首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hydrogen fuel cells are received increasingly wide attention in order to develop green ships and reduce greenhouse gas emissions in the field of waterway transportation. Metal hydrides (MHs) can be used to store hydrogen for green ships due to their high volumetric storage capacity and safety. Various measures should be considered in the design and manufacture process of the MH reactor to strengthen its performance of heat and mass transfer and obtain an acceptable hydrogen storage capacity. In this work, LaNi5 hydride is used as the hydrogen storage material and packed in the reactor. A basic axisymmetric numerical model for the hydrogen storage system without a heat exchanger has been developed and proved to be effective through the comparison between its simulation results and the published data during dehydriding. A hybrid heat exchanger, which is consisted of a phase change material (PCM) jacket and a coiled-tube, has been applied into the hydrogen storage system to relieve the thermal effect of MH in the dehydriding process on system performance. Effects of the heat transfer coefficient between the circulating heating water in the coil-tube and the MH bed, the temperature of circulating heating water and the pressure at the outlet on the dehydriding performance have been investigated. Based on parametric study, the relationships among the average dehydriding rate, the heat transfer coefficient, the heating water temperature and the outlet pressure have been found and fitted as simple equations. These fitted equations can be considered as a reference, which provides an important method to effectively control the dehydriding rate in order to satisfy the fuel requirement of the power unit and ensure the safe navigation of green ships in the future.  相似文献   

2.
This review presents recent developments for effective heat management systems to be integrated in metal hydride storage tanks, and investigates the performance improvements and limitations of each particular solution. High pressures and high temperatures metal hydrides can lead to different design considerations, which are discussed in the paper. Studies analyzing design procedures based upon different geometrical solutions and/or operation strategies are considered, and their related advantages are explained. Restrictions to the validity of particular results are also evaluated.  相似文献   

3.
In this paper a two-dimensional model of an annular cylindrical reactor filled with metal hydride suitable for hydrogen storage is presented. Comparison of the computed bed temperatures with published experimental data shows a reasonably good agreement except for the initial period. Effects of hydrogen pressure and external fluid temperatures on heat transfer and entropy generation are obtained. Results show that the time required for hydrogen charging and discharging is higher when the thermal capacity of the reactor wall is considered. The time required for absorption and desorption can be reduced significantly by varying the hydrogen gas pressure and external fluid temperatures. However, along with reduction in time the entropy generated during hydrogen storage and discharge increases significantly. Results also show that for the given input conditions, heat transfer between the external fluid and hydride bed is the main source of entropy generation.  相似文献   

4.
Metal hydrides offer the potential to store hydrogen at modest pressures and temperatures with high volumetric efficiencies. The process of charging hydrogen into a metal powder to form the hydride is exothermic. The heat released by the reaction must be removed quickly in order to maintain a rapid charging rate. An effective method for heat removal is to embed a heat exchanger within the metal hydride bed. Here, we investigate the effectiveness of a helical coil heat exchanger tube to remove the heat generated during the absorption process. This paper presents a three-dimensional mathematical model formulated in Ansys Fluent 12.1 to evaluate the transient heat and mass transfer in a cylindrical metal hydride tank embedded with a helical-coil cooling tube. We present results from a parametric study of hydrogen storage efficiency as a function of helical coil pitch and convective heat transfer coefficient (h) within the cooling tube. We also explore the effect of adding aluminum foam to enhance the thermal conductivity of the metal hydride. The parametric study reveals that the mass of stored hydrogen is less sensitive to the coil pitch when aluminum foam is added. It is also found that the absorption rate increases with h as expected, although the rate of improvement diminishes at high values of h. Results were examined at filling times of 3 and 6 min to draw conclusions about the overall effectiveness of this hydrogen storage system. At 3 min, it is found that the addition of 5% Al foam is optimal, and h = 1000 W/m2-K is sufficient to bring the metal hydride to saturation; under these conditions a non-dimensional pitch of 0.5 maximizes the hydrogen absorption. Adding Al foam beyond 5% does not improve volumetric efficiency as the Al foam begins to displace the active hydrogen-absorbing material.  相似文献   

5.
The execution of metal hydride reactor (MHR) for storage of hydrogen is greatly affected by thermal effects occurred throughout the sorption of hydrogen. In this paper, based on different governing equations, a numerical model of MHR filled by MmNi4.6Al0.4 is formed using ANSYS Fluent for hydrogen absorption process. The validation of model is done by relating its simulation outcomes with published experimental results and found a good agreement with a deviation of less than 5%; hence present model accuracy is considered to be more than 95%. For extraction or supply of heat, water or oil is extensively used in MHR during the absorption or the desorption process so as to improve the competency of the system. Since nanofluid (mixture of base fluid and nanoparticles) has a higher heat transfer characteristics, in this paper the nanofluid is used in place of the conventional heat transfer fluid in MHR. Further the numerical model of MHR is modified with nanofluid as heat extraction fluid and results are presented. The Al2O3/H2O, CuO/H2O and MgO/H2O nanofluids are selected and simulations are carried out. The results are obtained for different parameters like nanoparticle material, hydrogen concentration, supply pressure and cooling fluid temperature. It is seen that 5 vol% CuO/H2O nanofluid is thermally superior to Al2O3/H2O and MgO/H2O nanofluid. The heat transfer rate improves by the increment in the supply pressure of hydrogen as well as decrement in temperature of nanofluid. The CuO/H2O nanofluid increases the heat transfer rate of MHR up to 10% and the hydrogen absorption time is improved by 9.5%. Thus it is advantageous to use the nanofluid as a heat transfer cooling fluid for the MHR to store hydrogen.  相似文献   

6.
Design of the heat exchanger in a metal hydride based hydrogen storage system influences the storage capacity, gravimetric hydrogen storage density, and refueling time for automotive on-board hydrogen storage systems. The choice of a storage bed design incorporating the heat exchanger and the corresponding geometrical design parameters is not obvious. A systematic study is presented to optimize the heat exchanger design using computational fluid dynamics (CFD) modeling. Three different shell and tube heat exchanger designs are chosen. In the first design, metal hydride is present in the shell and heat transfer fluid flows through straight parallel cooling tubes placed inside the bed. The cooling tubes are interconnected by conducting fins. In the second design, heat transfer fluid flows through helical tubes in the bed. The helical tube design permits use of a specific maximum distance between the metal hydride and the coolant for removing heat during refueling. In the third design, the metal hydride is present in the tubes and the fluid flows through the shell. An automated tool is generated using COMSOL-MATLAB integration to arrive at the optimal geometric parameters for each design type. Using sodium alanate as the reference storage material, the relative merits of each design are analyzed and a comparison of the gravimetric and volumetric hydrogen storage densities for the three designs is presented.  相似文献   

7.
An optimized design for a 210 kg alloy, TiMn alloy based hydrogen storage system for stationary application is presented. A majority of the studies on metal hydride hydrogen systems reported in literature are based on system scale less than 10 kg, leaving questions on the design and performance of large-scale systems unanswered. On the basis of sensitivity to various design and operating parameters such as thermal conductivity, porosity, heat transfer coefficient etc., a comprehensive design methodology is suggested. Following a series of performance analyses, a multi-tubular shell and tube type storage system is selected for the present application which completes the absorption process in 900 s and the desorption process in 2000 s at a system gravimetric capacity of 0.7% which is a vast improvement over similar studies. The study also indicates that after fifty percent reaction completion, heat transfer ceases to be the major controlling factor in the reaction. This could help prevent over-designing systems on the basis of heat transfer, and ensure optimum system weight.  相似文献   

8.
This paper presents a two-dimensional mathematical model to evaluate transient heat and mass transfer in a metal hydride tank (hereinafter MHT) with metal foam heat exchanger. The model is validated by comparison with experimental data. A good agreement is obtained.  相似文献   

9.
In this paper, a three-dimensional model for hydrogen absorption in a metal alloy has been developed, validated against the experimental data in the literature, and then applied to a novel design for a hydrogen storage unit. The proposed design is similar to the fuel cell stack, but here the Membrane Electrode Assembly (MEA) has been replaced by a metal hydride (MH) reactor placed between the flow-field plates. These are stacked together to achieve the required amount of hydrogen storage. The flow-field plates have channels engraved on one side for hydrogen supply and on the other, for coolant/heating medium. It is known that the effectiveness of a hydrogen storage unit is directly related to its heat transfer area, and therefore, the choice of its geometry is very important. The larger the size, the more the resistance to heat transfer. Although, the internal tubular heat exchangers have proven to be effective in heat transfer, they pose severe challenges such as cooling/heating medium leakage due to tube erosion, stresses generated, etc. and they displace the active metal hydride from the tank. The present stacked MH reactor configuration helps to overcome these challenges by stacking small MH reactors together and there is no chance of the cooling/heating medium leaking into the metal hydride. Numerical simulations were performed to investigate the effect of coolant flow rate and percentage of flow-field plate rib area exposed to the MH reactor on temperature evolution and the amount of hydrogen stored. Further, a detailed study was carried out to understand the effect of compartmentalization of the MH reactor on temperature distribution. The results revealed that compartmentalization substantially helps to uniformly distribute the temperature in the metal bed, which is very important to maintain uniform utilization of the metal powder. Consequently, the uniform metal powder density for repeated absorption-desorption cycles without significant loss of its hydrogen storage capabilities.  相似文献   

10.
A 1-D model has been developed to evaluate various designs of metal hydride reactors with planar, cylindrical or spherical geometry. It simulates a cycling loop (absorption–desorption) focusing attention on the heat transfer inside the hydride bed, which is considered the rate-limiting factor. We have validated this model with experimental data collected on two reactors, respectively, containing 1 and 25 g of LaNi5LaNi5, the second being equipped with aluminium foam. The simulation program reproduces accurately our experimental results. The impact of the foam cell size has been studied. According to our model, the use of aluminium foam allows the reactor diameter to be increased by 7.5 times, without losing its performance.  相似文献   

11.
An optimal hydrogen storage reactor should have a higher chemical reaction rate by which the heat can be exchanged as fast as possible. The configuration of heat exchanger structure design plays a crucial role in improving heat and mass transfer effect in metal hydride beds. Consequently, a variety of different metal hydride bed configurations have been investigated in experimental and simulation works for the improvement of absorption/desorption rate. In this work, the development of metal hydride bed design in recent decades has been reviewed to help the readers summarize and optimize the reactor configuration. The summarization and review of metal hydrides design can be broadly classified into five distinct categories, which are: 1) design of cooling tubes, 2) design of fins, 3) increasing and arrangement of cooling tubes, 4) other geometric design, and 5) utilization of phase change material. This work is concentrated on assessing the heat and mass transfer effectiveness of various reactor structure configurations. The superiority and weakness of different configurations are summarized to give a comparison of the heat exchange effects. Moreover, the structural parameter analysis for each configuration is also reviewed from the heat and mass transfer aspect. Finally, some recommendations are provided for future metal hydride bed structural designs.  相似文献   

12.
This paper presents a two-dimensional mathematical model to optimized heat and mass transfer in metal hydride storage tanks (hereinafter MHSTs) for fuel cell vehicles, equipped with finned spiral tube heat exchangers. This model which considers complex heat and mass transfer was numerically solved and validated by comparison with experimental data and a good agreement is obtained.  相似文献   

13.
Metal hydrides are regarded as one of the most attractive options for thermal energy storage (TES) materials for concentrated solar thermal applications. Improved thermal performance of such systems is vitally determined by the effectiveness of heat exchange between the metal hydride and the heat transfer fluid (HTF). This paper presents a numerical study supported by experimental validation on a magnesium hydride reactor fitted with a helical coil heat exchanger for enhanced thermal performance. The model incorporates hydrogen absorption kinetics of ball-milled magnesium hydride, with titanium boride and expanded natural graphite additives obtained by Sievert's apparatus measurements and considers thermal diffusion within the reactor to the heat transfer fluid for a realistic representation of its operation. A detailed parametric analysis is carried out, and the outcomes are discussed, examining the ramifications of hydrogen supply pressure and its flow rate. The study identifies that the enhancement of thermal conductivity in magnesium hydride has an insignificant impact on current reactor performance.  相似文献   

14.
The metal hydride reactor filled with 5 kg of the AB5-type (LaFe0.5Mn0.3Ni4.8) alloy was investigated with respect to the hydrogen discharge rates classified using C-rate value, which is discharge of the maximum hydrogen capacity 750 st L within 1 h. The reactor cannot be fully discharged with a constant flow rate, for each temperature of hot water and flow rate there exists a moment of crisis at which the hydrogen flow drops under the constant value. The nominal capacity of the reactor reaches 80% of maximum capacity if sufficient heat transfer is provided. The simple balance model of a metal hydride reactor is developed based on the assumption of uniform temperature and pressure inside a metal hydride bed. The model permits to predict behavior of the metal hydride reactor in different operation regimes, quantitative agreement is obtained for low C-rates (less than 4) and sub-critical modes.  相似文献   

15.
Using phase change materials (PCM) as thermal energy storage material in metal hydride reactor bed is an effective method to store the heat emitted during hydrogen charging and retrieving it later during discharging. The present work examines the effect of a PCM on the behaviour of the metal hydride in the reactor bed. A two-dimensional model was developed to describe the mass and heat transfer inside the metal hydride and the PCM as well as the interaction between them. The results were compared with other numerical simulation and experimental data. In the simulations, thermal conductivity and the latent heat were varied in order to evaluate the effect of these parameters on the kinetics of absorption, desorption and melting of the phase change material.  相似文献   

16.
The desorption behavior of a hydrogen storage prototype loaded with AB5H6 hydride, whose equilibrium pressure makes it suitable for both feeding a PEM fuel cell and being charged directly from a low pressure water electrolyzer without need of additional compression, was studied. The nominal 70 L hydrogen storage capacity of the container (T = 20 °C, P = 101.3 kPa) suffices for ca. 2.5 h operation of a 50 W hydrogen/oxygen fuel cell stack. The hydride container is provided with aluminum extended surfaces to enhance heat exchange with the surrounding medium. These surfaces consist of internal disk-shaped metal foils and external axial fins. The characterization of the storage prototype at different hydrogen discharge flow rates was made by monitoring the internal pressure and the temperatures of the external wall and at the center inside the container.  相似文献   

17.
This paper reports the numerical investigation of the effect of different phase change materials (PCMs) on the metal hydride (MH) behaviour in a reactor bed during the absorption process. The feasibility of integrating metal foams (MFs) into the phase change materials to improve the hydrogen storage performance of the system was also evaluated. A two-dimensional model for a LaNi5 hydride reactor equipped with different phase change materials has been developed. The selection of five different PCMs having a high latent heat of fusion and a range of melting temperatures were investigated. In addition, the effect of the mass and volume of the different PCMs on the hydrogen performance of the MH reactor was studied. It was found that LiNO3·3H2O PCM shown better performance than the other PCMs, its loading time is faster, and its mass within the reactor is enough to absorb the total heat generated from the MH during hydrogenation. Three different metals foam with three different porosities were integrated into the most suitable PCM with the appropriate dimension of a cylindrical reactor that shows the optimum performance. The obtained results indicated that the integration of the metal foams into the PCM show better heat transfer performance than the case of MH-PCM without metal foams. Two different configurations cylindrical and spherical MH reactors were investigated. The obtained results indicated that the two configurations have very similar behaviours. So, both configurations are good for the hydriding process within an MH reactor.  相似文献   

18.
A numerical model for the transient hydrogen charge/discharge rates and thermal behaviour of metal hydride stores was developed and verified against experiments using a cylindrical reactor filled with AB5-type metal hydride. The model assumes local thermal equilibrium between the gas and solid phases, and incorporates the pressure and temperature-dependent hydrogen reaction rates, as well as heat transfer in the porous metal hydride bed. The model was verified through experimental data. The experiments were performed using a unit with hydrogen storage capacity of 130 Nl H2; the store was submerged in an isothermal water bath. Experiments at different water bath temperatures and charge/discharge hydrogen pressures indicated a relation between charge/discharge time and these parameters. The reactor's ability to deliver a constant hydrogen flow at different water bath temperatures was experimentally investigated. During simulations it was found that the model applied is sensitive to perturbations of some of its parameters; activation energy of absorption, effective conductivity and heat of reaction were found to be the most important ones. The charge and discharge performances of the store are controlled by the reaction rate in the first half-part of the H absorption/desorption experiments and by a heat transfer in the second half-part of charge/discharge.  相似文献   

19.
Hydrogen storage and release process of metal hydride (MH) accompany with large amount of reaction heat. The thermal management is very important to improve the comprehensive performance of hydrogen storage unit. In present paper, thermochemical material (TCM) is used to storage and release the reaction heat, and a new sandwich configuration reaction bed of MH-TCM system was proposed and its superior hydrogen and thermal storage performance were numerically validated. Firstly, the optimum TCM distribution with a volume ratio (TCM in inner layer to total) of 0.4 was derived for the sandwich bed. Then, comparisons between the sandwich reaction bed and the traditional reaction bed were performed. The results show that the sandwich MH-TCM system has faster heat transfer and reaction rate due to its larger heat transfer area and smaller thermal resistance, which results in the hydrogen storage time is shortened by 61.1%. The heat transfer in the reaction beds have significant effects on performance of MH-TCM systems. Increasing the thermal conductivity of the reaction beds can further reduce the hydrogen storage time. Moreover, improving the hydrogen inflation pressure can result in higher equilibrium temperature, which is beneficial for the enhancing heat transfer and hydrogen absorption rates.  相似文献   

20.
The absorption and desorption performances of a solid state (metal hydride) hydrogen storage device with a finned tube heat exchanger are experimentally investigated. The heat exchanger design consists of two “U” shaped cooling tubes and perforated annular copper fins. Copper flakes are also inserted in between the fins to increase the overall effective thermal conductivity of the metal hydride bed. Experiments are performed on the storage device containing 1 kg of hydriding alloy LaNi5, at various hydrogen supply pressures. Water is used as the heat transfer fluid. The performance of the storage device is investigated for different operating parameters such as hydrogen supply pressure, cooling fluid temperature and heating fluid temperature. The shortest charging time found is 490 s for the absorption capacity of 1.2 wt% at a supply pressure of 15 bar and cooling fluid temperature and velocity of 288 K and 1 m/s respectively. The effect of copper flakes on absorption performance is also investigated and compared with a similar storage device without copper flakes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号