首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, a square orifice plate with 60 mm thick and the blockage ratio (BR) of 0.889 is employed to systematically explore the transmission regime of a steady detonation wave in hydrogen-oxygen mixtures. The influence of hydrogen mole fraction is also considered. The average velocity of combustion wave can be determined by evenly mounting eight high-speed pressure sensors on the tube wall, and the detonation cellular patterns can be also registered by the soot foil technique. The experimental results indicate that for the condition of smooth tube, the hydrogen concentration limits range of detonation successful propagation is 37.5%–73.68%. Two propagation modes can be obtained, i.e., the regimes of fast flame and steady detonation. The hydrogen concentration limits range is narrowed to 42.53%–69.51% in the tube with a square orifice plate. Three propagation regimes are observed: (1) near the low limit, a steady detonation wave can be produced before the obstacle, and the phenomenon of detonation decay is seen across the square orifice plate because of the influence of diffraction resulting in the mechanism of detonation failure. The failed detonation wave is not re-ignited because of the lower hydrogen concentration; (2) as the hydrogen mole fraction is increased to 42.53%, the mechanism of detonation re-ignition can be seen after the detonation decay. Well within the limits, the same detonation re-initiation phenomenon also can be observed; (3) as the hydrogen concentration is further enhanced to 69.7% beyond the upper limit, a stable detonation wave is not produced prior to the orifice plate, and the combustion wave front maintain the mode of fast flame until the end of the channel. Finally, it can be found that the detonation wave can successfully survive from the diffraction only when the effective diameter (deff) is at least greater than one cell size (λ).  相似文献   

2.
In this study, the regimes of detonation transmission through a single orifice plate were investigated systematically in a 6-m length and 90-mm inner diameter round tube. A series of experiments on the detonation propagation mechanisms in hydrogen-air mixtures were performed. A single obstacle with different orifice size (d) from 10 to 60 mm was adopted to study the effects of the induced perturbations on the detonation propagation. Here, the thickness of orifice plate (δ) was fixed at 10.33 mm. Detonation velocity was determined from the time-of-arrival (TOA) of the detonation wave recorded by eight high-speed piezoelectric pressure transducers (PCB102B06). Detonation cellular size was obtained by the smoked foil technique. The characteristic of detonation velocity evolution were quantitatively analyzed after it passes through a single obstacle, and particular attention was paid to the cases for which the blockage ratio (BR) is greater than 0.9, i.e., the cases of small hole diameter of d < 25 mm. The experimental results showed that, in a smooth tube, only super-critical condition and sub-critical condition can be observed. After the orifice plate is introduced into the tube, critical condition occurs. The detonation re-initiation with distinct cellular structures was experimentally observed. Of note is that when the blockage ratio (BR) values in the range of 0.802–0.96, it was easier to detonate at the fuel-lean side. Finally, the critical condition for detonation propagation through an orifice plate was quantified as d/λ > 1 where λ is the detonation cell size.  相似文献   

3.
In this study, the effect of orifice geometries on the detonation propagation is considered systematically in stoichiometric 2H2–O2 mixture. Three various orifice shapes with the same blockage ratio (BR = 0.889) are used firstly, i.e., round, square and triangular. Eight PCB pressure transducers are employed to obtain the average velocity through two adjacent signals while the smoked foil technique is used to record the detonation cellular pattern. The experimental results indicate that three different propagation modes can be observed: (1) when the initial pressure (P0) is smaller than the critical value (Pc), the steady detonation wave cannot be produced before the orifice plate, afterwards, the mechanism of deflagration to detonation transition (DDT) is seen; (2) near the critical pressure, a steady detonation wave is formed prior to the obstacle, but the failure of detonation is seen after its propagation through the orifice plate due to the diffraction effect and the mass and momentum loss from the wall, and then the phenomenon of detonation re-initiation is observed due to the reflection from the wall; (3) at the initial pressure larger than the critical value, the steady detonation wave can propagate through the orifice plate without decay. Moreover, although the effect of orifice shapes on the critical pressure can be nearly ignored, the re-ignition position is different among three various orifice geometries. For the cases of round and square orifices, the ignition position is produced near the center of the wall. However, the detonation wave is re-ignited from the corner in the case of triangular orifice. Finally, the critical condition of detonation propagation can be quantified as DH/λ > 1. But the critical values of DH/λ are not uniform among three different orifice geometries. For the cases of round, square and triangular orifices, the critical values of DH/λ are 8.94, 5.88 and 3.84, respectively.  相似文献   

4.
This paper first studied the mitigation of the hydrogen/air mixture detonation wave by tuning the tube inner wall with the absorbing material of polyacrylonitrile (PAN)-based carbon fibre felt. The experimental tests were performed in a single-trial circular cross-section tube filled with premixed hydrogen and air detonative mixture. The pressure values and flame front propagation were measured by means of pressure transducers and photodiodes respectively. The attenuation regimes of detonation wave in walled tubes with different thicknesses and layouts of absorption material were compared. The PAN-based carbon fibre felt makes a significant attenuation on the detonation propagation. The decoupling of leading shock wave and flame front can be observed under the effect of this absorbing layer. The ultimate strength close to the tube end and propagation velocity of the combustion wave decrease with the increase of felt thickness. When the interval layout felt is adopted, the spacing distance has almost no impact on the attenuation effectiveness. When the sectional layout is adopted, the effectiveness of detonation mitigation is however improved for a higher proportion of the absorbing material.  相似文献   

5.
In this study, the detonation propagation characteristics of stoichiometric CH4-2H2-3O2 mixture are investigated comprehensively in a round tube with an inner diameter of 90-mm and 6-m in length. Three different orifice plates with the blockage ratios (BR) of 0.7 and 0.8 including circular, triangular and square orifice, are considered for the first time to investigate the effect of obstacle geometries on the detonation evolution. Eight high-speed piezoelectric pressure transducers are mounted on the outer wall to obtain the detonation velocity while the smoked foil technique is adopted to record the detonation cellular patterns. The results indicate that well within the limit, the detonation can propagate at about the theoretical CJ velocity (VCJ). Near the limit, the velocity deficit is sharply enhanced but the detonation still can propagate at about 0.6VCJ, which seems to be a universal phenomenon before the failure of the detonation. In the smooth tube, a sudden velocity drop and the single-headed spin can be seen near the critical condition, and the critical pressure (Pc) is 3 kPa. In the tube filled with obstacles, the effect of obstacle geometries on the detonation transmission can be ignored approximately for the BR = 0.7 case, and the critical pressures are increased to 7, 7 and 10 kPa, respectively. In the case of BR = 0.8, the effect of the orifice plates structures on the detonation propagation becomes more significant. The square orifice has the most serious impact on the detonation transmission, followed by triangular ones and the round hole has the least impact. The critical pressures are sharply enhanced to 10, 12 and 18 kPa, respectively. Finally, the effective diameter (deff) and the characteristic parameter (L) are introduced to analyze the critical condition of the detonation propagation. The critical condition can quantified as deff/λ > 1 and L/λ > 7 where λ is the detonation cell size.  相似文献   

6.
An experimental investigation on flame acceleration and transition to detonation in H2air mixtures has been carried out in a tube which had a 5 cm cross-sectional diameter and was 11 m long. Obstacles in the form of a spiral coil (6 mm diameter tubing, pitch 5 cm, blockage ratio BR = 0.44) and repeated orifice plates spaced 5 cm apart with blockage ratios of BR = 0.44 and 0.6 were used. The obstacle section was 3 m long. The compositional range of H2 in air extended from 10 to 45%, the initial pressure of the experiment was 1 atm, and the mixture was at room temperature. The results indicate that steady-state flame (or detonation) speeds are attained over a flame travel of 10–40 tube diameters. For H2 ? 13% maximum flame speeds are subsonic, typically below 200 m/s. A sharp transition occurs at about 13% H2 when the flame speed reaches supersonic values. A second transition to the so-called quasi-detonation regime occurs near the stoichiometric composition when the flame speed reaches a critical value of the order of 800 m/s. The maximum value of the averaged pressure is found to be between the normal C-J detonation pressure and the constant volume explosion value. Of particular interest is the observation that at a critical composition of about 17% H2 transition to normal C-J detonation occurs when the flame exits into the smooth obstacle-free portion of the tube. For compositions below 17% H2, the high speed turbulent deflagration is observed to decay in this portion of the tube. The detonation cell size for 17% H2 is about 150 mm and corresponds closely to the value of πD that has been proposed to designate the onset of single-head spinning detonation, in this case for the 5 cm diameter tube used. This supports the limit criterion, namely, that for confined detonations in tubes, the onset of single-head spin gives the limiting composition for stable propagation of a detonation wave.  相似文献   

7.
In this study, the effects of pipe bundle geometries on the detonation velocity behaviors are examined systematically in a circular tube with 6 m long and an inner diameter of 90 mm. The tube bundle structures are created by inserting several small pipes (20 mm outer diameter, 2 mm wall thickness) into the tube. Three different bundle structures can be obtained by varying the number of small pipes n of 3, 4 and 5. The ionization probes and pressure transducers (PCB102B06) are used to determine the average velocity while the smoked foil technique is employed to register the detonation cellular structures. The experimental results indicate that detonation can propagate at about the theoretical CJ velocity with a small deficit when the initial pressure (P0) is greater than the critical value (Pc). The average velocity gradually decreases and deviates from the CJ value as the approaches of critical condition by gradually decreasing the initial pressure. The failure of detonation can be observed below the critical pressure. In the smooth tube, three different propagation mechanisms can be observed, i.e., super-critical condition, critical condition and sub-critical condition. After the bundle structures are introduced into the tube, a sudden velocity drop is seen at the critical pressure. Moreover, the detonation re-initiation phenomenon occurs with the velocity from the flame back to over-driven state quickly. Of note is that nearly no difference is seen between n = 3 and 4. However, in the case of n = 5, the detonation velocity experiences a more violent fluctuation with a high frequency, and the critical pressure is also increased to 28 kPa sharply. Finally, the critical condition analysis of detonation successful transmission is performed. The critical condition can be quantified as DH/λ > 1. However, the critical values of DH/λ are not uniform among various bundle geometries, but in a small range, i.e., from 1.52 to 1.97.  相似文献   

8.
为研究管道截面突缩对爆轰波起爆特性的影响,在突缩比为5:3的截面突缩管道及直管内对不同初始压力下甲烷氧气预混气体的起爆特性进行了实验研究,利用离子探针获得管道内火焰传播速度,并通过二维数值模拟探究了3种不同突缩比的截面突缩管道内火焰及压力的传播特性.实验结果表明,截面突缩管道内爆轰波起爆距离随着初始压力的降低而逐渐增加...  相似文献   

9.
Spherical flame initiation and propagation with thermally sensitive intermediate kinetics are studied analytically within the framework of large activation energy and quasi-steady assumptions. A correlation describing different flame regimes and transitions among the ignition kernels, flame balls, propagating spherical flames, and planar flames is derived. Based on this correlation, spherical flame propagation and initiation are then investigated. The flame propagation speed, Markstein length, and critical ignition power and radius are found to strongly depend on the Lewis numbers of fuel and radical and the heat of reaction. For spherical flame propagation, the trajectory is shown to change significantly with the fuel Lewis number and a C-shaped solution curve of flame propagation speed as a function of flame radius is observed for large fuel Lewis numbers. The Markstein length is shown to increase/decrease monotonically with the fuel/radical Lewis number. The influence of stretch on flame propagation (i.e. the absolute value of Markstein length) is found to decrease with the heat of reaction. For spherical flame initiation, the critical ignition power and radius are shown to increase with the fuel Lewis number and to decrease with the radical Lewis number and heat of reaction. Three different flame initiation regimes are observed and discussed. Furthermore, the validity of theoretical prediction is confirmed by transient numerical simulations including thermal expansion and detailed chemistry.  相似文献   

10.
As a carbon-free fuel and a hydrogen-energy carrier, ammonia is a potential candidate for future energy utilization. Therefore, in order to promote the application of ammonia in detonation engines and to evaluate the safety of ammonia related industrial process, DDT experiments for ammonia/oxygen mixtures with different ERs were carried out in a large-scale horizontal tube. Moreover, pressure transducers and self-developed temperature sensors were applied to record the overpressure and the instantaneous flame temperature during DDT process. The results show that the DDT process in ammonia/oxygen mixtures contains four stages: Slow propagation stage, Flame and pressure wave acceleration stage, Fast propagation and detonation wave formation stage, Detonation wave self-sustained propagation stage. For stoichiometric ammonia/oxygen mixtures, flame front and the leading shock wave propagate one after another with different velocity, until they closely coupled and propagated together with one steady velocity. At the same time, it is found that an interesting retonation wave propagates backward. The peak overpressure, detonation velocity, and flame temperature of the self-sustained detonation are 2 MPa, 2000 m/s and 3500 K, respectively. With the ER increased from 0.6 to 1.6, the detonation velocities and peak overpressures ranged from 2310 m/s to 2480 m/s and 25.6 bar–28.7 bar, respectively. In addition, the detonation parameters of ammonia were compared with those of methane and hydrogen to evaluate the detonation performance and destructiveness of ammonia.  相似文献   

11.
Spinning detonations propagating in a circular tube were numerically investigated with a two-step reaction model by Korobeinikov et al. The time evolutions of the simulation results were utilized to reveal the propagation behavior of single-headed spinning detonation. Three distinct propagation modes, steady, unstable, and pulsating modes, are observed in a circular tube. The track angles on a wall were numerically reproduced with various initial pressures and diameters, and the simulated track angles of steady and unstable modes showed good agreement with those of the previous reports. In the case of steady mode, transverse detonation always couples with an acoustic wave at the contact surface of burned and unburned gas and maintains stable rotation without changing the detonation front structure. The detonation velocity maintains almost a CJ value. We analyze the effect of acoustic coupling in the radial direction using the acoustic theory and the extent of Mach leg. Acoustic theory states that in the radial direction transverse wave and Mach leg can rotate in the circumferential direction when Mach number of unburned gas behind the incident shock wave in the transverse detonation attached coordinate is larger than 1.841. Unstable mode shows periodical change in the shock front structure and repeats decoupling and coupling with transverse detonation and acoustic wave. Spinning detonation maintains its propagation with periodic generation of sub-transverse detonation (new reaction front at transverse wave). Corresponding to its cycle, whisker is periodically generated, and complex Mach interaction periodically appears at shock front. Its velocity history shows the fluctuation whose behavior agrees well with that of rapid fluctuation mode by Lee et al. In the case of pulsating mode, as acoustic coupling between transverse detonation and acoustic wave is not satisfied, shock structure of spinning detonation is disturbed, which causes failure of spinning detonation.  相似文献   

12.
《能源学会志》2020,93(4):1690-1696
The combustion process of propane/air premixed flame in meso-scale quartz tubes with different hydrogen additions was investigated experimentally to explain the flame-wall interaction mechanism. The ranges of different flame regimes were obtained by changing the flow rates of propane and hydrogen. The effects of hydrogen addition, inlet velocity and equivalence ratio were analyzed. The results show that the hydrogen addition broadens the operation ranges of fast flame regime and slow flame regime significantly. The flame propagation speed is in the same order of the thermal wave speed in solid wall for the slow flames. In fast flame regime, the flame propagation speed has an inverse correlation with the inlet flow velocity irrespective of the equivalence ratio. With the increase of the equivalence ratio, the maximum flame speed in fast flame regime decreases gradually, while the maximum flame speed in slow flame regime increases continually. It indicates that rich fuel condition suppresses the fast flame and promotes the slow flame. In slow flame regime, the output thermal efficiency is dominated by the inlet velocity and equivalence ratio.  相似文献   

13.
《Combustion and Flame》2002,128(1-2):191-196
Employing Zeldovich’s (1940) quasi-one-dimensional formulation the multiplicity of detonation regimes occasionally observed in obstacle-laden systems is explored. The paper is an extension of the previously studied adiabatic version of the problem where, in addition to the well-known sub-CJ quasi-detonation, the low-speed supersonic as well as subsonic detonation regimes were identified. It is shown that the hysteresic loop associated with non-uniqueness of detonation regimes may be located entirely within the supersonic domain, the situation often encountered in experiments. By adopting a one-step bimolecular kinetics the well known dependency of the transition on the initial pressure is explained. The incorporation of heat losses, apart from bringing up detonability limits, strongly affects the low-speed regimes. The latter are found to occur only in the systems where the Reynolds analogy is strongly violated (rough tubes, porous media), and do not arise in smooth-walled tubes. The disparity between detonability and flammability limits is discussed.  相似文献   

14.
The study on induced accelerated combustion of premixed hydrogen-air in a confined environment is of great significance for the efficient utilization of hydrogen energy in internal combustion engines. The accelerated flame induced by the orifice plate is more stable and easy to control, which is beneficial to achieve controlled and rapid turbulent combustion. In this work, the accelerated combustion process induced by the orifice plate, and the influence of the orifice structure and initial conditions on the flame propagation and combustion characteristics were investigated by constant volume combustion bomb and schlieren method. The results show that the combustion process induced by the orifice plate consists of three stages: the initial stage of propagation, the accelerated stage of the orifice plate, and the end combustion stage. The reduction in aperture induces greater turbulence intensity and increases the perturbation of the orifice plate to the flame, resulting in a substantial increase in flame propagation speed through the orifice plate. As the initial pressure and the equivalence ratio increase, the velocity of turbulent flame induced by the orifice plate and the change rate of the velocity before and after the orifice plate increase. As the initial temperature increases, the turbulent flame propagation velocity does not change much, and the velocity change rate before and after the orifice plate decreases. The effect of the initial conditions on flame acceleration induced by the orifice plate is essentially the influence of flame propagation speed and instability. The greater the flame propagation speed and the stronger the flame instability, the stronger the induced turbulence and the greater the influence of the turbulent flow disturbance, and the greater the velocity of the turbulent flame induced by the orifice plate. There exists an optimum aperture for the shortest combustion duration at any initial conditions, but the optimal diameter is not sensitive to changes in initial conditions. The effect of orifice-induced combustion acceleration is remarkable, and the combustion durations induced by each orifice plate are shortened by more than 50%.  相似文献   

15.
Using solid obstacles to accelerate the deflagration to detonation transition (DDT) process induces additional thrust loss, and fluidic obstacles can alleviate this problem to a certain extent. A detailed simulation is conducted to investigate the effects of multiple groups of fluidic obstacles on the flame acceleration and DDT process under different initial velocities and gas types. The results show that, initially, the propagation of reflected shock wave formed by jet impingement is opposite to the flame acceleration direction, thus increasing the initial jet velocity will hinder the flame acceleration. Later, the vortex structure and enhanced turbulence can promote flame acceleration. As the flame accelerates, the virtual blockage ratio of the fluidic obstacles decreases, and increasing initial jet velocity or using reactive jet gases both affect the virtual blockage ratio. Further, increasing initial jet velocity or using reactive jet gases can shorten the detonation initiation time and distance. Compared with solid obstacles, it is concluded that fluidic obstacles can achieve faster detonation initiation with a smaller blockage ratio. Overall, the detonation phenomena in this study are all triggered by hot spots formed by the interaction between reflected waves and distorted flame, but the formation of reflected waves varies.  相似文献   

16.
A series of more than 100 experiments with hydrogen-air mixtures have been performed at cryogenic temperatures from 90 to 130 K and ambient pressure. A wide range of hydrogen concentrations from 8 to 60%H2 in a shock tube of 5-m long and 54 mm id was tested. Flame propagation regimes were investigated for all hydrogen compositions at three different blockage ratios 0, 30% and 60% as a function of initial temperature. Piezoelectric pressure sensors and InGaAs photo-diodes have been applied to monitor the flame and shock propagation velocity of the combustion process. More than 150 experiments at ambient pressure and temperature were conducted as the reference data for cryogenic experiments. The critical expansion ratio σ1 for an effective flame acceleration to the speed of sound was experimentally found at cryogenic temperatures. The detonability criteria for smooth and obstructed channels were used to evaluate the detonation cell sizes at cryogenic temperatures as well. The main peculiarities of cryogenic combustion with respect to the safety assessment were that the maximum combustion pressure was several times higher and the run-up-distance to detonation was two times shorter compared to ambient temperature independent of lower chemical reactivity at cryogenic conditions.  相似文献   

17.
The appearance of the squish flame is of great significance to accelerate burning progress and improve the combustion efficiency. In this paper, we experimentally studied the characteristics of the squish flame in a cylindrical constant volume vessel under different initial pressures and equivalence ratios by using high-speed schlieren photometry. Due to the compression of the main flame front, “squish flow” was induced in the analogous triangular vertebrae region besieged by the convex flame front, the concave wall and the flat optical windows, which provided the perturbation of large wavelength to promote the appearance of the squish flame. When the squish flames occur, as the initial pressure increases, the main flame propagation distance becomes shorter, the main flame propagation velocity increases first and then gradually saturates to a certain value; as the equivalence ratio increases, the main flame propagation distance becomes longer, the main flame propagation velocity rises first and then declines, and the maximum is obtained in the vicinity of Φ = 1.0. There exists a critical initial pressure at each equivalence ratio below which no squish flame appears, and it takes on a U-shaped trend with the increase of equivalence ratio. The hydrodynamic instability plays a key role in the formation of the squish flame. The squish flame tends to appear at higher hydrodynamic instability. The formation mechanism and the critical feature of the squish flame obtained in this paper can provide a theoretical guide to achieve fast controllable combustion.  相似文献   

18.
As for the premixed H2–O2–N2 gas ignited and induced by flame in tube, this paper represents systemic researches on its detonative formation process and flow field changes under different initial conditions (pressure, temperature, component concentration). The conservational Euler equation set with chemical reaction is taken as the basic gas phase equation model and the reduced elementary chemical reaction and shock wave problem are considered available so as to establish a theoretical model of premixed H2–O2–N2 combustible gas detonation process. A unity coupling TVD format with second-order accuracy is adopted to solve the gas phase equation and deduce the two-dimension Riemann invariant, and the TVD format for solution of the polycomponent convection equation with elementary chemical reaction is proposed. Meanwhile, a time splitting format is adopted to perfectly treat with the rigid problem resulted from the higher time difference value between gas phase flow characteristic time and chemical reaction characteristic time. It is shown by the calculation results that the detonation waves form certain angle with relation to the tube wall surface at the initial stage of ignition, so as to incur reflections and form reflection waves; during the propagation of the detonation waves, the reflection wave structures are propagated backwards the back of waves constantly, so the whole flow field is characterized of obvious two-dimension. Besides, the excessive pressure detonation occurs at first before formation of the stable detonation propagation process, then a stable detonation propagation process forms finally. Mixed gas detonation characteristics resulted from different calculated-initially parameters are different. The higher the initial temperature and pressure of flame is, the shorter the induction time for detonation formed due to combustion acceleration of the mixed gas is, but which nearly brings no great influence on the later propagation process of the detonation waves. The initial mixed gas component can influence the detonation characteristic of the mixed gas observably, when the quantity relative ratio is close to 1 and the mixed gas with larger reaction activity, its detonation propagation speed is rapider and the pressure after detonation waves is higher. The simulation result keeps accordant with the calculated result of the typical C–J detonation theory model.  相似文献   

19.
Nam Il Kim 《Combustion and Flame》2009,156(7):1332-1338
A flame stabilized in a tube is affected by the temperature disturbance and velocity profile at the inlet boundary. Thus, a multi-dimensional analysis is necessary near the flame. The deviation between one-dimensional and two-dimensional analyses near the flame was investigated quantitatively. The temperature profile in the radial direction was varied to investigate its effects on the propagation of methane-air premixed flames in small tubes. A numerical experiment with Navier-Stokes equations, an energy equation and species equations was conducted coupled with a single-step global-reaction model. Three different temperature profiles were examined for slip and no-slip wall boundary conditions. The effect of temperature profiles on the flame propagation velocity and flame shapes was not negligible depending on the magnitude of the temperature deviation and the tube diameter. This study evaluated a critical length scale of a computational domain or a thermal entrance length of a premixed flame over which the inlet temperature disturbance does not affect the flame characteristics.  相似文献   

20.
Rotating detonation using ammonia as fuel may be a potential carbon free combustion technology for gas turbine. The detonation wave structure and flow field of a rotating detonation annular combustor are investigated by three-dimensional simulation with detailed chemistry of ammonia/hydrogen-air. The detonation properties, propagation mode, combustor performance and emission characteristics are studied by varying the equivalence ratios and hydrogen concentrations. Both the increases of the combustor pressure and the hydrogen concentration promote the chemical reaction rate of the ammonia burn and the detonation wave velocity gradually increases with increasing hydrogen proportion based on one-dimensional simulation. A stable single-rotating waves resulting in ammonia/hydrogen combustor are observed for a wide range of equivalent ratios only when the hydrogen concentration is at least 0.2. The steady run of the single rotating detonation had an optimal cycle efficiency when the hydrogen concentration is increased to a critical value of 0.3. NOx emissions are more dependent on equivalent ratios than hydrogen concentration in equivalence ratios ranging from 0.70 to 1.40.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号