting applications.  相似文献   

12.
A conceptual design and economic analysis are presented for a hydrogen production plant based on the use of thermochemical water splitting combined with a solar central receiver. The reference design consists of a Hybrid Sulfur thermochemical process coupled to a solar plant, based on the particle receiver concept, for a yearly average hydrogen production rate of 100 tons per day. The Hybrid Sulfur plant has been designed on the basis of results obtained from a new flowsheet ASPEN Plus® simulation, carrying out specific evaluations for the Sulfur dioxide Depolarized Electrolyzer, being developed and constructed at Savannah River National Laboratory, and for the sulfuric acid decomposition bayonet-based reactor, investigated at Sandia National Laboratory. Solar hydrogen production costs have been estimated considering two different scenarios in the medium to long term period, assuming the financing and economic guidelines from DOE’s H2A model and performing ad hoc detailed evaluations for unconventional equipment. A minimum hydrogen production specific cost of 3.19 $/kg (2005 US $) has been assessed for the long term period. The costs, so obtained, are strongly affected by some quantities, parameters and assumptions, influence of which has also been investigated and discussed.  相似文献   

13.
14.
In the present paper describe the zinc oxide (ZnO) with various morphologies have been synthesized using the one-step hydrothermal method, in which the growth of ZnO nanostructures are significantly tailored by adjusting the pH level between 9 and 12 using 0.1 M Sodium hydroxide (NaOH). Significant results reveal the morphological properties of ZnO nanostructures varied with different pH values with the formation of ZnO nanostructures have different morphological such as a baton, star, flower, and rod-like structures. The present results show the rod-like structure of ZnO nanostructures exhibits the highest photocurrent density of 746.61 μAcm−2 (at 1.23 V vs RHE) under simulated solar AM 1.5G illumination in Potassium hydroxide (KOH) medium, also the other morphologies. The dependent of the photoelectrochemical (PEC) water splitting properties on the different morphological of ZnO nanostructures are studied. Achieving the morphological evolution mechanism has become one of the method to obtain the production of the hydrogen growth regime used for solar energy conversion and their applied storage potentials. The application of the ZnO nanostructures for PEC water splitting was proposed with the adoption of screen-printed carbon electrodes (SPCEs). These are to quantify the best degree of the highest photocurrent density with one-step tailoring with an ideal modeling system to enhance PEC water splitting performances. Thus, the screen-printed carbon electrodes (SPEs) has been used as an alternative method for fabrication and photoelectrodes testings.  相似文献   

15.
Solar-assisted water splitting using photoelectrochemical (PEC) cell is an environmentally benign technology for the generation of hydrogen fuel. However, several limitations of the materials used in fabrication of PEC cell have considerably hindered its efficiency. Extensive efforts have been made to enhance the efficiency and reduce the hydrogen generation cost using PEC cells. Photoelectrodes that are stable, efficient and made of cost-effective materials with simple synthesizing methods are essential for commercially viable solar water splitting through PEC technology. To this end, hematite (α-Fe2O3) has been explored as an excellent photoanode material to be used in the application of PEC water oxidation owing to its suitable bandgap of 2.1 eV that can utilize almost 40% of the visible light. In this study, we have summarized the recent progress of α-Fe2O3 nanostructured thin films for improving the water oxidation. Strategic modifications of α-Fe2O3 photoanodes comprising nanostructuring, heterojunctions, surface treatment, elemental doping, and nanocomposites are highlighted and discussed. Some prospects related to the challenges and research in this innovative research area are also provided as a guiding layout in building design principles for the improvement of α-Fe2O3 photoanodes in photoelectrochemical water oxidation to solve the increasing environmental issues and energy crises.  相似文献   

16.
Photoelectrochemical (PEC) water splitting is an effective way of converting solar energy into hydrogen (H2) energy. However, the carriers’ transmission and the reaction kinetics of the photoelectrode are dilatory, which will influence the conversion efficiency of solar energy to H2. In this work, a novel of BiVO4/Co1-XS photoanode was successfully fabricated through the successive ionic layer adsorption reaction. The photocurrent density of optimal sample BiVO4/Co1-XS (2.9 mA cm?2 at 1.23 VRHE) has reached up to 5 times that of pure BiVO4, and the applied bias photon to current conversion efficiency increased from 0.04% (BiVO4) to 0.4% (BiVO4/Co1-XS). The superior PEC performance of the BiVO4/Co1-XS photoanode is mainly related to the improved conductivities and reaction kinetics. The charge injection efficiency of BiVO4/Co1-XS grew to about 80%, and the charge separation efficiency was up to 34%, revealing that the decoration of Co1-XS could significantly accelerate the transfer speed of photogenerated carriers from the electrode surface to the electrolyte. This work provided an efficient and simple scheme for improving the PEC performance of photoanode, through reasonable design and research.  相似文献   

17.
Hydrogen production thermochemical cycles, based on the recirculation of sulfur-based compounds, are among the best suited processes to produce hydrogen using concentrated solar power. The sulfuric acid decomposition section is common to each sulfur-based cycle and represents one of the fundamental steps. A novel direct solar receiver-reactor concept is conceived, conceptually designed and simulated. A detailed transport phenomena model, including mass, energy and momentum balance expressions as well as suitable decomposition kinetics, is described adopting a finite volume approach. A single unit reactor is simulated with an inlet flow rate of 0.28 kg/s (corresponding to a production of approximately 11 kgH2/h in a Hybrid Sulfur process) and a direct solar irradiation at a constant power of 143 kW/m2. Results, obtained for the high temperature catalytic decomposition of SO3 into SO2 and O2, demonstrate the effectiveness of the proposed concept, operating at pressures of 14 bar. A maximum temperature of 879 °C is achieved in the reactor body, with a corresponding average SO2 mass fraction of 27.8%. The overall pressure drop value is 1.7 bar. The reactor allows the SO3 decomposition into SO2 and O2 to be realized effectively, requiring an external high temperature solar power input of 123.6 kJ/molSO2 (i.e. 123.6 kJ/molH2).  相似文献   

18.
A novel photoelectrochemical cell (PEC) for generation of hydrogen via photocatalytic water splitting is proposed and investigated. At the heart of the PEC is a membrane electrode assembly (MEA) integrated with Degussa P25 TiO2 powder as a model photocatalyst for the photoanode and Pt catalyst powder for the dark cathode, respectively. It serves as a compact photocatalytic reactor for water splitting as well as an effective separator for the generated hydrogen and oxygen. The unique characteristic of the MEA-based PEC is that the use of co-catalyst, sacrificial reagent and supporting electrolyte in the cell is totally not required. The novel PEC can be operated without addition of water in the cathode compartment resulting in improved photo conversion efficiency. In addition, the application of a Degussa P25/BiVO4 mixed photocatalyst was found to significantly enhance the hydrogen generation. Further improvements for the MEA-based PEC utilizing solar energy are also proposed.  相似文献   

19.
Photoelectrochemical (PEC) water splitting is a promising approach to boost green hydrogen production. Herein, we prepared novel binder-free photoelectrode by direct growth of iron doped nickel oxide catalyst over activated carbon cloth (FexNi1-xO@a-CC) having band gap energy of 2.2 eV for overall water splitting. FexNi1-xO@a-CC photoelectrode had shown remarkable lower potential of only 1.36 V for oxygen evolution reaction (OER) to reach 10 mA cm?2 current density using very low photonic intensity of 8.36 × 10?4 E/L.s. For the first time, we also reported electrical efficiency required for PEC water splitting for 1 m3 of water that is equal to 0.09 kWh/m3. FexNi1-xO@a-CC photoelectrode also exhibits low potentials of 1.44 V (OER) and ?0.210 V (HER) at 10 mA cm?2 to split sea water. Our results confirmed that designing FexNi1-xO@a-CC photoelectrode would be an innovative step to widen green energy conversion applications using natural waters (both sea and fresh water).  相似文献   

20.
We report the application of plasmonic Bi nanoparticles supported rGO/BiVO4 anode for photoelectrochemical (PEC) water splitting. Nearly, 2.5 times higher activity was observed for Bi-rGO/BiVO4 composite than pristine BiVO4. Typical results indicated that Bi-rGO/BiVO4 exhibits the highest current density of 6.05 mA/cm2 at 1.23 V, whereas Bi–BiVO4 showed the current density of only 3.56 mA/cm2. This enhancement in PEC activity on introduction of Bi-rGO is due to the surface plasmonic behavior of BiNPs, which improves the absorption of radiation thereby reduces the charge recombination. Further, the composite electrode showed good solar to hydrogen conversion efficiency, appreciable incident photon-to-current efficiency and low charge transfer resistance. Hence, Bi-rGO/BiVO4 provides an opportunity to realize PEC water splitting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号