共查询到20条相似文献,搜索用时 15 毫秒
1.
Samane Gholami Seyed Mehdi Alavi Mehran Rezaei 《International Journal of Hydrogen Energy》2021,46(7):5311-5322
The Methanation of CO2 to CH4 is a significant route to save energy and reduce CO2 emission. In this work, a series of Cr2O3–Al2O3 powders were synthesized by a novel and simple solid-state method and considered as the carrier for the nickel catalysts in CO2 methanation. The BET area and pore volume of the supports decreased with the decrease in Al2O3/Cr2O3 molar ratio. The results indicated that the increase in Cr2O3 content improved the catalytic performance and 15 wt%Ni/Cr2O3 catalyst exhibited the highest CO2 conversion of 80.51%, and 100% CH4 selectivity at 350 °C. The results indicated that the CO2 conversion improved with the increment in H2/CO2 molar ratio from 2 to 5. The improvement in CO2 conversion was also observed with decreasing GHSV due to the longer residence time of the reactants on the catalyst surface. Also, the results showed that increasing calcination temperature led to a decrease in CO2 conversion. The 15 wt%Ni/Cr2O3 catalyst exhibited high stability in carbon dioxide methanation reaction. 相似文献
2.
《International Journal of Hydrogen Energy》2022,47(4):2399-2411
15 wt.%Ni-12.5 wt.%Co–Al2O3 catalysts promoted with Fe, Mn, Cu, Zr, La, Ce, and Ba were prepared by a novel solid-state synthesis method and employed in CO2 methanation reaction. BET, XRD, EDS, SEM, TPR, TGA, and FTIR analyses were conducted to identify the chemicophysical characteristics of the prepared samples. The addition of Fe, Mn, La, Ce, and Ba was effective to improve the catalytic performance of the 15 wt%Ni-12.5 wt%Co–Al2O3 due to the higher CO2 adsorption capacity of the promoted catalysts. Among the studied promoters, the Fe-promoted catalyst possessed the highest catalytic activity (XCO2 = 61.2% and SCH4 = 98.87% at 300 °C). Also, the effect of calcination temperature, feed composition, and GHSV on the performance of the 15 wt%Ni-12.5 wt%Co-5wt%Fe–Al2O3 catalyst in CO2 methanation reaction was assessed. The outcomes confirmed that the 15 wt%Ni-12.5 wt%Co-5wt%Fe–Al2O3 catalyst with the BET area of 122.4 m2/g and the highest pore volume and largest pore diameter had the highest catalytic activity. Also, the catalytic performance in the methanation of carbon monoxide was studied, and 100% conversion of carbon monoxide was observed at 250 °C. 相似文献
3.
Parisa Shafiee Seyed Mehdi Alavi Mehran Rezaei 《International Journal of Hydrogen Energy》2021,46(5):3933-3944
In this study, a simple solid-state synthesis method was employed for the preparation of the Ni–Co–Al2O3 catalysts with various Co loadings, and the prepared catalysts were used in CO2 methanation reaction. The results demonstrated that the incorporation of cobalt in nickel-based catalysts enhanced the activity of the catalyst. The results showed that the 15 wt%Ni-12.5 wt%Co–Al2O3 sample with a specific surface area of 129.96 m2/g possessed the highest catalytic performance in CO2 methanation (76.2% CO2 conversion and 96.39% CH4 selectivity at 400 °C) and this catalyst presented high stability over 10 h time-on-stream. Also, CO methanation was investigated and the results showed a complete CO conversion at 300 °C. 相似文献
4.
《International Journal of Hydrogen Energy》2023,48(50):19115-19125
2 and 5 wt.% nickel was supported on different MgO to Al2O3 (M/A) ratios (0.5, 1 and 1.5) and evaluated in reverse water gas shift (RWGS) reaction. The catalysts were prepared by impregnation method and the nanocrystalline supports were synthesized by simple surfactant (CTAB) assisted precipitation technique. The following catalytic activity was observed for 2% & 5% Ni supported on different M/A ratios; M/A = 1 > M/A = 1.5 > M/A = 0.5. The perceived order was related to difference in the structural properties of supports and catalysts. The BET results revealed decrease of specific surface area with increase in M/A ratio, mesoporous structure for M/A = 0.5 and 1 and meso-macroporous structure for M/A = 1.5. The effect of nickel loading on the support with M/A = 1 was also investigated. 1.5% Ni showed high CO2 conversion of 39.2% at 700 °C and CO selectivity higher than 90% at all temperatures. Increase of nickel loading higher than 1.5% was in favor of CH4 formation. The TEM images of 1.5% Ni on M/A = 1 revealed uniform distribution of Ni particles with average size of 4.9 nm. The H2-TPR analysis displayed shifting of maximum temperature of the main peak (γ) to higher temperatures with increase of M/A ratio in the support, indicating harder reducibility of catalysts with higher MgO content. The 1.5% Ni supported on M/A = 1 (MgAl2O4) showed great catalytic stability and CO selectivity (>98%) after 15 h on stream. 相似文献
5.
《International Journal of Hydrogen Energy》2023,48(64):24996-25005
CO selective methanation can remove the CO in H2-rich reformate gas to prevent the poisoning of Pt anode electrode in proton exchange membrane fuel cell. However, the methanation of CO2 in H2-rich gas consumes a lot of hydrogen, which greatly reduces the energy efficiency. In order to inhibit CO2 methanation, mesostructured Al2O3–ZrO2 was modified by different amounts of phosphate, and then was as Ni support. The structures and surface properties of Ni/Al2O3–ZrO2 catalyst modified by phosphate were studied to reveal the effect of phosphate-modification on CO conversion and selectivity for CO methanation. It was found that the phosphate-modification inhibited the adsorption of CO2, which increased the selective for CO methanation. But the modification with excess phosphate lessened active sites of Ni and weakened the adsorption of H2 and CO, which decreased the activity of CO methanation. 相似文献
6.
Reihaneh Daroughegi Fereshteh Meshkani Mehran Rezaei 《International Journal of Hydrogen Energy》2017,42(22):15115-15125
The ultrasound-assisted co-precipitation method was employed for the synthesis of the Ni–Al2O3 catalysts with different metal loadings for the CO2 methanation reaction. This study indicated that increasing the Ni loading up to 25 wt.% enhanced the surface area, decreased the crystallinity and improved the reducibility of the catalysts, while further raise in Ni loading adversely influenced the surface area. Improvements in catalytic performance were obtained with the raise in Ni content because of enhancing the BET area. The results confirmed that the 25Ni–Al2O3 catalyst with the highest BET area (188 m2 g?1) and dispersion of Ni has the highest catalytic activity in CO2 methanation and reached to 74% CO2 conversion and 99% CH4 selectivity at 350 °C. In addition, this catalyst exhibited a great stability after 10 h time-on-stream. 相似文献
7.
Robert Bicki Katarzyna Antoniak-Jurak Kamila Michalska Ewelina Franczyk Marcin Konkol Paweł Kowalik Monika Pańczyk Janusz Ryczkowski Grzegorz Słowik Tadeusz Borowiecki 《International Journal of Hydrogen Energy》2021,46(21):11664-11676
Ni/La–Al2O3 and Ni/Ce–Al2O3 catalysts with a small amount of promoters intended for prereforming of LNG were characterized by XRF, N2 adsorption-desorption, XRD, H2 chemisorption, HRTEM and XPS. The catalytic activity was evaluated in methane steam reforming both in the kinetic and diffusion regime, at temperatures characteristic of pre-reforming. Carbonaceous deposit was analysed by TPO-MS method. The nature and location of the coke were studied by HRTEM.La or Ce addition into Ni–Al system causes the increase of the active surface area of Ni by enhancing its dispersion. Studies at kinetic regime have shown that the promoted catalysts have almost twice the activity than reference Ni–Al catalyst. This effect was not confirmed by measurements in the diffusion regime on whole catalyst tablets. Almost identical textural properties of catalysts and diffusive limitations related to them but not the catalytic properties of the material itself appeared to be crucial factors. The presence of La (but not Ce) causes a significant increase in resistance to coking. 相似文献
8.
《International Journal of Hydrogen Energy》2022,47(8):5337-5353
CO2 utilization through the activation of ethane, the second largest component of natural and shale gas, to produce syngas, has garnered significant attention in recent years. This work provides a comparative study of Ni catalysts supported on alumina, alumina modified with CaO and MgO, as well as alumina modified with La2O3 for the reaction of dry ethane reforming. The calcined, reduced and spent catalysts were characterized employing XRD, N2 physisorption, H2-TPR, CO2-TPD, TEM, XPS and TPO. The modification of the alumina support with alkaline earth oxides (MgO and CaO) and lanthanide oxides (La2O3), as promoters, is found to improve the dispersion of Ni, enhance the catalyst's basicity and metal-support interaction, as well as influence the nature of carbon deposition. The Ni catalyst supported on modified alumina with La2O3 exhibits a relatively stable syngas yield during 8 h of operation, while H2 and CO yields decrease substantially for Ni/Al2O3. 相似文献
9.
《International Journal of Hydrogen Energy》2022,47(79):33765-33780
This work investigates selective Ni locations over Ni/CeZrOx–Al2O3 catalysts at different Ni loading contents and their influences on reaction pathways in ethanol steam reforming (ESR). Depending on the Ni loading contents, the added Ni selectively interacts with CeZrOx–Al2O3, resulting in the stepwise locations of Ni over CeZrOx–Al2O3. This behavior induces a remarkable difference in hydrogen production and coke formation in ESR. The selective interaction between Ni and CeZrOx for 10-wt.% Ni generates more oxygen vacancies in the CeZrOx lattice. The Ni sites near the oxygen vacancies enhance reforming via steam activation, resulting in the highest hydrogen production rate of 1863.0 μmol/gcat·min. In contrast, for 15 and 20-wt.% Ni, excessive Ni is additionally deposited on Al2O3 after the saturation of Ni–CeZrOx interactions. These Ni sites on Al2O3 accelerate coking from the ethylene produced on the acidic sites, resulting in a high coke amount of 19.1 mgc/gcat·h (20Ni/CZ-Al). 相似文献
10.
Youngbo ChoiNam Dong Kim Jayeon BaekWooyoung Kim Hee Jong LeeJongheop Yi 《International Journal of Hydrogen Energy》2011,36(6):3844-3852
The steam reforming of glycerol over supported nickel catalysts is a promising and cost-effective method for producing hydrogen. The activity of nickel catalysts supported on γ-Al2O3 is low, primarily due to the formation of inactive nickel species during high temperature calcination in air. In order to address this problem, a Ni/γ-Al2O3 catalyst was prepared by calcination at 700 °C in a nitrous oxide (N2O) environment. The N2O calcined catalyst showed an enhanced activity for the steam reforming of glycerol. A variety of characterization techniques (XRD, TPR, XPS and H2 Chemisorption) confirmed that the high temperature N2O calcination resulted in a significant decrease in the levels of nickel aluminate. The N2O calcination also led to an enhancement in the amount of NiO as well as nickel ions present on the surface of the catalyst. Interestingly, compared to an air calcined catalyst, the N2O calcined catalyst contained larger nickel particles after reduction but the N2O calcined catalyst had a much larger nickel surface area and dispersion, which resulted in higher glycerol conversion and hydrogen yield. 相似文献
11.
《International Journal of Hydrogen Energy》2020,45(33):16528-16539
The decomposition of NH3 for hydrogen production was studied using Ni/La2O3 catalysts at varying compositions and temperatures prepared via surfactant-templated synthesis to elucidate the influence of catalyst active metal content, support composition and calcination temperature on the catalytic activity. The catalytic performance of all samples was studied between 300 and 600 °C under atmospheric pressure. The catalytic activity of the sample were as follows: 10Ni/La2O3-450 > 10Ni/La2O3-550 > 10Ni/La2O3-650 ≈ 10Ni/La2O3-750 ≈ 10Ni/La2O3-850. The excellent activity (100%) of 10Ni/La2O3-450 could be due to the high surface area, basicity strength and concentration of surface oxygen species of the catalyst as evidenced by BET, CO2-TPD and XPS. In addition, to adjust the activity of the catalyst support, the molar ratios of Mg and La were varied (1:1, 3:1, 5:1, 7:1 and 9:1). The 5Ni/5MgLa (5:1 M ratio) was found to be the most active (100%) relative to other Ni/MgLa formulations. Furthermore, the Ni content in the Ni/5MgLa sample was adjusted between 10 and 40 wt%. Increasing the Ni content of the catalysts increased NH3 conversion with the 40 wt% Ni formulation demonstrating complete NH3 conversion at 600 °C and a high gas hourly space velocities (GHSV) (30,000 mL∙h−1∙gcat−1). 相似文献
12.
《International Journal of Hydrogen Energy》2020,45(27):13899-13910
Despite industrial application of methane as an energy source and raw material for chemical manufacturing, it is a potent heat absorber and a strong greenhouse gas. Evidently reduction of methane emission especially in the natural gas sector is essential. Methane to hydrogen conversion through non-thermal plasma technologies has received increasing attention. In this paper, catalytic methane conversion into hydrogen is experimentally studied via nano-second pulsed DBD plasma reactor. The effect of carrier gas flow, applied voltage, and commercial Ni–K2O/Al2O3 catalyst loading on methane conversion, hydrogen production, hydrogen selectivity, discharge power, and energy efficiency are studied. The results showed that in the plasma alone system, the highest methane conversion and hydrogen production occurs at argon flow rate of 70 mL/min. Increase in the applied voltage increases the methane conversion and hydrogen production while it decreases the energy efficiency. Presence of 1 g Ni–K2O/Al2O3 catalyst shifts the optimum voltage for methane conversion and hydrogen production to 8 kV, reduces the required power, and increases the energy efficiency of the process. Finally in the catalytic plasma mode the optimum process condition occurs at the argon flow rate of 70 mL/min, applied voltage of 8 kV, and catalyst loading of 6 g. Compared with the optimum condition in the absence of catalyst, presence of 6 g Ni–K2O/Al2O3 catalyst increased the methane conversion, hydrogen production, hydrogen selectivity and energy efficiency by 15.7, 22.5, 7.1, and 40% respectively. 相似文献
13.
Junpeng Feng Jinjia Liu Mingxing Tang Ligong Zhou Xiaoyin Zhang Xiaodong Wen Hui Ge Debao Li Xuekuan Li 《International Journal of Hydrogen Energy》2017,42(10):6727-6737
The poisoning effects of two types of carbon-containing sulfides (CS2 and CH3SSCH3) on Ni/Al2O3 catalysts for the hydrogenation of benzene and cyclohexene were systematically investigated via experiments and DFT calculations. The toxicity of CH3SSCH3 is two and three times greater than that of CS2 for the hydrogenation of cyclohexene and benzene, respectively. The characterization and DFT results reveal that CH3SSCH3 dissociates easily during hydrogenation and releases CH4, allowing sulfur atoms to poison the Ni sites. However, the presence of CS2 in the hydrogenation step slows the decline in the catalytic performance, because of resistance to the direct dissociation of the strong CS bond of CS2. The chemisorbed CS2 molecules and their incomplete dissociation weaken the strength of NiS bond and decrease the poisoning effect of sulfur. The poisoning processes of two sulfides are also discussed following a DFT study. This work opens up promising possibilities for the industrial study of S-poisoning resistance in supported Ni catalysts. 相似文献
14.
《International Journal of Hydrogen Energy》2019,44(43):23975-23982
In order to simultaneously inhibit the Ni sintering and coke formation as well as investigate the effects of WO3 promoter on catalytic performance, the ordered mesoporous Ni–WO3/Al2O3 catalysts were synthesized by a facile one-pot evaporation-induced self-assembly method for CO methanation reaction to produce synthetic natural gas. Addition of WO3 species could significantly promote the catalytic activity due to the enhancement of the Ni reducibility and the increase of active centers, and the optimal N10W5/OMA catalyst with NiO of 10 wt% and WO3 of 5 wt% achieved the maximum CH4 yield 80% at 425 °C, 0.1 MPa and a weight hourly space velocity of 60000 mL g−1 h−1. Besides, the reference catalyst N10W5/OMA-Im prepared by the conventional co-impregnation method was also evaluated. Compared with N10W5/OMA, N10W5/OMA-Im showed lower catalytic activity due to the partial block of channels by Ni and WO3 nanoparticles, which reduced active centers and restrict the mass transfer during the reaction. In addition, the N10W5/OMA catalyst showed superior anti-sintering and anti-coking properties in a 425oC-100 h-lifetime test, mainly because of confinement effect of ordered mesoporous structure to anchor the Ni particle in the alumina matrix. 相似文献
15.
《International Journal of Hydrogen Energy》2023,48(16):6358-6369
Methane steam reforming is currently the most widely used hydrogen production reaction in industry today. Ni/Nb–Al2O3 catalysts were prepared by treatment under H2, N2, and air atmosphere prior to reduction and applied for methane steam reforming reaction at low temperature (400–600 °C). The hydrogen-treated catalysts increased catalytic activity, with 55.74% methane conversion at S/C = 2, GSVH of 14400 mL g?1 h?1 and 550 °C. The H2 atmosphere treatment enhanced the Ni–Nb interaction and the formation of stable, tiny, homogeneous Ni particles (6 nm), contributing to good activity and stability. In contrast, the catalysts treated with nitrogen and air showed weaker interactions between Ni and Nb species, whereas the added Nb covered the active sites, which caused the decrease in activity. Meanwhile, carbon accumulation was also observed. This work is informative for preserving small nano-sized nickel particles to enhance catalytic performance. 相似文献
16.
《International Journal of Hydrogen Energy》2022,47(37):16528-16543
Methane reforming with CO2 is still of great interest due to growing demand creating a continuous need for new hydrogen sources. The main difficulty in this reaction is the deactivation of the catalyst due to the formation of carbon deposits on its surface. Herein, a series of commercial nickel catalysts supported on α-Al2O3 and modified with different amounts of rhenium (up to 4 wt%) was investigated. It was revealed that Re addition causes the formation of Ni–Re alloy during high temperature reduction, which was confirmed in deep XRD and STEM studies. The addition of Re positively influences not only the stability of the catalyst, but also increases its activity in the DRM reaction carried out in a Tapered Element Oscillating Microbalance (TEOM). The formation of Ni–Re alloy played a significant role in enhancing the properties of the catalyst. 相似文献
17.
《International Journal of Hydrogen Energy》2019,44(47):25607-25620
Ni–Mg supported on both mesoporous Al2O3–SiO2 (10) and γ-Al2O3 with Al2O3–SiO2/Mg = 10 and γ-Al2O3/Mg = 10 ratio were prepared via wet impregnation method. The synthesized materials were characterized by XRD, N2-sorption study, NH3-TPD/H2-TPR, FT-IR, DRS-UV and used in hydrodeoxygenation (HDO) of eugenol to produce hydrocarbons in a high pressure reactor. The reactant molecules could be facilitated to yield hydrocarbon fuel by active nickel active sites. The high oxygen removal efficiency of 75% was achieved with C9 hydrocarbon selectivity. Evaluation of catalytic properties such as high hydrogen consumption of 145 μmol/g (H2-TPR) and enriched surface acidity of 2.35 mmol g−1 (NH3-TPD) was done. Ni/Mg-SA (10) exhibited the highest catalytic activity of 6.7 × 10−4 mol g−1 s−1 SRR and 10.27 s−1 TOF respectively. The stability of catalysts was found to be 185 mg/g for Ni/Mg-SA (10) catalyst by TGA analysis. The structure-activity relationship was studied and the product distributions were also discussed in detail. 相似文献
18.
Non-oxidative decomposition of natural gas to COx-free hydrogen production over commercial nickel-molybdate hydrotreating catalysts with different Ni loading from 5 to 40wt% were studied at 700 °C. The catalysts were characterized by XRD, BET, TEM, Raman spectroscopy and TG-DTA analysis. The catalytic decomposition activities showed that a tremendous hydrogen production (∼90%) was obtained over 20–40wt%Ni/Mo–Al2O3 catalysts. Moreover, all catalysts exhibited excellent durability up to 9 h with stable catalytic activity toward H2 production. Although the increase of Ni content reduces the catalyst surface area, the H2 productivity and longevity increases with increased Ni content, i.e., the catalytic decomposition activity primarily depends on the active Ni sites which overcompensates the surface deficiencies. TEM, TGA and XRD data of used catalysts indicated that a higher thermal stability and graphitization degree of multi-walled carbon nanotubes were obtained on all Ni containing catalysts. Higher metal loading produced carbon nanofibers beside CNTs due to increment of particle size and long reaction time. 相似文献
19.
Pristine Ni/γ–Al2O3 and CeO2–Ni/γ–Al2O3 catalysts were prepared by co-impregnation technique for dry reforming of propane. X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM) were used to examine the structure and morphology of the catalysts before and after the reforming reactions. The excellent interaction between catalyst active phases was observed in both CeO2–Ni/γ–Al2O3 and Ni/γ–Al2O3 stabilized with polyethelene glycol (Ni/γ–Al2O3–PEG). Towards C3H8 and CO2 conversion, the CeO2–Ni/γ–Al2O3 and Ni/γ–Al2O3–PEG showed improved catalytic activity when compared to the pristine Ni/γ–Al2O3 catalyst. Interestingly, high H2 concentration was achieved with the CeO2–Ni/γ–Al2O3 and high CO concentration with the Ni/γ–Al2O3–PEG, which is due to the nanoconfinement of nickel particles within the support and favorable metal-support interaction as a result of plasma reduction. The CeO2–Ni/γ–Al2O3 catalyst exhibited better stability for anti-sintering and coke resistance, thus exhibiting high reactivity and durability in the dry reforming. 相似文献
20.
Ali Rastegarpanah Fereshteh Meshkani Mehran Rezaei 《International Journal of Hydrogen Energy》2017,42(26):16476-16488
Thermocatalytic decomposition of CH4 is an interesting method for the production of hydrogen. In this article, the catalytic and structural properties of the La, Ce, Co, Fe, and Cu-promoted Ni/MgO·Al2O3 catalysts were investigated in the thermal decomposition of CH4. Mesoporous MgO·Al2O3 powder with the high BET area (>250 m2/g) was synthesized by a novel and simple sol–gel method. The different instrumental methods (XRD, BET, SEM, H2-TPR and TPO) were used for evaluating the physicochemical characteristics of the samples. The addition of Cu to Ni/MgO·Al2O3 dramatically improved the catalytic performance and the Cu-promoted catalysts exhibited the highest CH4 conversion and H2 yields among the promoted and unpromoted catalysts. The Cu-promoted catalyst possessed the highest stability in CH4 conversion during 10 h of reaction. The results also indicated that the Ni–Cu/MgO·Al2O3 catalyst with 15 wt.% Cu showed the highest catalytic activity and stability at higher temperatures (>80% CH4 conversion). 相似文献