首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Spent K-Cups were liquefied into crude bio-oil in a water-ethanol co-solvent mixture and reaction conditions were optimized using response surface methodology (RSM) with a central composite design (CCD). The effects of three independent variables on the yield of crude bio-oil were examined, including the reaction temperature (varied from 255 °C to 350 °C), reaction time (varied from 0 min to 25 min) and solvent/feedstock mass ratio (varied from 2:1 to 12:1). The optimum reaction conditions identified were 276 °C, 3 min, and solvent/feedstock mass ratio of 11:1, giving a mass fraction yield of crude bio-oil of 60.0%. The overall carbon recovery at the optimum conditions was 93% in mass fraction. The effects of catalyst addition (NaOH and H2SO4) on the yield of crude bio-oil were also investigated under the optimized reaction conditions. The results revealed that the presence of NaOH promoted the decomposition of feedstock and significantly enhanced the bio-oil production and liquefaction efficiency, whereas the addition of H2SO4 resulted in a negative impact on the liquefaction process, decreasing the yield of crude bio-oil.  相似文献   

2.
Spent coffee grounds (SCG) were liquefied in hot-compressed water to produce crude bio-oil via hydrothermal liquefaction (HTL) in a 100 cm3 stainless-steel autoclave reactor in N2 atmosphere. We investigated the effects of operating parameters such as retention times (5 min, 10 min, 15 min, 20 min and 25 min), reaction temperatures (200 °C, 225 °C, 250 °C, 275 °C and 300 °C), and water/feedstock mass ratios (5:1, 10:1, 15:1 and 20:1) and initial pressure of process gas (2.0 MPa and 0.5 MPa) on the yield and properties of the resulting crude bio-oil. The highest yield of the crude bio-oil (47.3% mass fraction) was obtained at conditions of 275 °C, 10 min retention time and water/feedstock mass ratio of 20:1 with an initial pressure of 2.0 MPa. The elemental analysis of the produced crude bio-oil revealed that the oil product had a higher heating value (HHV) of 31.0 MJ kg−1, much higher than that of the raw material (20.2 MJ kg−1). GC–MS and FT-IR measurements showed that the main volatile compounds in the crude bio-oil were long chain aliphatic acids and esters.  相似文献   

3.
The production of bio-oil by pyrolysis with a high heating rate (500 K s−1) and hydrothermal liquefaction (HTL) of Chlamydomonas reinhardtii was compared. HTL led to bio-oil yield decreasing from 67% mass fraction at 220 °C to 59% mass fraction at 310 °C whereas the bio-oil yield increased from 53% mass fraction at 400 °C to 60% mass fraction at 550 °C for pyrolysis. Energy ratios (energy produced in the form of bio-oil divided by the energy content of the initial microalgae) between 66% at 220 °C and 90% at 310 °C in HTL were obtained whereas it was in the range 73–83% at 400–550 °C for pyrolysis. The Higher Heating Value of the HTL bio-oil was increasing with the temperature while it was constant for pyrolysis. Microalgae cultivation in aqueous phase produced by HTL was also investigated and showed promising results.  相似文献   

4.
《能源学会志》2020,93(2):581-590
Hydrothermal liquefaction (HTL) of Ulva prolifera macroalgae (UP) was carried out in the presence of three zeolites based catalysts (ZSM-5, Y-Zeolite and Mordenite) with the different weight percentage (10–20 wt%) at 260–300 °C for 15–45 min. A comparison between non-catalytic and catalytic behavior of ZSM-5, Y-Zeolite, and Mordenite in the conversion of Ulva prolifera showed that is affected by properties of zeolites. Maximum bio-oil yield for non-catalytic liquefaction was 16.6 wt% at 280 °C for 15 min. The bio-oil yield increased to 29.3 wt% with ZSM-5 catalyst (15.0 wt%) at 280 °C. The chemical components and functional groups present in the bio-oils are identified by GC-MS, FT-IR, 1H-NMR, and elemental analysis techniques. Higher heating value (HHV) of bio-oil (32.2–34.8 MJ/kg) obtained when catalyst was used compared to the non-catalytic reaction (21.2 MJ/kg). The higher de-oxygenation occurred in the case of ZSM-5 catalytic liquefaction reaction compared to the other catalyst such as Y-zeolite and mordenite. The maximum percentage of the aromatic proton was observed in bio-oil of ZSM-5 (29.7%) catalyzed reaction and minimum (1.4%) was observed in the non-catalyst reaction bio-oil. The use of zeolites catalyst during the liquefaction, the oxygen content in the bio-oil reduced to 17.7%. Aqueous phase analysis exposed that presence of valuables nutrients.  相似文献   

5.
In the present study, microalgae Scenedesmus dimorphus was reported for pyrolysis in a fixed-bed reactor to determine the effects of temperature on products yield and the chemical compositions of the liquid and solid products. Experiments were carried out at a temperature range of 300–600 °C with heating rate of 40 °C/min and nitrogen flow rate of 100 ml/min. The yield of bio-oil was found to be maximum (39.6%) at the temperature of 500 °C and was further fractionated into n-hexane, toluene, ethyl acetate and methanol sub-fractions by using liquid column chromatography. Various characteristics of bio-oil and its sub-fractions were determined by 1H NMR, FTIR and GC–MS. The biochar produced as a co-product can be a potential soil amendment with multiple benefits including soil fertility and C-sequestration. The present investigation suggests the suitability of Scenedesmus dimorphus as a potential feedstock for exploitation of energy and biomaterials through pyrolytic conversion.  相似文献   

6.
Agriculture residues such as palm shell are one of the biomass categories that can be utilized for conversion to bio-oil by using pyrolysis process. Palm shells were pyrolyzed in a fluidized-bed reactor at 400, 500, 600, 700 and 800 °C with N2 as carrier gas at flow rate 1, 2, 3, 4 and 5 L/min. The objective of the present work is to determine the effects of temperature, flow rate of N2, particle size and reaction time on the optimization of production of renewable bio-oil from palm shell. According to this study the maximum yield of bio-oil (47.3 wt%) can be obtained, working at the medium level for the operation temperature (500 °C) and 2 L/min of N2 flow rate at 60 min reaction time. Temperature is the most important factor, having a significant positive effect on yield product of bio-oil. The oil was characterized by Fourier Transform infra-red (FT-IR) spectroscopy and gas chromatography/mass spectrometry (GC-MS) techniques.  相似文献   

7.
In the present work, fast pyrolysis of Alternanthera philoxeroides was evaluated with a focus to study the chemical and physical characteristics of bio-oil produced and to determine its practicability as a transportation fuel. Pyrolysis of A.philoxeroides was conducted inside a semi batch quartz glass reactor to determine the effect of different operating conditions on the pyrolysis product yield. The thermal pyrolysis of A. philoxeroides were performed at a temperature range from 350 to 550 °C at a constant heating rate of 25 °C/min & under nitrogen atmosphere at a flow rate of 0.1 L/min, which yielded a total 40.10 wt.% of bio-oil at 450 °C. Later, some more sets of experiments were also performed to see the effect on pyrolysis product yield with change in operating conditions like varying heating rates (50 °C/min, 75 °C/min & 100 °C/min) and different flow rates of nitrogen (0.2, 0.3, 0.4 & 0.5 L/min). The yield of bio-oil during different heating rate (25, 50, 75 and 100 °C/min) was found to be more (43.15 wt.%) at a constant heating rate of 50 °C/min with 0.2 L/min N2 gas flow rate and at a fixed pyrolysis temperature of 450 °C. The High Heating Value (HHV) value of bio-oil (8.88 MJ/kg) was very less due to presence of oxygen in the biomass. However, the high heating value of bio-char (20.41 MJ/kg) was more, and has the potential to be used as a solid fuel. The thermal degradation of A. philoxeroides was studied in TGA under inert atmosphere. The characterization of bio-oil was done by elemental analyser (CHNS/O analyser), FT-IR, & GC/MS. The char was characterized by elemental analyser (CHNS/O analysis), SEM, BET and FT-IR techniques. The chemical characterization showed that the bio-oil could be used as a transportation fuel if upgraded or blended with other fuels. The bio-oil can also be used as feedstock for different chemicals. The bio-char obtained from A. philoxeroides can be used for adsorption purposes because of its high surface area.  相似文献   

8.
An integrated system of supercritical water gasification (SCWG) and combined cycle has been developed for H2 production and power generation. Sewage sludge and lignite coal were selected as raw material in this simulation. The effects of feed concentration (10–30 wt%) and lignite coal addition (0–50 wt%) on syngas yield and H2 yield were also investigated in the temperature range of 500 °C–700 °C. Several heat exchangers were considered in the proposed integrated system to minimize energy loss. High pressure syngas was expanded by using turbo-expander to produce electricity, resulting in the improvement of the total efficiency. The results showed that the minimum feed concentrations of 14.25 wt%, 18.75 wt%, and 25.50 wt% were required to achieve self-sufficient energy at 500 °C, 600 °C, and 700 °C, respectively. However, the lower feed concentration and higher temperature were preferable for syngas production. The highest syngas and H2 yield were obtained at 700 °C and 10 wt% feed concentration. The SCWG could produce 178.08 kg syngas from 100 kg feed and 9.06 kg H2 were obtained after H2 separation. The total power generation from turbo-expander and combined cycle module was 48.37 kW. By combining SCWG and combined cycle, the total efficiency could reach 63.48%. It worth mentioning that the addition of lignite coal could help reduce the minimum feed concentration to achieve autothermal condition, but did not have significant improvement on H2 production.  相似文献   

9.
Thermodynamics of hydrogen production from conventional steam reforming (C-SR) and sorption-enhanced steam reforming (SE-SR) of bio-oil was performed under different conditions including reforming temperature, S/C ratio (the mole ratio of steam to carbon in the bio-oil), operating pressure and CaO/C ratio (the mole ratio of CaO to carbon in the bio-oil). Increasing temperature and S/C ratio, and decreasing the operating pressure were favorable to improve the hydrogen yield. Compared to C-SR, SE-SR had the significant advantage of higher hydrogen yield at lower desirable temperature, and showed a significant suppression for carbon formation. However excess CaO (CaO/C > 1) almost had no additional contribution to hydrogen production. Aimed to achieve the maximum utilization of bio-oil with as little energy consumption as possible, the influences of temperature and S/C ratio on the reforming performance (energy requirements and bio-oil consumption per unit volume of hydrogen produced, QD/H2 (kJ/Nm3) and YBio-oil/H2 (kg/Nm3)) were comprehensively evaluated using matrix analysis while ensuring the highest hydrogen yield as possible. The optimal operating parameters were confirmed at 650 °C, S/C = 2 for C-SR; and 550 °C, S/C = 2 for SE-SR. Under their respective optimal conditions, the YBio-oil/H2 of SE-SR is significant decreased, by 18.50% compared to that of C-SR, although the QD/H2 was slightly increased, just by 7.55%.  相似文献   

10.
Massive amounts of waste tires are produced globally, which brings great challenges to the disposal and recycling of used tires. Hydrothermal gasification is a promising option for recycling waste tires. The hydrothermal gasification of waste tires was evaluated based on the chemical equilibrium analysis along with the response surface methodology (RSM) in terms of subcritical temperature range (250–300 °C), transition temperature range (350–400 °C), supercritical temperature range (550–600 °C), supercritical pressure (22.5–30.5 MPa) and feedstock concentration (5–20 wt%). CH4 yield at 350 °C reached a maximum, 41.575 mmol/g. H2 yield increased from 0.0283 to 53.602 mmol/g with increasing the temperature from 250 °C to 600 °C. CH4 yield at the supercritical temperature increased with lifting the feedstock concentration, while H2 yield decreased. The optimal parameters regarding maximum H2 and CH4 yields in the subcritical temperature range were 300 °C, 22.5 MPa and 12.5 wt%, respectively, while they in the supercritical temperature range were 550 °C, 30.5 MPa and 5.4 wt%, respectively. RSM was more suitable for predicting H2 yield in the hydrothermal gasification of waste tires at subcritical and supercritical temperature ranges, but it was available for predicting CH4 yield in three temperature ranges. This study can provide basic data for the hydrothermal treatment of waste tires.  相似文献   

11.
Alkyl-phenols and hydroxy- or methoxy-phenols (e.g., catechols, guaiacols and syringols) tend to polymerize into carbonaceous structures, causing clogging of reaction equipment and high coke deposition during bio-oil steam reforming (SR). In this work, removal of these phenolic compounds from raw bio-oil was addressed by accelerated aging and liquid-liquid extraction methods. The solvent-anti-solvent extraction with dichloromethane and water was suitable for obtaining a treated bio-oil appropriate for SR. The effect that phenols extraction has on the stability and regenerability of a NiAl2O4 spinel catalyst was studied by conducting reaction-regeneration cycles. Operating conditions were: 700 °C; S/C, 6; space-time, 0.15 gcatalysth/gbio-oil (reaction step), and in situ coke combustion at 850 °C for 4 h (regeneration step). Fresh, deactivated and regenerated catalyst samples were analyzed by temperature programmed oxidation (TPO), temperature programmed reduction (TPR) and X-ray diffraction (XRD). Stability of the Ni-spinel derived catalyst was significantly improved by removing phenols due to attenuation of both coke deposition and Ni sintering. Regenerability of this catalyst was also slightly improved when reforming the treated bio-oil.  相似文献   

12.
In this study, torrefaction of sunflower seed cake and hydrogen production from torrefied sunflower seed cake via steam gasification were investigated. Torrefaction experiments were performed at 250, 300 and 350 °C for different times (10–30 min). Torrefaction at 300 °C for 30 min was selected to be optimum condition, considering the mass yield and energy densification ratio. Steam gasification of lignite, raw- and torrefied biomass, and their blends at different ratios were conducted at downdraft fixed bed reactor. For comparison, gasification experiments with pyrochar obtained at 500 °C were also performed. The maximum hydrogen yield of 100 mol/kg fuel was obtained steam gasification of pyrochar. The hydrogen yields of 84 and 75 mol/kg fuel were obtained from lignite and torrefied biomass, respectively. Remarkable synergic effect exhibited in co-gasification of lignite with raw biomass or torrefied biomass at a blending ratio of 1:1. In co-gasification, the highest hydrogen yield of 110 mol/kg fuel was obtained from torrefied biomass-lignite (1:1) blend, while a hydrogen yield from pyrochar-lignite (1:1) blend was 98 mol/kg. The overall results showed that in co-gasification of lignite with biomass, the yields of hydrogen depend on the volatiles content of raw biomass/torrefied biomass, besides alkaline earth metals (AAEMs) content.  相似文献   

13.
Hydrothermal liquefaction (HTL) of waste Cyanophyta biomass at different temperatures (factor A, 260–420 °C), times (factor B, 5–75 min) and algae/water (a/w) ratios (factor C, 0.02–0.3) by single reaction condition and Response Surface Method (RSM) experiments was investigated. By single reaction condition runs, maximum total bio-oil yield (29.24%) was obtained at 350 °C, 60 min and 0.25 a/w ratio. Maximum bio-oil HHV of 40.04 MJ/kg and energy recovery of 51.09% was achieved at 350 °C, 30 min, 0.1 a/w ratio and 350 °C, 60 min, 0.25 a/w ratio, respectively. RSM results indicate that effect of AB interaction was significant on light bio-oil yield. Both AC and AB had more remarkable influence than BC on heavy bio-oil yield and aqueous total organic carbon (TOC) recovery whereas BC was noticeable on ammonia nitrogen (NH3N) recovery in aqueous products. By model-based optimization of highest bio-oil yield, the highest bio-oil yield reached 31.79%, increasing by 8.72% after RSM optimization, and light and heavy bio-oil yield was 17.44% and 14.35%, respectively. Long-chain alkanes, alkenes, ketones, fatty acids, phenols, benzenes, amides, naphthalenes were the main components in light bio-oil. Some alcohols, phenols and aromatics were primarily found in heavy bio-oil. Solid residue after HTL consisted of numerous microparticles (~5 μm) observed by Scanning Electron Microscopy (SEM). Energy Dispersive Spectrometer (EDS) analysis shows these particles primarily contained C, O, Mg, P and microelements, derived from Cyanophyta cells.  相似文献   

14.
This study examined bio-oil and bio-char fuel produced from Spirulina Sp. by slow pyrolysis. A thermogravimetric analyser (TGA) was used to investigate the pyrolytic characteristics and essential components of algae. It was found that the temperature for the maximum degradation, 322 °C, is lower than that of other biomass. With our fixed-bed reactor, 125 g of dried Spirulina Sp. algae was fed under a nitrogen atmosphere until the temperature reached a set temperature between 450 and 600 °C. It was found that the suitable temperature to obtain bio-char and bio-oil were at approximately 500 and 550 °C respectively. The bio-oil components were identified by a gas chromatography/mass spectrometry (GC–MS). The saturated functional carbon of the bio-oil was in a range of heavy naphtha, kerosene and diesel oil. The energy consumption ratio (ECR) of bio-oil and bio-char was calculated, and the net energy output was positive. The ECR had an average value of 0.49.  相似文献   

15.
Bio-oil has been produced from palm kernel shell in a fluidized bed reactor. The process conditions were optimized and the detailed characteristics of bio-oil were carried out. The higher feeding rate and higher gas flow rate attributed to higher bio-oil yield. The maximum mass fraction of biomass (57%) converted to bio-oil at 550 °C when 2 L min−1 of gas and 10 g min−1 of biomass were fed. The bio-oil produced up to 500 °C existed in two distinct phases, while it formed one homogeneous phase when it was produced above 500 °C. The higher heating value of bio-oil produced at 550 °C was found to be 23.48 MJ kg−1. As GC–MS data shows, the area ratio of phenol is the maximum among the area ratio of identified compounds in 550 °C bio-oil. The UV–Fluorescence absorption, which is the indication of aromatic content, is also the highest in 550 °C bio-oil.  相似文献   

16.
Canola meal is a low-value agricultural residue obtained after oil extraction from canola, the utilization of which requires further attention. On the other hand, plastic waste disposal is also another leading issue that creates severe environmental challenges. Supercritical water gasification is considered an environmentally friendly technology to produce hydrogen from plastic residues and organic wastes. This study deals with hydrothermal co-gasification of canola meal and plastic wastes (i.e., low-density polyethylene) while exploring the influence of temperature (375–525°C), residence time (15–60 min) and plastic-to-biomass ratio (0:100, 20:80, 50:50, 80:20 and 100:0) on hydrogen yield. Maximum hydrogen yield (8.1 mmol/g) and total gas yield (17.9 mmol/g) were obtained at optimal temperature and residence time of 525°C and 60 min, respectively. A change in the gas yield with variable plastic-to-biomass ratio showed synergistic effects between both feedstocks. The trend of catalytic performance towards improving hydrogen yield was in the following order: WO3–TiO2 (18.5 mmol/g) > KOH (16.9 mmol/g) > TiO2 (9.5 mmol/g) > ZrO2 (7.8 mmol/g) > WO3–ZrO2 (7.4 mmol/g).  相似文献   

17.
《能源学会志》2014,87(3):227-234
This paper investigates the effects of four reaction parameters that include type of catalyst, catalyst loading, reaction temperature and nitrogen gas flowrate on the liquid (bio-oil) yield from the catalytic pyrolysis of Empty Fruit Bunch (EFB). The experimental design is based on Taguchi's L9 Orthogonal Array in which the reaction parameters are varied at three levels. The maximum liquid yield is predicted based on systematic experimental runs, and is found to be at 5 wt-% of H-Y catalyst, 500 °C and at nitrogen flowrate of 100 ml min−1. The predicted maximum liquid yield is validated with an experimental run at the corresponding predicted conditions. The bio-oil produced at the optimum reaction condition is characterized and compared with known bio-oil standards in the literature.  相似文献   

18.
Pyrolysis of Xanthium strumarium has been performed in a fixed-bed tubular reactor with boron minerals (ulexite, colemanite, and borax) and without catalyst at three different temperatures ranging from 350°C to 550°C with heating rate of 50°C/min. The amounts of bio-oil, bio-char, and gas generated, also the compositions of the resulting bio-oils were identified by GC-MS and FT-IR. The influences of pyrolysis parameters, such as temperature and catalyst on product yields were investigated. Temperature and catalyst were found to be the main factors affecting the conversion of Xanthium strumarium into solid, liquid, and gaseous products. The highest liquid yield (27.97%) including water was obtained with 10% colemanite (Ca2B6O11.5H2O) catalyst at 550°C temperature at a heating rate of 50°C/min when 0.224 > Dp > 0.150 mm particle size raw material and 100 cm3/min of sweeping gas flow rate were used.  相似文献   

19.
《能源学会志》2020,93(5):1892-1900
Pyrolysis studies on agricultural (rice straw), forest (pine) and aquatic (Ulva lactuca) biomass were carried out in a fixed bed reactor at different temperature range of 300–550 °C. The product distributions and their characterization of products were compared among these biomasses. The maximum liquid product yield 29.4, 57.5 and 25.6 wt% obtained at 400, 500 and 400 °C respectively from rice straw (RS), pine (PN) and Ulva lactuca (UL) biomass. However, the higher conversion was observed in the case of pine wood biomass 77.0% at 550 °C. From the GC-MS analysis, it is observed that RS and PN bio-oil mostly composed of derivatives of phenolic compounds, while UL bio-oil composed of cyclopentenone derivatives compounds. The highest higher heating value (HHV) was found in pine bio-oil 34.8 MJ/kg. Also PN pyrolytic bio-oil had higher boiling point differences compounds. The bio-char analysis showed that the PN bio-char is a carbon rich and porous in nature as compared to the RS and UL bio-char.  相似文献   

20.
《能源学会志》2020,93(2):811-821
Bio-oil is a multicomponent mixture of more than 400 types of organic compounds, with high water content. Fractionation of bio-oil may be a more efficient approach for primary separation of bio-oil. In this work, to better understand the effect of fractional condensers on bio-oil yield, physicochemical characteristics, compounds distribution and phenols selection during biomass fast pyrolysis process, a semi-automatic controlled fluidized bed reactor biomass fast pyrolysis system with four-stage condensers was developed. Average temperatures of Condensers 1, 2, 3, 4 were 32.39 °C, 26.74 °C, 24.06 °C and 23.68 °C, respectively. And the bio-oil yields of Condenser 1, 2, 3, and 4 were 26.82%, 7.31%, 1.48% and 9.69%, respectively. Bio-oil collected from Condenser 4 had the lowest water content (9.68 wt%), the lowest acidity (pH = 3.67), and the highest HHV (29.2 MJ/kg). The highest relative contents of compounds collected from Condenser 1, 2, 3 and 4 were 1-(4-hydroxy-3-methoxyphenyl)-2-Propanone (6.95%), trans-Isoeugenol (6.63%), Creosol (5.28%), and trans-Isoeugenol (6.69%), respectively. Fractional condensers affected the compounds distribution, but it has a stronger effect on relative heavy compounds (molar mass > 250) and a weaker effect on relative light compounds (molar mass < 200). Fractional condensers were more conducive to the selection of phenols with relative yield of more than 30%. Phenols, acids and furfurans tended to distribute at higher temperature, while alcohols, ethers and hydrocarbons tended to distribute at relative lower temperature, but the difference was small. The research has provided a reference for the production of bio-oil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号