共查询到20条相似文献,搜索用时 16 毫秒
1.
Xinxin Jiang Ye Song Meiling Dou Jing Ji Feng Wang 《International Journal of Hydrogen Energy》2018,43(46):21290-21298
In this work, we fabricated MoS2/WS2 heterostrucutures with decoration of Bi2S3 nanorods through different stacking sequences (MoS2/WS2 (bottom layer) +Bi2S3 (top layer) and Bi2S3 (bottom layer) + MoS2/WS2 (top layer), respectively). The morphology and structure were studied by scanning electron microscope (SEM), transmission electron microscope (TEM) and the X-ray powder diffraction (XRD). It was found that the hybrid structure with different stacking sequences was composed of Bi2S3 nanorods and MoS2/WS2 nanosheets. By UV–visible absorption spectra (UV–vis) and photoluminescence (PL) experiments, we found that the composite catalysts of both stacking sequences can promote visible-light utilization and accelerate the electron transportation. Electrochemical measurements (such as cyclic voltammetry (CV), linear sweep voltammetry (LSV) and electrochemical impedance spectroscope (EIS) under light illumination or in dark) indicated that the MoS2/WS2+Bi2S3 possessed higher photoelectrocatalytic activity towards hydrogen evolution reaction (HER) than that of Bi2S3+MoS2/WS2 due to its proper energy band alignment that facilitates the effective carrier separation, the lower charge transfer resistance, higher electrochemically active surface area as well as the fast electron transfer kinetics. Inspired by these observations, we believe that MoS2/WS2+Bi2S3 catalyst is a potential candidate for photoelectrocatalytic production of H2. 相似文献
2.
《International Journal of Hydrogen Energy》2020,45(55):30341-30356
Reasonable design and fabrication of core/shell heterojunction has deemed as an efficient strategy to boost the transport and separation of photoinduced charge pairs in semiconductor-based photocatalytic system. Herein, a novel dual-functional ZnIn2S4/Ta3N5 (ZIS/TN) nanocomposite with intimate contacts was fabricated with a one-pot eco-friendly hydrothermal method. This core/shell heterojunction consisting of ZnIn2S4 nanosheet shell and Ta3N5 nanoparticle core is observed to possess the enhanced visible light harvesting capacity, increased specific surface areas, more high-speed charge nanochannels and accelerated charge transfer and separation. Thus, as prepared ZIS/TN nanocomposite displayed dramatically strengthened dual-functional photocatalytic performances of hydrogen production and tetracycline hydrochloride (TCH) photodegradation. As a result, the improved H2-production activity of 834.86 μmol g−1 h−1 was obtained by sample ZIS/TN-2, which is 6.07 times higher than that of pure ZnIn2S4 nanosheet. Moreover, the highest TCH photodegradation efficiency of 89.95% is achieved by the sample ZIS/TN-3, which is 1.90 and 11.01 times more than those of bare ZnIn2S4 and Ta3N5. In addition, the core/shell heterojunction exhibits super photostability and reusability due to the protection of external ZnIn2S4 layer from the photocorrosion of Ta3N5 core. Furthermore, the possible reaction mechanisms and the degradation intermediate products of TCH were also put forwarded in depth based on transient photocurrent response, active species tapping experiment, electronspin response (ESR) technique and HPLC-MS method. This work could stimulate an innovative vision in constructing dual-functional Ta3N5-based core/shell heterostructure with wonderful photocatalytic H2 evolution and antibiotic pollutant photodegradation activities. 相似文献
3.
《International Journal of Hydrogen Energy》2022,47(4):2124-2133
Due to the extensive use of fossil fuels & their direct influence on the environment, new ways of producing energy sources are highly needed. Hydrogen is the perfect candidate for renewable energy; however, H2 gas production is associated with disadvantages due to a lack of efficient and active catalysts that could be cost-effective and comparable to platinum performance. Active hydrogen evolution reaction catalysts are needed to advance the development of a cheaper generation of solar fuels. Thus, outperformance, and stable earth abundant. And inexpensive catalysts are highly demanded. That is H2 gas production from the electrolysis of water through HER. In this work, we present different analytical techniques that characterize an efficient and highly stable catalyst based on transition metal oxide Co3O4/MoS2 nanostructures. And their composites for water splitting in harsh acidic conditions time and material chemical composition as like SEM, EDS, XRD, HRTEM & XPS. The composite material is highly best to produce HER at 10 mA cm?2 and obtained 268 mV overpotential of nano Co3O4/MoS2 (S3) and Tafel slope of 56 mv/dec. Faraday efficiencies of the hydrogen gas production measured for the 60 min and catalyst is highly durable for the 20 h. The presented catalysts are up to the mark of platinum metal performance and superior to several transition metal oxides. This fabrication technology is a new roadmap for developing active and scalable hydrogen-evolving catalysts by overcoming the issues of fewer catalytic edges, low density, and poor conductivity. 相似文献
4.
《International Journal of Hydrogen Energy》2023,48(71):27557-27567
Heterostructure and phase engineering are effective method to tune the electronic structure of MoS2, which can activate and boost its intrinsic catalytic activity. Herein, the theoretical calculations reveal that the free energy of H1 adsorption (ΔGH1) for Mo2C (−0.65 eV) is lower than MoS2 (2.05 eV), which is favorable for hydrogen adsorption. Inspired by the theoretical predictions, we develop a facile strategy to prepare nanostructured Mo2C/MoS2 dispersed on reduced graphene oxide (rGO) via a hydrothermal preparation and carburization reaction. Since the Mo2C/MoS2-rGO nanostructures with great deal of both MoS2 and Mo2C edges by heterostructure and phase engineering, which can induce massive active sites for HER on the surface of rGO, the intimate interfacial coupling effect between Mo2C and MoS2 can effectively improve the charge transfer rate. The Mo2C/MoS2-rGO catalyst exhibits exceptional HER properties, delivering a high turnover frequency (TOF) of 0.209 s−1 at an overpotential of 200 mV in 0.1 M KOH. This work may open a new window for designing NPM electrocatalysts with highly efficient HER property based on earth-abundant materials. 相似文献
5.
Guang-Lan Li Cai-Di Liu Li-Fang Yuan Qiu-Mei Wu Wen-Wen Chen Guang-Chun Cheng Bei-Bei Yang Ce Hao 《International Journal of Hydrogen Energy》2018,43(3):1386-1395
Controlled synthesis of efficient core-shell non-precious metal catalysts for oxygen reduction reaction (ORR) is undoubtedly crucial but challenging for the extensive application of fuel cells and metal-air batteries. Herein, we prepared a core-shell structured Fe/FeCx nanoparticles and porous carbon composited catalyst (Fe/FeCx@NC) via a facile two-step heat treatment strategy. The Fe/FeCx@NC-800?0.5 prepared with secondary anneal at 800 °C for 0.5 h exhibits superior ORR performance to the commercial Pt/C in terms of comparable onset potential, higher half-wave potential, and outstanding long-term durability in alkaline media. Through combining the physical and electrochemical characterizations of Fe/FeCx@NC-T?t with different anneal temperature and precursors, the outstanding ORR performance of Fe/FeCx@NC-800?0.5 is caused by the synergistic effect between Fe/FeCx core and enriched pyridinic N- and graphitic N-doped carbon shell as well as porous carbon with large specific surface area. The structure-activity relationship of core-shell structured Fe–N–C catalysts for ORR provides directions for the development of advanced nonprecious metals catalysts. 相似文献
6.
《International Journal of Hydrogen Energy》2021,46(76):37847-37859
The unique architecture is very significant for photocatalysts to achieve high photocatalytic efficiency. Herein, hollow Cu2MoS4/ZnIn2S4 heterostructural nanocubes with intimate-contact interface have been prepared for the first time via a self-template way, which can promote the photocatalysis hydrogen evolution. First, novel hollow structured Cu2MoS4 nanocubes were successfully synthesized using Cu2O as a precursor, then the ZnIn2S4 nanosheets were in-situ grew on the surface of hollow Cu2MoS4 nanocubes. The unique hollow heterostructures have markedly enhanced photocatalytic efficiency, and 15 wt% Cu2MoS4/ZnIn2S4 sample exhibits the highest hydrogen production rate of 8103 μmol·h−1·g−1, which is approximately four times higher than pure ZnIn2S4. The improved photocatalytic performance is mainly attributed to the following two points: (1) the hollow nanocube structure can provide rich active sites and increase light absorption; (2) forming a built-in electric field is conducive to transfer the holes generated by ZnIn2S4 to Cu2MoS4, which can effectively promote charge separation. This work may provide insights for the design of hollow architecture cage materials for high photocatalytic performance. 相似文献
7.
Abdul Qayoom Mugheri Aijaz Ali Otho Arslan Ahmed Mugheri 《International Journal of Hydrogen Energy》2021,46(44):22707-22718
Hydrogen is zero-emission fuel production for a clean environment as alternative effective the energy source is still moreover, an effective challenge in near future due to the lack of efficient and inexpensive catalysts. An efficient electrocatalysts structure having logical design which holds a paramount significance for the hydrogen evolution reaction (HER) but rarely noble metal Pt-like activity achieved by the transition metal oxides electrocatalysts based on oxides matured and cooperative with coupling metal oxides could be considered as a desired substitute electrocatalysts to change Pt/C based nano composite materials. Herein, un-noble the metal oxides of hetero structure consisting of Co3O4/MoS2 based-electrocatalysts nanocomposite material. The desirable out-comes show that Co3O4/MoS2 composite material providing extraordinary efficient HER kinetics activity in different experimental designs. The Co3O4/MoS2 based electro-catalyst increases the best activity of HER kinetics performance especially measured in 1 M KOH solution condition and offers an influential interfacing engineering strategy at very minute over potential of 348 mV evaluated and small Tafel slopes 46 mV/dec for HER performance. This work elucidates interest for efficient electrocatalysts for a broader range of scalable applications in the development of renewable energies, the functional materials such as solar cells, lithium sulphur-batteries and energy chemistry advancing. 相似文献
8.
《International Journal of Hydrogen Energy》2020,45(46):24567-24572
Recently, NiSx based catalysts are promising electrocatalysts for Hydrogen Evolution Reaction (HER) via water electrolysis. In particular, the S/Ni ratio is crucial to improve catalytic activity of NiSx based catalysts. Herein, we synthesized NiSx based catalysts (Ni/S/C) with a tuned S/Ni molar ratio using Ni2+ ions exchange resin. We succeeded in synthesizing Ni/S/C with different S/Ni molar ratio in the range of 0.33–1.72 by changing Ni2+ ions exchange degree. The combination of NiSx and conductive carbon support contributes to high catalytic activity of Ni/S/C on HER. Additionally, Ni/S/C with the S/Ni molar ratio of 0.6 showed the highest onset potential; Ni3S2 is the most active catalyst for HER in NiSx species. Our synthesis method can easily tune the ratio of S/transition metal. This work provides a new direction for the catalyst design of transition metal sulfides and expands their utilization in sustainable catalytic reaction processes. 相似文献
9.
《International Journal of Hydrogen Energy》2023,48(28):10555-10565
1T-MoS2 shows great promise for hydrogen production due to phenomenal performance in catalyzing hydrogen evolution reaction (HER) from water. However, this phase converts to low-active 2H–MoS2 on superambient heating. A series of MoS2 layered compounds (LCs) with guest organic cations was prepared to reveal the effect of cationic organics on the structure stabilization of 1T-MoS2 and thereby on the catalytic performance of this phase in HER. The results showed that LCs provide significantly higher 1T/2H ratio after heating than non-stabilized 1T phase and some of them exhibit excellent thermal durability in the capacity of HER catalysts. The effect is most pronounced for the organics remaining tightly bound to sulfide sheets in a sulfuric acid electrolyte. Cetyltrimethylammonium and bis(dimethylamino)naphthalene perfectly matched this criterion and provided a long-term maintaining of catalyst activity. The data obtained in this study are hoped to offer new approach for rational design of the efficient non-precious 1T-MoS2-based electrocatalysts for hydrogen production. 相似文献
10.
《International Journal of Hydrogen Energy》2022,47(33):14930-14941
The substitution of noble metal catalysts with earth abundant TMs as electrocatalysts for hydrogen production is of great significance. One biggest bottleneck for high-efficiency water electrolysis in TM catalysts is the sluggish reaction kinetics or electron transport efficiency. The electrical coupling between the substrate and the catalytic material can accelerate the electron transport, enhancing the charge transfer kinetics, and thereby improve the catalytic performance of the catalyst. Herein, we report a sandwich-structured CNF/Co3S4/MoS2, MoS2 grown in-situ on N-doped nanofibers with Co3S4 nanoparticles via electrospinning, carbonization and hydrothermal process, as self-supported electrodes for hydrogen evolution reaction. The sandwich structure is comprised of CNFs/Co3S4/MoS2 as substrate/accelerator/catalyst. Thereinto, the three-dimensional CNF framework, intrinsically doped by nitrogen, can open accessible channels for reactants and served as substrates for the in-situ growth of Co3S4 and MoS2 nanocrystals with high conductivity and massive active sites. Hence, the CNF/Co3S4/MoS2 shows outstanding catalytical performance in water electrospinning, only 80 mV required to drive 10 mA cm?2 current density with the Tafel slope of 99.2 mV dec?1 in alkaline media. Besides, the performance can be maintained for at least 40 h with negligible decline. This experiment can provide a new idea for the design of efficient and stable self-supporting electrodes. 相似文献
11.
Balasingh Thangadurai Jebaslinhepzybai Thamodaran Partheeban Deepak S. Gavali Ranjit Thapa Manickam Sasidharan 《International Journal of Hydrogen Energy》2021,46(42):21924-21938
Development of an inexpensive electrocatalyst for hydrogen evolution (HER) and oxygen evolution reactions (OER) receives much traction recently. Herein, we report a facile one-pot ethyleneglycol (EG) mediated solvothermal synthesis of orthorhombic Co2P with particle size ~20–30 nm as an efficient HER and OER catalysts. Synthesis parameters like various solvents, temperatures, precursors ratios, and reaction time influences the formation of phase pure Co2P. Investigation of Co2P as an electrocatalyst for HER in acidic (0.5 M H2SO4) and alkaline medium (1.0 M KOH), furnishes low overpotential of 178 mV and 190 mV, respectively to achieve a 10 mA cm?2 current density with a long term stability and durability. As an OER catalyst in 1.0 M KOH, Co2P shows an overpotential of 364 mV at 10 mA cm?2 current density. Investigation of Co2P NP by XPS analysis after OER stability test under alkaline medium confirms the formation of amorphous cobalt oxyhydroxide (CoOOH) as an intermediate during OER process. 相似文献
12.
《International Journal of Hydrogen Energy》2020,45(7):4501-4510
The hierarchical Mn3O4@SnO2/Co3O4 core-shell nanocomposite has been successfully synthesized via a facile structural construction strategy. The SnO2/Co3O4 nanosheets (SnO2/Co3O4 NSs) were enclosed on the surface of Mn3O4 nanorods (Mn3O4 NRs). The prepared materials were investigated as the catalyst toward oxygen evolution reaction (OER) performance in alkaline. By contrast, the design of core-shell hierarchical nanocomposite of Mn3O4@SnO2/Co3O4 possesses the obvious electrocatalytic OER performance than others, showing the overpotential of approximately 420 mV at a current density of 10 mA cm−2 with a low Tafel slope of 70.1 mV dec−1, in which the interesting structure can provide the interfacial and cooperative effect between core (hierarchical SnO2/Co3O4 NSs) and shell (1D Mn3O4 NRs) that 1D Mn3O4 NRs can act as an electron acceptor and accelerates electron transfer, and that hierarchical SnO2/Co3O4 NSs provide a large specific surface area and multiple exposed surface active sites between electrode material and electrolyte. 相似文献
13.
Elhameh Mohammadpour Karim Asadpour-Zeynali 《International Journal of Hydrogen Energy》2021,46(53):26940-26949
Due to the augmentation of societies and the need for more energy, attention to clean and renewable energy has increased. One of these alternative energies was the use of water splitting. Since the oxidation reaction of water suffers from a delayed reaction, it is important to use efficient and low-cost electrocatalysts in the process. In this work we report the synthesis of ZnFe2O4@ZnFe2S4 by the hydrothermal method. Here, we successfully synthesize the ZnFe2O4@ZnFe2S4 core-shell nanosheet on Ni Foam via a novel and facile process for oxygen evolution reactions (OER). The metal-based electrode made of ZnFe2O4@ZnFe2S4 is efficient for the electrochemical reaction of water oxidation due to its electrical strength and high catalytic activity. The catalyst is calcined at 400 °C and characterized by XRD, FESEM, TEM, EDS, MAP and RAMAN techniques. The electrolysis of water using ZnFe2O4@ZnFe2S4/NF a current density of 5 mA cm?2 can be achieved by cell voltage of 1.45 V (vs. RHE) volts in a solution of 1 M KOH. The catalyst synthesized to reach 5 mA cm?2 in oxygen evolution reaction only has 222 mV overpotentials. 相似文献
14.
《International Journal of Hydrogen Energy》2022,47(65):27775-27786
The pivotal challenge of electrocatalysis remains the development of highly effective electrocatalysts for the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). In this work, a universal strategy of preparing the encapsulation of Co-based multimetallic alloys/oxide nanoparticles in nitrogen-doped carbon nanotubes (named CoM@CNTs, M = Ni/Mn/Fe) was induced by annealing mixtures of the as-synthesized precursor, ethanol and different metallic acetates, including binary CoNi@CNTs, ternary CoNi/MnO@CNTs and quaternary CoNiFe/MnO@CNTs. By virtue of its unique structure with a high electrical conductive network based on CNT substrates, abundant catalytic active sites supplied by multimetallic nanoparticles and protection against nanoparticle corrosion by N-doped carbon layers, the as-synthesized CoNiFe/MnO@CNTs electrocatalyst has remarkable HER properties with a low overpotential of 122 mV and OER activity with a low overpotential of 275 mV at 10 mA cm?2 and excellent stability and durability under long-term testing in alkaline solutions. Therefore, this strategy will provide a new route for fabricating multimetallic-based CNTs as HER/OER electrocatalysts with excellent stability and high catalytic activity. 相似文献
15.
《International Journal of Hydrogen Energy》2022,47(16):9579-9592
Pristine molybdenum disulfide (MoS2) nanostructures with 1T on 2H phase have been prepared by tuning the growth time in hydrothermal synthesis. The optimized sample has an expanded interlayer and it exhibits striking kinetic metrics with an onset potential of - 0.13 V, Tafel slope of 49 mV/decade, and an exchange current density of 3.98 × 10?3 mA, performing best among the pristine MoS2 based hydrogen evolution reaction (HER) catalysts reported so far. The edge terminated structure, together with the expanded interlayer, is believed to modify the electronic structure to enhance the conductivity of the compound. The Mott-Schottky analysis of the optimized sample indicated a decrease in band bending and an enhancement in the charge transfer. The promising HER response obtained with sufficiently low growth time and growth temperature for the pristine MoS2 nanostructures suggests a potential way to design high-performance HER catalysts based on the compound. 相似文献
16.
《International Journal of Hydrogen Energy》2023,48(51):19494-19508
The adoption of effective, minimal, and versatile electrocatalysts for water splitting to generate hydrogen fuels is of critical importance. The bulk of newly described materials have considerable onset potential, but their electrocatalytic activity is limited by weak electrical conductivity and a limited range of catalytic sites. The combination of a few precious metals added with transition metal-based compounds is a novel and captivating approach. Herein, cobalt ferrite oxide (Co2FeO4) @ palladium oxide (PdO) nanostructures have been prepared through the combined use of hydrothermal and ultraviolet (UV) irradiation techniques. For hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) kinetics, the modified composition offers a high concentration of active sites, improved electrical conductivity, and stability. The Co, Fe, and Pd ions at the composite system's interface may affect the adsorption energy of reaction intermediates synergistically, enabling the process to continue with less potential. The electrocatalyst Co2FeO4@PdO demonstrates an excellent bifunctional approach to electrochemical water splitting (EWS) for HER and OER in alkaline medium. As-prepared electrocatalyst shows an overpotential value of 269 and 259 mV for HER and OER at 10 and 20 mA/cm2 current densities respectively. The low charge transfer resistance values such as 72.2 and 62.4 Ω and durability for 48 h has been observed toward HER and OER, support this material as an efficient and durable electrocatalyst for energy conversion systems. 相似文献
17.
MoS2-graphene-CuNi2S4 nanocomposite an efficient electrocatalyst for the hydrogen evolution reaction
《International Journal of Hydrogen Energy》2019,44(31):16069-16078
We present a facile methodology for the synthesis of a novel 2D-MoS2, graphene and CuNi2S4 (MoS2-g-CuNi2S4) nanocomposite that displays highly efficient electrocatalytic activity towards the production of hydrogen. The intrinsic hydrogen evolution reaction (HER) activity of MoS2 nanosheets was significantly enhanced by increasing the affinity of the active edge sites towards H+ adsorption using transition metal (Cu and Ni2) dopants, whilst also increasing the edge sites exposure by anchoring them to a graphene framework. Detailed XPS analysis reveals a higher percentage of surface exposed S at 17.04%, of which 48.83% is metal bonded S (sulfide). The resultant MoS2-g-CuNi2S4 nanocomposites are immobilized upon screen-printed electrodes (SPEs) and exhibit a HER onset potential and Tafel slope value of – 0.05 V (vs. RHE) and 29.3 mV dec−1, respectively. These values are close to that of the polycrystalline Pt electrode (near zero potential (vs. RHE) and 21.0 mV dec−1, respectively) and enhanced over a bare/unmodified SPE (– 0.43 V (vs. RHE) and 149.1 mV dec−1, respectively). Given the efficient, HER activity displayed by the novel MoS2-g-CuNi2S4/SPE electrochemical platform and the comparatively low associated cost of production for this nanocomposite, it has potential to be a cost-effective alternative to Pt within electrolyser technologies. 相似文献
18.
《International Journal of Hydrogen Energy》2022,47(72):30950-30958
Waste-to-hydrogen processes are a way to produce hydrogen from waste and reduce the amount of landfill/incineration of wastes simultaneously through the gasification of waste. The water-gas shift (WGS) reaction is a key step in this waste-to-hydrogen process by removing the CO and producing additional H2. A nanofiber-structured CoFe2O4 catalyst was synthesized by the electrospinning method, and the catalytic performance in WGS using waste-derived synthesis gas was compared with that of catalysts prepared by sol-gel, hydrothermal, and co-precipitation methods. The CoFe2O4 catalyst synthesized by the electrospinning method showed a clear nanofiber structure and revealed a superior redox property. This superior redox property, which has a large relation with the high oxygen storage capacity of the catalyst, induced the formation of an active phase (Co0 and Fe3O4) in CoFe2O4. As a result, the nanofiber structured oxygen defective CoFe2O4-x prepared by the electrospinning method showed the best catalytic activity in this study. 相似文献
19.
《International Journal of Hydrogen Energy》2019,44(13):6573-6581
A flower-like MoS2 with a stepped edge structure was successfully and controllably fabricated as a bifunctional electrocatalyst efficient for hydrogen and oxygen evolution reactions. The hierarchically porous polycrystalline MoS2 was characterized by a combination analysis of XRD, Raman, XPS, N2-BET, SEM and TEM. In the hydrogen evolution reaction (HER), this as-obtained MoS2/Ni catalyst presents significantly enhanced performance versus most previously studied catalysts. In the oxygen evolution reaction (OER), the electrocatalyst MoS2/Ni gives rise to a rather low overpotential of ∼0.335 V at 20.0 mA cm−2 and much enhanced durability over 6 h. 相似文献
20.
《International Journal of Hydrogen Energy》2020,45(35):17174-17190
The study investigated the synergistic effects of rGO and Pt over TiO2 for the HER via artificial photosynthesis under UVB and visible light irradiation. The introduction of glycerol and industrial wastewater to the system as sacrificial reductants signifies that the major reaction pathway is photocatalytic partial water splitting. The material characterizations revealed successful heterojunction formation and provided insight into chemistry behind the activity of the photocatalysts. Amongst various combinations of rGO on TiO2, 1GNT exhibited an HER yield five times that of bare TiO2 under UVB light. Addition of Pt led to the formation of a strong Schottky barrier at the heterojunction and consequently boosted HER performance. 1P0.5 GT presented the highest of 28.5 mmol g−1 h−1 with glycerol and 9.6 mmol g−1 h−1 with wastewater under UVB light respectively. For both binary and ternary photocatalysts, the HER performances dwindled under visible light irradiation, accentuating the insufficient activation of the TiO2. In addition, 1PT outperformed all the other photocatalysts thereby elucidating the impression that rGO and Pt does not work well together in enhancing HER despite quenching the exciton recombination rate of TiO2 significantly. The role of pH in the synthesis and the experiments has been discussed. Finally, the underlying mechanisms in the photodeposition and photoreformation have been proposed. 相似文献