首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sub-critical burning of lean hydrogen-air mixtures in micro gaps between two quartz disks was investigated both experimentally and numerically. Stationary regimes for different compositions and gap sizes were found when sub-critical flames remained in a stable position relative to the disk surfaces. The burning velocity in the micro gaps was observed to reach values much larger than the laminar burning velocity. A reaction-diffusion numerical model was proposed to corroborate experimental results. Different factors, such as boundary conditions for velocity, irradiation of the disk surfaces contacting the gas, and an increase in the chemical reaction rate near disk surfaces were modeled numerically in order to explain the increase in burning velocities. The best correlation between the numerical results and experimental data was observed in the scenario proposing as increased chemical reaction rate near the disk surfaces. Numerical simulations also showed that for large flame front velocities and wider sub-critical gaps, the flame front becomes unstable. The reason for this instability is the asynchronization of the combustion near the disk surfaces and the subsequent turbulization of the flame.  相似文献   

2.
Effect of turbulent jet ignition induced by pre-chamber sparkplug (PCSP), a simper version of turbulent jet ignition pre-chamber system without fuel injection, on the air-hydrogen combustion characteristics was conducted based on an optical constant volume chamber under varied equivalence ratio conditions. The dynamic pressure sensor and schlieren system were used to evaluate the heat release and flame propagation characteristics. The results confirm the feasibility of PCSP type turbulent jet. The jet increase the flame propagation speed significantly compared to standard ignition, which shorten ignition delay and combustion duration, advance T50 largely, and increase the maximum combustion pressure slightly. As a result, the combustion intensity is increased largely, especially under lean regime, the combustion intensity index can be as high as 1.7 at certain equivalence ratio. In addition, the PCSP turbulent jet reduces the sensitivity of heat release to variation of equivalence ratio, which is helpful to simplify the combustion controlling strategy. Furthermore, with the enhancement of the flame propagation, the tendency of knocking combustion can be suppressed potentially.  相似文献   

3.
The report deals with the investigation of explosion safety parameters of hydrogen-air mixtures in a 17.17 L cylindrical closed-vessel with different concentrations, obstacles, and ignition locations. The experimental data including the maximum explosion pressure, laminar burning velocity, and corresponding flame radius were confirmed by using GASEQ code and theoretical calculation, respectively. The report shows the orifice plate reduced the maximum explosion pressure of the low-concentration hydrogen (φ<20% v/v), while the maximum explosion pressure of high-concentration hydrogen (φ>20% v/v) was increased, and the oscillation of the explosion pressure in the closed-vessel was obvious. The effect of the ignition location on the maximum explosion pressure was related to the interaction between the flame instability and the orifice plate for the φ = 30% v/v hydrogen-air mixture.  相似文献   

4.
The effects of the hole size and perforated plate position on the propagation of flame and flow and pressure oscillation were explored in a constant volume combustion chamber (CVCB) with a single-hole perforated plate. Stoichiometric hydrogen-air mixture was used in the experiments, and the propagation of the flame and jet flow were recorded by high-speed schlieren photography. The results demonstrated that the flame velocity firstly increases and then decreases with the increasing hole size. With the hole size of 13 mm, the flame velocity, peak pressure, and pressure oscillation reached the maximum under the current experimental conditions. Moreover, the influence of the position of the perforated plate was investigated. It was found that the jet flow before the flame front is prominently distinct when the perforated plate is in positions A and B, resulting in an apparent difference in the flame shape behind the perforated plate, which means that the movement of the jet flow plays a leading role in the development of the flame. In Position B, the flame front overlapped with the jet flow and has the same shape. Besides, an interesting phenomenon was captured: with perforated plate in Position B, a secondary flame front was generated with higher flame tip velocity before the primary flame front under the effect of the flame-vortex interaction.  相似文献   

5.
The outward propagation and development of surface instability of the spark-ignited spherical premixed flames for methanol-air-nitrogen mixtures were experimentally studied by using a constant volume combustion chamber and a high-speed schlieren photography system. The laminar burning velocities, the mass burning fluxes, and the Markstein lengths were obtained at different equivalence ratios, dilution ratios, initial temperatures, and pressures. The laminar burning velocities and the mass burning fluxes give a similar curve versus the equivalence ratios. They increase with the increase of initial temperature and decrease with the increase of dilution ratio. The laminar burning velocity decreases with elevating the initial pressure, while the mass burning flux increases with the increase of the initial pressure. Markstein length decreases slightly with the increase of initial temperature for the rich mixtures. High initial pressure corresponds to low Markstein length. Markstein length increases with the increase of dilution ratio, which is more obvious when the mixture becomes leaner. Equivalence ratio has a slight impact on the development of the diffusive-thermal cellular structure at elevated initial pressures. The initial pressure has a significant influence on the occurrence of the flame front cellular structure. At the elevated pressures, the cracks on the flame surface branch and develop into the cell structure. These cells are bounded by cracks emitting a bright light, which may indicate soot formation. For very lean mixture combustion, the buoyancy effect and cooling effect from the spark electrodes have a significant impact on the flame propagation. The hydrodynamic instability, inhibited with the increase of initial temperature around the stoichiometric equivalence ratio, is enhanced with the increase of initial pressure and suppressed by mixture dilution.  相似文献   

6.
The effects of the dilution with inert gas on different combustion processes in confined space are investigated by utilizing a newly designed constant volume combustion bomb (CVCB) equipped with a perforated plate. Hydrogen-air mixture diluted with argon, nitrogen and carbon oxide of different proportions is employed in the present work. Combustion phenomena were all captured by high-speed Schlieren photography including flame propagation, compression wave formation as well as pressure oscillation. The results show that the dilution of inert gas slows down flame propagation in the combustion chamber. The velocity deficit increases in the order of Ar/N2/CO2, which indicates that CO2 is a better inhibitor of flame propagation than Ar and N2. The evaluated jet flow accelerates continuously driven by the forward spreading laminar flame and the velocities at different inert gas conditions decrease in the sequence of Ar/N2/CO2. No shock wave occurs during the combustion process when inert gases are introduced into the chamber. The amplitude of pressure oscillations decreases with diluted mixture due to the absence of flame-shock interactions. Besides, the peak pressure shows difference among different inert gases.  相似文献   

7.
The pre-chamber sparkplug mode can increase the combustion velocity because it can induce the turbulent jet into the cylinder. Higher combustion velocity can increase the brake thermal efficiency and decrease the knock tendency for hydrogen engines. To explore the effect of pre-chamber sparkplug mode on the combustion characteristics of the hydrogen-air mixture, different equivalence ratios, initial pressures and temperatures were selected to study in a constant volume combustion chamber working with pre-chamber sparkplug mode and normal sparkplug mode. The results showed that the pre-chamber sparkplug mode can accelerate the combustion velocity, increase maximum combustion pressure and decrease the combustion duration at all initial conditions. The maximum combustion pressure of pre-chamber sparkplug mode occurred at the equivalence ratio of 1.0 while it occurred at the equivalence ratio of 1.2 with normal sparkplug mode, which means pre-chamber sparkplug mode can increase the higher brake thermal efficiency and power. The combustion intensity of pre-chamber sparkplug mode was bigger than 1 and the biggest value occurred at the equivalence ratio of 0.6. Moreover, the combustion intensity of pre-chamber sparkplug mode was higher with lean equivalence ratios than that of rich equivalence ratios. Increasing the initial pressure can increase maximum combustion pressure and combustion velocity obviously for pre-chamber sparkplug mode, which was different from the normal sparkplug mode. The initial temperatures had little impact on the combustion intensity. These results showed the pre-chamber sparkplug mode was more suitable to be used in the boosting hydrogen engines to improve the performance.  相似文献   

8.
Numerical simulations were performed to study flame acceleration and deflagration-to-detonation transition (DDT) in hydrogen-air mixture in a channel with a two-dimensional array of cylindrical obstacles. A high-order numerical algorithm with adaptive mesh refinement was applied to solve reactive Navier-Stokes equations. The effect of obstacle layout was examined by considering three layouts at a fixed blockage ratio of 0.5: staggered, inline-concentrated, and inline-scattered. Three blockage ratios, 0.33, 0.5, and 0.67, were used for the case of staggered obstacles to explore the influence of blockage ratio. The results show that both obstacle layout and blockage ratio have significant effects on flame acceleration and DDT occurrence, although the basic mechanism of detonation initiation is consistent for all the cases involving shock focusing. In the staggered case, the head-on collisions of flame and pressure waves with obstacles greatly promote the growth of flame surface area and thus lead to the fastest flame acceleration and shortest detonation onset time. In the inline-concentrated case, flame propagates slower than that in the staggered case due to smaller flame surface area. However, compared to the zigzag path in the staggered case, the straight passages parallel to flame propagation direction in the inline-concentrated case are more conducive to producing strong shock focusing and thus result in the shortest DDT distance. In the inline-scattered case, the straight passage along the centerline of channel facilitates the early acceleration of flame, but it has the slowest flame propagation in lateral directions and thereby the longest DDT time and distance. For the staggered obstacles at different blockage ratios, flame acceleration rate increases with increasing blockage ratio. The occurrence of DDT is hindered by the most congested obstacles, because the shock focusing is insufficiently strong to initiate detonation after passing through the excessively narrow gaps.  相似文献   

9.
Geometrical influence of the perforated plate on flame propagation in hydrogen-air mixtures with various equivalence ratios and initial pressures was experimentally investigated in a channel with the length of 1 m and the cross-section of 7 cm × 7 cm. The perforated plate has the same cross section and three thicknesses of 40 mm, 80 mm and 120 mm. High-speed schlieren photography was employed to capture the flame shape evolution and derive the flame tip velocity. High-speed piezoelectric pressure transducers were flush-mounted upstream and downstream of the perforated plate to measure the pressure transient. It was found that, with the perforated plate in the path of flame, flame undergoes either “go”, or “quench” propagation mode. The limit between these two was dependent on the geometrical size of the perforated plate and the initial conditions of mixtures. Both velocity and pressure were effectively attenuated with the increase in the perforated plate length. Moreover, for “go” propagation mode, the flame process through the perforated plate was characterized by three obvious stages: laminar flame stage, jet flame stage and turbulent flame stage. Whereas, only laminar flame stage was observed in the “quench” mode.  相似文献   

10.
The whole evolution of flame propagation in a confined combustion chamber was firstly experimentally observed in a newly designed experimental apparatus equipped with a perforated plate. The effect of the flame-flow/acoustic/shock wave interaction on the flame propagation was studied. The experiment was conducted with a stoichiometric hydrogen-air mixture. According to the flame morphology and the flame tip velocity, the whole evolution of flame propagation in the experimental apparatus was classified into the following three stages: laminar flame, jet flame and turbulent flame. In the present work, different flame propagation modes were obtained in different conditions. Depending on the initial pressure, three different flame propagation modes were observed. At an initial pressure of 1 bar, the flame propagation after perforated plate was mainly controlled by the interactions of the flame and combustion-generated flow ahead of the flame front. As initial pressures went up to 3 bar and 5 bar, shock waves were clearly observed ahead of the flame, which played a significant role on the flame propagation. The flame decelerated sharply and even propagated backwards, induced by the flame-shock wave interactions. Depending on the intensity of the shock wave, the backward-propagation velocity was higher at 5 bar with a stronger shock wave. In addition, the pressure oscillation at different initial pressures was discussed.  相似文献   

11.
An experimental investigation of flashback was conducted during the start-up of a practical premixed kerosene burner. The flame propagations for normal ignition and flashback were visualized with high time-resolution. The timing of the fuel supply and ignition, as well as time sequence variations in pressures and temperatures in the burner, were analyzed to clarify the phenomena. The accumulated data revealed that flashback was caused by reverse flow of the hot combustion products through the flashback arrester and that the probability of flash back increased with increasing ignition delay, due to the higher pressures resulting from ignition and burning of the fuel accumulated in the combustion chamber during the delay. The thermal energy passing through the perforated plate used for flame quenching between the combustion chamber and the evaporating chamber was estimated using the reverse-flow pressures and their periods. The ignition energy estimated for the kerosene vapor mixtures was of the order of 10 mJ, which corresponds to the minimum ignition energy of other hydrocarbon fuels.  相似文献   

12.
The effects of different initial temperatures (T = 300–500 K) and different hydrogen volume fractions (5%–20%) on the combustion characteristics of premixed syngas/air flames in rectangular tubes were investigated experimentally. A high-speed camera and pressure sensor were used to obtain flame propagation images and overpressure dynamics. The CHEMKIN-PRO model and GRI Mech 3.0 mechanism were used for simulation. The results show that the flame propagation speed increases with the initial temperature before the flame touches the wall, while the opposite is true after the flame touches the wall. The increase in initial temperature leads to the increase in overpressure rise rate in the early flame propagation process, but the peak overpressure is reduced. The laminar burning velocity (LBV) and adiabatic flame temperature (AFT) increase with increasing initial temperature. The increase in initial temperature makes the peaks of H, O, and OH radicals increase.  相似文献   

13.
Using high-speed Schlieren and Shadow photography, the instabilities of outwardly propagating spherical hydrogen-air flames have been studied in a constant volume combustion bomb. Combustion under different equivalence ratios (0.2 ∼ 1.0), temperatures (298 K ∼ 423 K) and pressures (1.0 bar ∼ 10.0 bar) is visualized. The results show that flames experience both unequal diffusion and/or hydrodynamic instabilities at different stages of propagation. The critical flame radius for such instabilities is measured and correlated to the variations of equivalence ratio, temperature and pressure. Analysis revealed that equivalence ratio affects unequal diffusion instability via varying the Lewis number, LeLe; increased temperature can delay both types of instabilities in the majority of tests by promoting combustion rate and changing density ratio; pressure variation has minor effect on unequal diffusion instability but is responsible for enhancing hydrodynamic instability, particularly for stoichiometric and near-stoichiometric flames.  相似文献   

14.
Ensuring hydrogen safety has become of great significance nowadays, whose leakage can possible result in the deflagration to detonation (DDT). The numerical study aims to explore the effect of solid obstacle distribution on the DDT in a homogeneous hydrogen-air mixture. Results show that the detonation initiation process can be classified into two types: i) local spherical detonation caused by the coupling of flame surface and high-pressure region; ii) detonation triggered by the interaction between the upper wall and multiple compression waves in front of the flame. Also, this study finds that the flame acceleration (FA) experiences two periodic “acceleration-deceleration” processes before the detonation initiation, and the initiation distance and time are the shortest when the obstacles are symmetrically distributed. Further, the higher the unilateral blockage ratio, the more unfavorable DDT occurs. The present results highlight the effect of different solid obstacle distribution patterns on the FA and DDT process.  相似文献   

15.
To study the mechanism by which an increase in the number of obstacles affects the propagation of hydrogen-air premixed gas explosions under a constant overall volume of obstacles, a large eddy simulation method was used to carry out numerically simulate configurations with different distribution modes of combined obstacles. The study focused on the flame structure, evolution process of overpressure dynamics, and flame-flow coupling relationship. The results showed that the flame propagation velocity and flame front area are increased during the conversion of the combined obstacles from 1-30 mm to 4–7.5 mm, while the flame front area logarithmically depends on the number of obstacles. The flames gradually develop from “corrugated flamelets” to “thin reaction zones” in different distribution modes. In addition, the results showed that although increasing dispersion increases the explosion overpressure, a critical number of obstacles likely exist. Beyond the critical point, explosion overpressure peak no longer strongly varies with the number of obstacles. Furthermore, for working configurations with different numbers of obstacles, an increase in the overall number of obstacles before reaching the same number of obstacles weakly affects the flame shape and flow rate of the flame front. This study provides theoretical guidelines for safety designs to prevent hydrogen-air premixed gas explosion in obstructed spaces.  相似文献   

16.
为研究预混气体在多孔介质燃烧器中的火焰燃烧特性,设计了一种新型多孔介质燃烧器,其中多孔介质区域由氧化铝圆柱体有序堆积而成.分别研究了当量比和入口速度对甲烷/空气预混气体在多孔介质燃烧器中的火焰温度分布、火焰最高温度以及火焰传播速度的影响.结果 表明:在当量比0.162~0.324、入口速度0.287~0.860 m/s...  相似文献   

17.
The behaviors and shape changes of premixed hydrogen-air flames at various equivalence ratios propagating in half-open and closed horizontal ducts are experimentally investigated using high-speed schlieren imaging and pressure sensors. The study shows that the premixed hydrogen-air flame undergoes more complex shape changes and exhibits more distinct characteristics than that of other gaseous fuels. One of the outstanding findings is that obvious distortion happens to tulip flame after its full formation when equivalence ratio ranges from 0.84 to 4.22 in the closed duct. The salient tulip flame distortions are specially scrutinized and distinguished from the classical tulip collapse and disappearance. The dynamics of distorting tulip flame is different from that of classical tulip flame. The normal tulip flame can be reproduced after the first distortion followed by another distortion. The initiation of flame shape changes coincides with the deceleration both of pressure rise and flame front speed for flames with tulip distortions. And the formation and dynamics of tulip/distorting tulip flames depend on the mixture composition.  相似文献   

18.
The appearance of the squish flame is of great significance to accelerate burning progress and improve the combustion efficiency. In this paper, we experimentally studied the characteristics of the squish flame in a cylindrical constant volume vessel under different initial pressures and equivalence ratios by using high-speed schlieren photometry. Due to the compression of the main flame front, “squish flow” was induced in the analogous triangular vertebrae region besieged by the convex flame front, the concave wall and the flat optical windows, which provided the perturbation of large wavelength to promote the appearance of the squish flame. When the squish flames occur, as the initial pressure increases, the main flame propagation distance becomes shorter, the main flame propagation velocity increases first and then gradually saturates to a certain value; as the equivalence ratio increases, the main flame propagation distance becomes longer, the main flame propagation velocity rises first and then declines, and the maximum is obtained in the vicinity of Φ = 1.0. There exists a critical initial pressure at each equivalence ratio below which no squish flame appears, and it takes on a U-shaped trend with the increase of equivalence ratio. The hydrodynamic instability plays a key role in the formation of the squish flame. The squish flame tends to appear at higher hydrodynamic instability. The formation mechanism and the critical feature of the squish flame obtained in this paper can provide a theoretical guide to achieve fast controllable combustion.  相似文献   

19.
Propagation characteristics of hydrogen-air deflagration need to be understood for an accurate risk assessment. Especially, flame propagation velocity is one of the most important factors. Propagation velocity of outwardly propagating flame has been estimated from burning velocity of a flat flame considering influence of thermal expansion at a flame front; however, this conventional method is not enough to estimate an actual propagation velocity because flame propagation is accelerated owing to cellular flame front caused by intrinsic instability in hydrogen-air deflagration. Therefore, it is important to understand the dynamic propagation characteristics of hydrogen-air deflagration. We performed explosion tests in a closed chamber which has 300 mm diameter windows and observed flame propagation phenomena by using Schlieren photography. In the explosion experiments, hydrogen-air mixtures were ignited at atmospheric pressure and room temperature and in the range of equivalence ratio from 0.2 to 1.0. Analyzing the obtained Schlieren images, flame radius and flame propagation velocity were measured. As the result, cellular flame fronts formed and flame propagations of hydrogen–air mixture were accelerated at the all equivalence ratios. In the case of equivalent ratio φ = 0.2, a flame floated up and could not propagate downward because the influence of buoyancy exceeded a laminar burning velocity. Based upon these propagation characteristics, a favorable estimation method of flame propagation velocity including influence of flame acceleration was proposed. Moreover, the influence of intrinsic instability on propagation characteristics was elucidated.  相似文献   

20.
Numerical simulations were used to study the dynamics of premixed flames propagating after planar ignition in a closed tube filled with stoichiometric hydrogen-air mixture. The two-dimensional fully compressible reactive Navier–Stokes equations coupled to a calibrated chemical-diffusive model were solved using a high-order numerical method and adaptive mesh refinement. The results show that the flame evolves from an initially planar flame to a double-cusped tulip flame, subsequently to a multi-cusped tulip flame, and finally to a series of distorted tulip flames (DTFs). The DTF forms one after another until the end of combustion. The initial flame lips of the double-cusped tulip flame are produced due to the stretching effect of nonuniform flow caused by the wall friction. The multi-cusped tulip flame forms as secondary cusps are created on the leading flame tips near the sidewalls. The formation of DTFs here is thought to be closely connected to pressure waves generated in the flame propagation process. The first DTF is caused by the combined effects of the vortex motions and the Rayleigh–Taylor (RT) instability driven by pressure waves, while the subsequent DTFs form due to reverse flows and RT instability. Nevertheless, both the vortex motions and reverse flows are essentially induced by the interactions between pressure waves and flow fields. Furthermore, the numerical results were compared to that in the case with a semicircular ignition. It was found that although there are significant differences in the early flame acceleration and tulip formation stages between the two differently shaped ignitions, the dynamics of DTFs are substantially consistent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号