首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this study, sorption-enhanced methanol steam reforming (SEMSR) was applied to generate high-purity hydrogen. The mesoporous MCM-41 as support and CuO, ZnO, CeO2, ZrO2 as active agents and promoters were employed for the catalyst preparation. In addition, (Li–Na–K) NO3·MgO as a CO2 adsorbent was prepared by the wet mixing method. The fresh and used catalysts were characterized by XRD, BET, FTIR, FESEM, TEM, H2-TPR and TGA analyses. Also, the CO2 sorbent was studied by XRD, BET, FESEM, TEM and TGA analyses before and after the reaction. The SEMSR performances of the synthesized catalyst and adsorbent were evaluated experimentally in a fixed-bed reactor. The effect of various conditions such as temperature, WHSV, feed molar ratio and sorbent/catalyst ratio were investigated. The best results were obtained at 300 °C, a feed molar ratio (water/methanol) of 2:1, a WHSV of 1.62 h?1, and the sorbent/catalyst ratio of 8:1, which produced 99.8% hydrogen, 25% more than the hydrogen production during conventional methanol steam reforming. Moreover, the cyclic stability of the catalyst and the sorbent was studied for 10 cycles.  相似文献   

2.
Calcium precursor and surfactant addition on properties of synthetic alumina-containing CaO-based for CO2 capture and for sorption-enhanced steam methane reforming process (SE-SMR) were investigated. Results showed that the sorbent derived from calcium d-gluconic acid (CG-AN) offered CO2 sorption capacity of 0.38 g CO2/g sorbent, which is greater than 0.17 g CO2/g sorbent of the sorbent derived from calcium nitrate (CN-AN). Addition of CTAB surfactant during synthesis was found to enhance CO2 sorption capacity for CG-AN but not for CN-AN sorbents. Stability tests of the modified sorbents for 10 cycles showed that CG-AN-CTAB provided higher CO2 sorption capacity than CN-AN-CTAB for each corresponding cycle. Incorporation of CG-AN with Ni catalyst (Ni-CG-AN) using wet-mixing technique offered the longest pre-breakthrough period of 60 min for average maximum H2 purity of 88% at 600 °C and a steam/methane molar ratio of 3.  相似文献   

3.
In this study, highly pure hydrogen is produced in sorption enhanced chemical looping steam methane reforming (SE-CLSMR) using cobalt-based oxygen carrier (OC) and cerium promoted CaO-based sorbent. In addition, the CO2 removal from a gas stream at high temperatures is investigated via calcium looping process prior to SE-CLSMR process. The prepared samples are characterized by field emission scanning electron microscopy (FESEM), X-ray diffraction (XRD), Brunauer–Emmett–Teller (BET) and energy dispersive X-ray spectroscopy (EDX) techniques. The effect of Ca/Ce molar ratio (100/0.00–0.91/0.09), sorption temperature (550–650 °C) and sorbent lifetime are studied to find the optimal sorbent. The characterization results show the uniform and orderly CeO2 dispersed sorbent nanoparticles that notably improved the sorbent morphology compared with blank CaO. The sorption results revealed the negative effect of temperature on CO2 uptake of all the samples. In addition, the CO2 sorption evaluations indicate that the molar ratio of cerium to calcium plays a significant role in the stability of sorbent and improved the CO2 sorption capacity significantly. The high CO2 removal efficiency in the cerium modified sorbents could be due to decrease in diffusion resistance of CO2 through the sorbent structure during the carbonation reaction. Furthermore, results show that the addition of cerium to the sorbent structure, effectively improves the thermal resistance of synthesis sorbents. The SE-CLSMR results showed that the H2 purity could be increased up to about 95% considering Co3O4/SiO2 oxygen carrier and cerium promoted calcium-based sorbent at relatively low temperature of 550 °C, which is comparable with 84% in CLR process.  相似文献   

4.
Catalytic steam reforming of renewable bio-oxygenates coupled with in-situ CO2 capture is a promising option for sustainable H2 production. The current work focuses on high purity H2 production over Ni–CaO–Al2O3 bi-functional materials via sorption enhanced steam reforming of ethanol (SEESR). To ensure the uniform distribution of catalytic sites (Ni), adsorptive sites (CaO) and stabilizer (Al2O3) in the bi-functional materials, a citrate sol-gel synthetic route was employed. These materials were characterized by XRD, N2 physical adsorption, SEM, TG and TPR techniques. It was revealed that the existence of CaO in bi-functional materials could not only in-situ remove CO2, but also play the role of inhibiting the formation of harmful spinel phase. The stabilizing role of Al component against capacity decay was confirmed, whereas the presence of Ni ions had a negative effect on the cycle CO2 uptake. The sample of Ni/Al/Ca-85.5 possessed large specific surface area, abundant porosity with fluffy morphology, and thereby, exhibited the best CO2 sorption capacity during 20 carbonation/calcination cycles. The highest H2 concentration of 96% was obtained through the SEESR during the pre-breakthrough period when the Ni/Al/Ca-85.5 was employed. Over the optimized bi-functional material, the effect of operating conditions on the SEESR was investigated and the results indicated that temperature of 600 °C, reaction liquid space velocity of 0.05 ml/min and steam/ethanol ratio of 4 were the suitable conditions. After 10 cycles, the bi-functional material of Ni/Al/Ca-85.5 also showed the best performance, with a H2 purity of about 90% and pre-breakthrough time of 18 min, conforming the high potential of this material for SEESR process.  相似文献   

5.
Sorption-enhanced ethanol steam reforming is an interesting alternative, to produce high purity H2. In this study, potassium promoted hydrotalcites are compared for sorption-enhanced ethanol steam reforming reaction under cyclic operation, performing sorbent regeneration at reaction temperature which is a great advantage to reduce process energy requirements. It is found that potassium promoted hydrotalcites have higher CO2 sorption capacity compared to unpromoted ones, due to the higher concentration of intermediate and strong basic sites. The hydrotalcite modified with 15 wt% potassium shows the best performance on multicyclic CO2 sorption-desorption (sorption capacity = 0.167 molCO2/kgsorbent). Therefore, there is an optimum loading of potassium, for which the opposite effects of reduction in surface area and enhanced basicity are balanced. Finally, potassium promoted hydrotalcites are tested under cyclical ethanol reforming process with simultaneous adsorption of CO2 followed by regeneration in N2 at reaction temperature (500 °C). At short reaction times (<5 min), H2 purities higher than 95% are achieved, with CO2 purities near 0%.  相似文献   

6.
Sorption enhanced steam methane reforming (SESMR), i.e. SMR with in situ CO2-sorption, can lead to a sustainable and economical exploiting of natural gas for hydrogen production, with high purity and simultaneous sequestration of greenhouse gases. CaO-mayenite CO2-sorbents, Ni-mayenite SMR catalysts and Ni–CaO-mayenite combined sorbent catalyst materials (CSCM) for SESMR were synthesized by wet mixing and wet impregnation methods, and characterized by means of XRD, BET/BJH, SEM/EDS, and TPR. For CSCM, an influence of CaO load on textural and Ni reducibility properties was recorded. Materials sorption capacity was measured in multicycles sorption/regeneration TGA tests: it always underwent a stabilization with cycle number increase. Reforming tests in micro-reactor scale were performed on 3 wt% to 10 wt% Ni-mayenite and selected CSCM: all Ni-mayenite always shown good performances, while for CSCM a detrimental role of CaO load on Ni catalytic activity was evidenced.  相似文献   

7.
In view of climate change containment, sorption enhanced steam methane reforming (SESMR) appears as an interesting production route for H2 with the additional advantage of CO2 capture application performed by high-temperature solid sorbents. CaO is largely employed as CO2 sorbent because of its low-cost mineralized forms (limestone and dolomite), of its high sorption capacity in the high temperature range compatible with steam methane reforming (SMR). Many recent studies have proposed purposely synthesized Ni-based reforming catalysts, used with high-temperature CO2 solid sorbents, or combined sorbent-catalyst materials (CSCM). For this last purpose, we studied the effect of Ni salt precursor (Ni nitrate hexahydrate or Ni acetate tetrahydrate) on properties and reactivity of Ni-mayenite catalysts or Ni-CaO-mayenite CSCM, synthesized by an already validated sequence of wet mixing (for sorbents synthesis) and wet impregnation (for catalysts and CSCM synthesis) methods. Although Ni acetate tetrahydrate was often reported as the best choice to improve textural properties, our study identified Ni nitrate hexahydrate as a definitely more suitable precursor than Ni acetate tetrahydrate in the purpose of developing efficient materials for SESMR. The dissimilar behaviors observed in reforming reactivity are related and explained by the differences in textural properties, Ni species dispersion, and reducibility.  相似文献   

8.
An experimental study was performed on sorption enhanced steam methane reforming (SESMR) by Ni-mayenite reforming catalyst and CaO-mayenite CO2-sorbents with several CaO contents. Materials were synthesized, characterized (by XRD, BET and BJH methods, TPR) and tested in a micro-reactor, comparing two configurations: two separated, consequential packed-beds and the more usual raw mixing. Ni-mayenite always allowed a high, stable CH4 conversion (>93%). A generalized direct effect from CO2 capture emerged on water gas shift reaction extent, while enhancement of methane conversion took place only in raw mixing.In practical applications, investigated materials are bound to face alternatively reforming and sorbent regeneration conditions: an automated bench-scale system was used to perform 205 SESMR/regeneration cycles, with separate beds of Ni-mayenite and CaO-mayenite (30 wt% free-CaO), proving good activity and stability throughout cycles (stable CH4 conversion > 95%, pre-breakthrough CO2 concentration < 3 vol% dry, dilution-free).  相似文献   

9.
The effect that sodium has on Pt/m-ZrO2 catalyst was investigated during ethanol steam reforming (ESR). Sodium doping decreases the catalytic activity, but significantly increases CO2 selectivity, providing a means of improving H2 selectivity. Diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) results suggest that acetate species are intermediates in the reaction and that their decomposition can follow different routes depending on the catalyst formulation. When Pt/m-ZrO2 is promoted by sodium, decarboxylation is the favored route: forward decomposition of acetate at lower temperatures yields essentially methane and adsorbed carbonate, further decomposing to carbon dioxide. At higher temperature, the methane precursor can be intercepted by the metal for further steam reforming or a separate methane steam reforming catalyst can be used downstream. Decarbonylation is instead favored for the unpromoted catalyst; decarbonylation tends to lower the H2 selectivity of the overall process. Finally, the addition of sodium promotes C–C scission as methane formation is detected at lower temperature by DRIFTS and TPD-MS of ethanol in steam. This is analogous to formate C–H bond breaking in methanol steam reforming, steam-assisted formic acid decomposition, and water-gas shift reactions. In catalytic testing of ESR utilizing a tubular reactor at low temperatures (where steam reforming of CH4 is limited), methane and CO2 selectivities are higher with the Na-promoted catalyst than with the unpromoted catalyst. Thus, promotion of the forward decomposition of acetate route by Na addition is confirmed.  相似文献   

10.
In this study, the continuous sorption-enhanced steam reforming of glycerol to high-purity hydrogen production by a simultaneous flow concept of catalyst and sorbent for reaction and regeneration using two moving-bed reactors has been evaluated experimentally. A Ni-based catalyst (NiO/NiAl2O4) and a lime sorbent (CaO) were used for glycerol steam reforming with and without in-situ CO2 removal at 500 °C and 600 °C. The simultaneous regeneration of catalyst and sorbent was carried out with the mixture gas of N2 and steam at 900 °C. The product gases were measured by a GC gas analyzer. It is obvious that the amounts of CO2, CO and CH4 were reduced in the sorption-enhanced steam reforming of glycerol, and the H2 concentration is greatly increased in the pre-CO2 breakthrough periods within 10 min both 500 °C and 600 °C. The extended time of operation for high-purity hydrogen production and CO2 capture was obtained by the continuous sorption-enhanced steam reforming of glycerol. High-purity H2 products of 93.9% and 96.1% were produced at 500 °C and 600 °C and very small amounts of CO2, CH4 and CO were formed. The decay in activity during the continuous reaction-regeneration of catalyst and sorbent was not observed.  相似文献   

11.
In this work, sorption-enhanced steam reforming of ethanol (SE-SRE) process was studied using Ni–CaO-based bifunctional catalysts modified with Ca12Al14O33 (mayenite) and CeO2. The CaO and CaO/Ca12Al14O33 sorbents were synthesized by a sol-gel method and, subsequently, CeO2 and Ni were added by the incipient wetness impregnation method. These materials were characterized by BET surface area, thermogravimetric analysis (TGA), in situ X-ray diffraction (XRD), and in situ X-ray absorption near edge structuare (XANES). In addition, the catalysts were tested on 10 cycles of SE-SRE reaction and regeneration. In general, the characterization results revealed an inverse relationship between average crystallite size of CaO and CO2 sorption capacity. By the in situ XRD/XANES, the addition of the mayenite reduced by half the average crystallite size of CaO and increased the interaction between support and active phase. As a consequence, the catalyst containing mayenite (NiCaAl) showed the best CO2 capture uptake and stability, which could be justified mitigation of the CaO sintering effect by the inert material presence. Great stability was also observed in the catalytic tests, since the duration of the pre-breakthrough stage for NiCaAl and for the catalyst containing maynite and ceria (NiCaAlCe) remained constant over the reaction cycles. In terms of hydrogen production, NiCaAl catalyst showed the highest H2 molar fraction during the pre- (90%) and post-breakthrough. The CeO2 addition slightly favored the methane formation, although did not bring significant benefits in the CO2 capture and catalytic performance. Therefore, NiCaAl showed the best CO2 capture capacity and stability, which led to the best SE-SRE performance.  相似文献   

12.
This paper presents an experimental investigation for an improved process of sorption-enhanced steam reforming of methane in an admixture fixed bed reactor. A highly active Rh/CeαZr1−αO2 catalyst and K2CO3-promoted hydrotalcite are utilized as novel catalyst/sorbent materials for an efficient H2 production with in situ CO2 capture at low temperature (450–500 °C). The process performance is demonstrated in response to temperature (400–500 °C), pressure (1.5–6.0 bar), and steam/carbon ratio (3–6). Thus, direct production of high H2 purity and fuel conversion >99% is achieved with low level of carbon oxides impurities (<100 ppm). A maximum enhancement of 162% in CH4 conversion is obtained at a temperature of 450 °C and a pressure of 6 bar using a steam/carbon molar ratio of 4. The high catalyst activity of Rh yields an enhanced CH4 conversion using much lower catalyst/sorbent bed composition and much smaller reactor size than Ni-based sorption enhanced processes at low temperature. The cyclic stability of the process is demonstrated over a series of 30 sorption/desorption cycles. The sorbent exhibited a stable performance in terms of the CO2 working sorption capacity and the corresponding CH4 conversion obtained in the sorption enhanced process. The process showed a good thermal stability in the temperature range of 400–500 °C. The effects of the sorbent regeneration time and the purge stream humidity on the achieved CH4 conversion are also studied. Using steam purge is beneficial for high degree of CO2 recovery from the sorbent.  相似文献   

13.
The effect of hydrogen sulfide (H2S) on dry reforming of biogas for syngas production was studied both experimentally and theoretically. In the experimental work, the H2S effect on Ni‐based catalyst activity was examined for reaction temperatures ranging from 600°C to 800°C. It was found that the presence of H2S deactivated the Ni‐based catalysts significantly because of sulfur poisoning. Although bimetallic Pt‐Ni catalyst has better performance compared with monometallic Ni catalyst, deactivation was still found. The time‐on‐stream measured data also indicated that sulfur‐poisoned catalyst can be regenerated at high reaction temperatures. In the theoretical work, a thermodynamic equilibrium model was used to analyze the H2S removal effect in dry reforming of H2S‐contained biogas. Calcium oxide (CaO) and calcium carbonate (CaCO3) were used as the H2S sorbent. The results indicated that H2S removal depends on the initial H2S concentration and reaction temperature for both sorbents. Although CO2 was also removed by CaO, the results from equilibrium analysis indicated that the dry reforming reaction in the presence of CaO was feasible similar to the sorption enhanced water‐gas shift and steam‐methane reforming reactions. The simulation results also indicated that CaO was a more preferable H2S sorbent than CaCO3 because syngas with an H2/CO ratio closer to 2 can be produced and requires lower heat duty.  相似文献   

14.
The transient chemical reaction phenomena of the sorption-enhanced steam methane reforming (SE-SMR) by using Ni/Al2O3 catalyst and CaO sorbent in a tubular fixed-bed reactor were numerically investigated by an experimentally verified unsteady 2D model. Four chemical reactions are involved in SE-SMR including steam reforming (SR), water gas shift (WGS), global steam reforming (GSR), and CO2 sorption. The reaction process in time is divided into period 1, transient period, and period 2. The high-purity H2 is produced in period 1 which is defined as the outlet molar fractions of H2 ≥ 90% and CO ≤ 1% (dry basis) in this work. In the first half of period 1, the endothermic reaction rates of SR and GSR are dominant in the entrance region of catalyst/sorbent bed. The WGS and CO2 sorption reactions are triggered by SR and GSR reactions. The heat transfer from the wall plays an important role. Higher CaO conversion, temperature, and reaction rates appear first near the wall region, then they gradually expand to the central region.In the second half of period 1, a sharp wave-shaped curve of strong CO2 sorption reaction occurred in downstream becomes dominant and it moves to downstream almost at a constant speed, as time progresses. The peak value of the CO2 sorption reaction is more than twice larger than that of SR or WGS. The SR and WGS reaction rates are significantly enhanced by CO2 sorption reaction. The great sorption, WGS, and SR reactions result in a high-purity H2 production with the outlet molar fractions of 95.8% H2, 0.998% CO, and 0.73% CO2 at the end of period 1, based on the parameters used in this work such as reactor temperature of 600 °C. The maximum CaO conversion is about 76% in end of period 1 and the average CaO conversion in the reactor is 51%. The 2D distributions of CaO conversion, temperature, and reaction rates are also presented and discussed.  相似文献   

15.
Ni (2.5 wt%) and Co (2.5 wt%) supported over ZrO2/Al2O3 were prepared by following a hydrolytic co-precipitation method. The synthesized catalysts were further promoted by Rh incorporation (0.01–1.00 wt%) and tested for their catalytic performance for dry CO2 reforming, combined steam–CO2 reforming and oxy–CO2 reforming of methane for production of syngas. The catalysts were characterized by using N2 physical adsorption, XRD, H2–TPR, SEM, CO2–TPD, NH3–TPD, TEM and TGA. The results revealed that ZrO2 phase was in crystalline form in the catalysts along with amorphous Al oxides. Ni and Co were confirmed to be in their respective spinel phases that were reducible to metallic form at 800 °C under H2. Ni and Co were well dispersed with their nano-crystalline nature. The catalyst with 0.2% loading of Rh showed superior performance in the studied reactions for reforming of methane. This catalyst also showed good coke resistance ability for dry CO2 reforming reaction with 3.8 wt% of carbon formation during the reaction as compared to 11.6 wt% carbon formation over the catalyst without Rh. The catalyst performance was stable throughout the reaction time for CH4 conversions, irrespective of carbon formation with slight decline (~1%) in CO2 conversion. For dry CO2 reforming reaction, this catalyst showed good conversion for both CH4 and CO2 (67.6% and 71.8% respectively) with a H2/CO ratio of 0.84, while for the Oxy-CO2 reforming reaction, the activity was superior with CH4 and CO2 conversions (73.7% and 83.8% respectively) and H2/CO ratio of 1.05.  相似文献   

16.
In order to improve the hydrogen production efficiency by glycerol steam reforming, a membrane-assisted fluidized bed reactor with carbon dioxide sorption is developed to enhance the reforming process. Low-temperature operation in a membrane reactor is necessary considering the thermal stability of membrane. In this work, the sorption-enhanced glycerol steam reforming process in a fluidized bed membrane reactor under the condition of low temperature is numerically investigated, where the hydrotalcite is employed as CO2 sorbents. The impact of operating pressure on the reforming performance is further evaluated. The results demonstrate that the integration of membrane hydrogen separation and CO2 sorption can effectively enhance the low-temperature glycerol reforming performance. The fuel conversion above 95% can be achieved under an elevated pressure.  相似文献   

17.
The benefits of CO2 sorption enhanced steam reforming using calcined dolomite were demonstrated for the production of hydrogen from highly oxygenated pyrolysis oils of the agricultural waste palm empty fruit bunches (PEFB) and pine wood. At 1 atm in a down-flow packed bed reactor at 600 °C, the best molar steam to carbon ratios were between 2 and 3 using a Ni catalyst. After incorporating steam-activated calcined dolomite as the CO2 sorbent in the reactor bed, the H2 yield from the moisture free PEFB oil increased from 9.5 to 10.4 wt.% while that of the pine oil increased from 9.9 to 13.9 wt.%. The hydrogen purity also rose from 68 to 96% and from 54 to 87% for the PEFB and pine oils respectively, demonstrating very substantial sorption enhancement effects.  相似文献   

18.
MCM-41, a molecular sieve, was prepared using tetraethoxysilane and cetyltrimethylammonium bromide and used as an effective adsorbent for CO2. By using the wet impregnation method, various weights of poly(ethyleneimine) (PEI) were modified on mesoporous silicate MCM-41 for increasing the CO2-adsorption capacity. The samples were characterized by X-ray powder diffraction (XRD), transmission electron microscopy (TEM), and nitrogen adsorption/desorption isotherms. Thermal gravimetric analysis (TGA) was conducted to investigate the CO2 capture behaviors. PEI was successfully dispersed into the channels of MCM-41, shifting the (110) diffraction peaks in the XRD patterns. The specific surface area and total pore volume of the PEI-loaded MCM-41 adsorbent decreased when the weight of PEI loading increased. From the results, it was concluded that PEI loading influences the CO2 capture performance, resulting from the enhancement of the basic functional groups on MCM-41.  相似文献   

19.
Four ethanol-derived hydrogen production processes including conventional ethanol steam reforming (ESR), sorption enhanced steam reforming (SESR), chemical looping reforming (CLR) and sorption enhanced chemical looping reforming (SECLR) were simulated on the basis of energy self-sufficiency, i.e. process energy requirement supplied by burning some of the produced hydrogen. The process performances in terms of hydrogen productivity, hydrogen purity, ethanol conversion, CO2 capture ability and thermal efficiency were compared at their maximized net hydrogen. The simulation results showed that the sorption enhanced processes yield better performances than the conventional ESR and CLR because their in situ CO2 sorption increases hydrogen production and provides heat from the sorption reaction. SECLR is the most promising process as it offers the highest net hydrogen with high-purity hydrogen at low energy requirement. Only 12.5% of the produced hydrogen was diverted into combustion to fulfill the process's energy requirement. The thermal efficiency of SECLR was evaluated at 86% at its optimal condition.  相似文献   

20.
Chemical looping steam reforming (CLSR) of ethanol using oxygen carriers (OCs) for hydrogen production has been considered a highly efficient technology. In this study, NiO/MgAl2O4 oxygen carriers (OCs) were employed for hydrogen production via CLSR with and without CaO sorbent for in-situ CO2 removal (sorption enhanced chemical looping steam reforming, SE-CLSR). To find optimal reaction conditions of the CLSR process, including reforming temperatures, the catalyst mass, and the NiO loadings on hydrogen production performances were studied. The results reveal that the optimal temperature of OCs for hydrogen production is 650 °C. In addition, 96% hydrogen selectivity and a 'dead time' (the reduced time of OCs) less than 1 minute is obtained with the 1 g 20NiO/MgAl2O4 catalysts. The superior catalytic activity of 20NiO/MgAl2O4 is due to the maximal quantity of NiO loadings providing the most Ni active surface centers. High purity hydrogen is successfully produced via CLSR coupling with CaO sorbent in-situ CO2 removal (SE-CLSR), and the breakthrough time of CaO is about 20 minutes under the condition that space velocity was 1.908 h?1. Stability CLSR experiments found that the hydrogen production and hydrogen selectivity decreased obviously from 207 mmol to 174 mmol and 95%–85% due to the inevitable OCs sintering and carbon deposition. Finally, stable hydrogen production with the purity of 89%~87% and selectivity of 96%~93% was obtained in the modified stability SE-CLSR experiments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号