首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ceramic coatings are being explored to extend the lifetime of stainless steel interconnects in planar Solid Oxide Fuel Cells (SOFCs). One promising coating is Co1.5Mn1.5O4 spinel, which is deposited using various techniques, resulting in different coating thicknesses, compositions and microstructures. In this study, stainless steel 441HP samples were subjected to three levels of preoxidation (0, 3, 10 and 100 h in 800 °C lab air) prior to coating. Samples were coated with 2 μm CoMn alloy using magnetron sputtering and were subsequently annealed in 800 °C air for 0, 10, 100 or 1650 h. Oxidation behaviors were evaluated as a function of these exposures, as well as in dual atmospheres and during area specific resistance (ASR) measurements in 800 °C lab air. Preoxidation was found to inhibit Fe and Cr transport from the stainless steel into the coating and preoxidized samples exhibited a substantially thinner surface layer after oxidation. After ASR testing for 1650 h in 800 °C air, the trend of the preoxidized sample values remained level while trend of the non-preoxidized sample values showed an increase. Observed oxidation behaviors, their possible mechanisms, and implications for SOFC interconnects are presented and discussed.  相似文献   

2.
A Ni/NiFe2 dual-layer coating is deposited on 50-h pre-oxidized SUS 430 steel by magnetron sputtering for solid oxide fuel cell (SOFC) interconnects application, followed by thermal exposure in air at 800 °C for 1680 h. The thermally grown oxide scales exhibit tri-layer structure with inner Cr2O3 layer, middle NiO layer and outer NiFe2O4 spinel layer. The oxide coating converted from Ni/NiFe2 coating not only inhibit the growth of Cr2O3 and the outward diffusion of Cr species but also improve the electrical performance of the surface scale. In addition, pre-oxidation treatment for the steel before Ni/NiFe2 coating deposition prevents the interdiffusion between steel substrate and coating in the oxidation process.  相似文献   

3.
CuFe0.8 (Fe:Cu = 0.8:1, atomic ratio) alloy layer is fabricated on both bare and pre-oxidized SUS 430 steels by direct current magnetron sputtering, followed by exposing at 800 °C in air to obtain a protective coating for solid oxide fuel cell (SOFC) steel interconnects. The CuFe0.8 alloy layer is thermally converted to CuFe2O4/CuO coating, which effectively suppresses the out-migration of Cr. Pre-oxidation treatment not only initially accelerates the formation of CuFe2O4/CuO coating but also further inhibits the Cr and Fe outward diffusion. Suppressing outward diffusion of Cr could improve electrical property of oxide scale and decrease the risk of cathode Cr-poisoning. Blocking out-diffusion of Fe is beneficial to stabilize the CuO layer. After 2520 h oxidation, the scale ASR at 800 °C is 66.9 mΩ cm2 for coated bare steel, 43.4 mΩ cm2 for the coated pre-oxidized steel.  相似文献   

4.
Ni–Fe2O3 composite coating was applied onto ferritic stainless steel using the cost-effective method of electroplating for intermediate temperature solid oxide fuel cell (SOFC) interconnects application. By comparison, the coated and bare steels were evaluated at 800 °C in air corresponding to the cathode environment of SOFC. The oxidation investigations indicated that the oxidation rate of the coated steel was close to that of the bare steel after initially rapid mass gain. The mass gain of the coated steel was higher than that of the bare steel owing to the formation of double-layer oxide structure with an outer layer of (Ni,Fe)3O4/NiO atop an inner layer of Cr2O3. The area specific resistance (ASR) of the double-layer oxide scale was lower than that of the Cr2O3 scale thermally grown on the bare steel.  相似文献   

5.
An inexpensive CuFe alloy layer with an atomic ratio (1:2) of Cu to Fe is coated on SUS 430 stainless steels via magnetron sputtering for solid oxide fuel cells interconnect application. The coated steels are thermally exposed to air at 800 °C for 15 weeks. The CuFe alloy layer is converted to CuFe2O4 spinel layer atop Cr2O3 layer developed from steel substrate. The outer layer of CuFe2O4 spinel not only retards Cr outward migration and reduces oxidation rate but also significantly lowers area specific resistance of the surface scale which is predicted for solid oxide fuel cells lifetime by a parabolic law. The sputtered CuFe alloy layer demonstrates a promising prospect for the application of steel interconnects coatings.  相似文献   

6.
To meet the performance requirements of solid oxide fuel cell (SOFC) metallic interconnect, the Mn–Co–O spinel coating is prepared on the surface of AISI430 by pack cementation method to reduce the growth kinetics of oxides and inhibit the outward diffusion of Cr. The microstructural characterization shows that a dense, uniform, defect-free spinel coating is successfully fabricated on the surface of AISI430. Under the simulated SOFC cathode environment, the weight gain of coated steel (0.608 mg cm−2) after oxidation at 800 °C for 800 h is significantly lower than that of uncoated (1.586 mg cm−2). In addition, the area specific resistance (ASR) of the coated steel oxidized for 500 h is 17.69 mΩ cm2, much smaller than that of the bare steel, indicating that the oxidation resistance and electrical conductivity of AISI430 are significantly improved by Mn–Co–O spinel coating. Cross-sectional observations of the Mn–Co–O spinel coating are conducted to assess the compatibility of substrate with the adjacent coating and its effectiveness in reducing the growth of the Cr2O3 layer.  相似文献   

7.
To improve oxidation resistance, prevent Cr evaporation and maintain appropriate electrical conductivity of AISI 430 stainless steel (430 SS) as the solid oxide fuel cells' (SOFCs) interconnect, a double-layered Co-Mn-O spinel coating is fabricated successfully on 430 SS via a simple double glow plasma alloying process (DGPA) followed by heating in the air (preoxidation treatment). The double-layered Co-Mn-O spinel coating is composed of a thick MnCo2O4 spinel outlayer and a thin mutual-diffused (MnCoFe)3O4 oxide innerlayer. The isothermal and cyclic oxidation measurements are used to investigate the oxidation resistance, and the ASR test is performed to evaluate the conductivity for the coated and uncoated specimens. The coated specimen has a lower oxidation kinetics rate constant (9.0929 × 10−4 mg2 cm−4 h−1) than the uncoated one (1.900 × 10−3 mg2 cm−4 h−1) and the weight gain of the coated specimen (0.84 mg cm−2) is less than that of bare steel (1.29 mg cm−2) after 750 h oxidation. Meanwhile, the coated specimen holds a lower area specific resistance (0.029 Ω cm2) compared to the uncoated one (2.28 Ω cm2) after 408 h oxidation. Furthermore, the compact Co-Mn-O spinel coating can effectively impede Cr-volatilization. Additionally, the probable mechanism of the Co-Mn alloy conversion into spinel and the electronic conduction behavior in the spinel are discussed. The effects of mutual-diffused oxide innerlayer on oxidation behavior and conductivity are investigated.  相似文献   

8.
Ferritic stainless steels have been evaluated as favorable materials for utilization in SOFC interconnects. However, there are difficulties in utilizing these metallic interconnects, including the quick decrease of their electrical conductivity and cathode poisoning due to the evaporation of Cr species. In this work, Co and Co/Y2O3 composite coatings have been deposited onto Crofer 22 APU stainless steels by the pulse current electrodeposition method and the oxidation and electrical properties of uncoated and coated steels have been evaluated. Cyclic oxidation was performed in air at 800 °C for 500 h, oxidation rates were calculated, and oxide layer microstructures were examined. SEM–EDS and XRD investigations exhibited the created oxide layer on both coated samples made up of two scale after oxidation. The internal thin scale was composed of Cr and O and the external scale comprised of Co, Mn, Cr, Fe, and O. Y2O3 was observed as dispersed particles in the external oxide scale after the cyclic oxidation test. The thicknesses of internal oxide scale were reduced and oxidations rates also were meaningfully decreased for Co/Y2O3-coated steels relative to uncoated and Co-coated steels. Finally the ASR values of coated and uncoated substrates was also tested as a function of temperature and time in air. Results showed that the ASR value of the Co/Y2O3-coated steel was 13.1 mΩ cm2 after 500 h of cyclic oxidation at 800 °C, which was significantly lower than that of bare steel and the Co-coated sample.  相似文献   

9.
Ni/CeO2 mulriple coating has been fabricated on SUS 430 steel via electrodepositing approach. 100-h initial and 3-week long-term thermal exposing to air at 800 °C has enunciated that the oxide scale grown on the Ni/CeO2 coated steel contains an external oxide layer of NiFe2O4 spinel, a middle oxide layer of NiO and an internal oxide layer of Cr2O3. Simultaneously, dispersive CeO2 particles embed in the oxide scale. Compared to the Ni coated steel on which the same tri-layer oxide structure without discrete CeO2 particles grows in the same exposing environment, growth rate of the internal Cr2O3 layer on the Ni/CeO2 coated steel has been profoundly suppressed, which subsequently lowers the oxide scale area specific resistance (ASR). Enhancement of the oxidation resistance and reduction of the oxide scale ASR are attributed to the presence of CeO2.  相似文献   

10.
MnCu (Mn:Cu = 1:1, atomic ratio) metallic coatings have been deposited by magnetron sputtering on bare and on 100 h pre-oxidized SUS 430 steel for planar solid oxide fuel cells interconnects application. After oxidation at 800 °C in air, the MnCu coating directly deposited on the bare steel has been thermally converted to (Mn,Cu)3O4 spinel with Fe, containing discrete CuO on the outer surface. Nevertheless, the converted (Mn,Cu)3O4/CuO layer from the MnCu coating deposited on the pre-oxidized steelis almost free of Fe. A double-layer oxide structure with a main (Mn,Cu)3O4 spinel layer atop a Cr-rich oxide layer has been developed on the bare and pre-oxidized steel samples with MnCu coatings after thermal exposure. The outer layer mainly consisted of (Mn,Cu)3O4 spinel has not only significantly suppressed Cr outward migration to the scale surface, but also effectively reduced the area specific resistance (ASR) of the scale. The sputtered MnCu metallic coating is a very promising candidate for steel interconnect coating material.  相似文献   

11.
Fe-Ni alloy is electrodeposited on ferritic stainless steel for intermediate-temperature solid oxide fuel cell (SOFC) interconnects application. The oxidation behavior of Fe-Ni alloy coated steel has been investigated at 800 °C in air corresponding to the cathode environment of SOFC. It is found that the oxidation rate of the Fe-Ni alloy coated steel becomes similar to that of the uncoated steel after the first week thermal exposure, although the mass gain of the coated steel is higher than that of the uncoated steel. Oxide scale formed on the uncoated steel mainly consists of Cr2O3 with (Mn,Cr)3O4 spinel. However, a double-layer oxide structure with a Cr-free outer layer of Fe2O3/NiFe2O4 and an inner layer of Cr2O3 is developed on the Fe-Ni alloy coated steel. The scale area specific resistance (ASR) for the Fe-Ni alloy coated steel is lower than that of the scale for the uncoated steel.  相似文献   

12.
Ferritic stainless steels, under the working conditions of solid oxide fuel cells, form a chromium oxide layer. This layer has a low electrical conductivity and consequently reduces the efficiency of these energy converters. An action to improve the properties of the connecting plates is to use a conductive and protective layer of coating. In this study, AISI 430 stainless steel was coated with Mn–Co–CeO2 through electroplating technique. To evaluate the oxidation behavior, isothermal and cyclic oxidation tests were used at 800 °C. Area specific resistance (ASR) of uncoated and coated specimens was also compared as a function of time during oxidation at 800 °C. Coating microstructure and oxidized samples were examined by scanning electron microscopy (SEM) and X-ray diffraction (XRD) device. In isothermal oxidation, uncoated samples had more weight gain than the Mn–Co–CeO2 coated samples. The coating layer improved oxidation resistance by limiting the diffusion of chromium cation and oxygen anion. The cyclic oxidation results showed that the Mn–Co–CeO2 coated samples had a very good resistance to cracking and spallation. Also, the results of ASR showed that formation of MnCo2O4 and MnFe2O4 spinels and also the presence of CeO2 resulted in reduction of area specific resistance. ASR for samples coated with Mn–Co–CeO2 and uncoated samples was 12.4 mΩ.cm2 and 38.7 mΩ.cm2, respectively after 200 h of oxidation at 800 °C.  相似文献   

13.
Stainless steel can be applied as interconnect materials in solid oxide fuel cells (SOFCs) at operating temperatures 600–800 °C. Chromium (Cr)-forming stainless steel as an interconnect plate possesses a low oxidation resistance at high temperature and electrical conductivity, and volatility of Cr oxide scale can poison the cathode material. One effective strategy is to use a surface coating to improve interconnect performance. This work is to form cobalt (Co)-containing coatings on the surface of AISI 430 ferritic stainless steel interconnect via pack cementation approach. The resultant coating is extremely effective at heightening the oxidation resistance and electrical conductivity of AISI 430 ferritic stainless steel. The area specific resistance of samples was measured as a function of time. The area specific resistance of coated sample with 2% of activator content and holding time of 2 h is 90.21 and 108.32 mΩ cm2 after 450 h of oxidation in air, respectively. Additionally, the coated sample with 2% of activator content and holding time of 2 h has a weight change of merely 0.299 and 0.231 mg/cm2 after 650 h of isothermal oxidation at 800 °C, separately. The results displayed that the formation of CoFe2O4 spinel coating enhanced oxidation resistance by inhibiting the outward diffusion of Cr cations and the inward diffusion of oxygen anions.  相似文献   

14.
Co-Cu alloys have been co-deposited onto 430 ferritic stainless steels via electroplating with a citrate solution. At the initial oxidation stage, a three-layer scale composed of a thin CuO outer layer, a thick (Cu,Fe,Cr)-doped Co3O4 middle layer and a (Cu,Fe)-doped (Co,Cr)3O4 inner layer was formed on the coated steel. With extended oxidation, the (Co,Cr)3O4 inner layer has been transformed into a Cr-rich oxide inner layer. An obvious outward diffusion of Fe appeared, leading to the formation of an (Cu,Cr,Mn)-doped (Co,Fe)3O4 interaction zone between the Co3O4-based spinel and the chromia oxides. The Co-Cu coating effectively blocked the outward migration of Cr from the substrate. No Cr element could be found in the coupled La0·8Sr0·2MnO3 (LSM) plate of the coated sample after oxidized at 800 °C in air for 500 h. The highly conductive coating with a structure of CuO/Co-based spinels significantly decreased the growth of the Cr-rich oxide scale, and thus a much lower scale area specific resistance (ASR). The electrical properties and the oxidation mechanism of the coated substrates were discussed.  相似文献   

15.
As a protective coating of the interconnects in solid oxide fuel cells, spinel-structured Cu1.35Mn1.65O4 powder was coated onto 460FC stainless steel by using the electrophoretic deposition method. A suitable amount of iodine was added to ethanol to charge the spinel powder with a high zeta potential value. Stainless steel substrates were immersed in a slurry, and a DC voltage in the range of 20–60 V was applied for 30–120 s. Because a low-temperature densification of the coated film is crucial for minimizing Cr out-diffusion from the stainless steel substrate, the coated spinel was decomposed into Cu and MnO by applying a heat treatment at 800 °C in a 5% H2/95% N2 atmosphere. Then, it was oxidized at 700 °C in air, leading to appropriate densification. The area-specific resistance of the films was 15–29 mΩ cm2 after 1000 h at 700 °C in air.  相似文献   

16.
Even though the operation temperature of solid oxide fuel cells (SOFCs) stacks has been reduced (∼750 °C), stainless steel interconnect within the stacks still requires protection by high conductive coatings to delay the growth of oxide scales and reduce chromium evaporation. Manganese cobaltite spinel protective coating with a nominal composition of MnCo2O4 was produced on Fe-21Cr stainless steel. Electrical, microstructural and compositional analysis were performed to investigate the interfacial reaction of MnCo2O4 protective coating with the stainless steel substrate during 750 °C oxidation process. The spinel coating not only acts as a barrier to Cr outward transport, but also improves the electrical conductivity of the alloy interconnect during long-term oxidation. The coated alloy demonstrates good electrical conductivity with an area specific resistance (ASR) of about 5 mOhm cm2 after oxidation for 1000 h at 750 °C, which is about 1/4 of the ASR of bare Fe-21Cr alloy. The reduction of ASR might be caused by the fact that Cr migrated from the steel substrate interact with MnCo2O4 coating and generated Mn-Co-Cr spinel phase, which has higher electrical conductivity than that of Cr2O3.  相似文献   

17.
《Journal of power sources》2006,157(1):335-350
Ferritic stainless steels are being considered as potential interconnect materials for SOFCs, in part because of their low cost relative to alternatives. These materials are, however, susceptible to degradation over time. A primary source of degradation is an increase in the area specific resistance (ASR), which is due to the formation of poorly conducting oxides (Mn–Cr spinel and Cr2O3) on the surface. In this work, the influence of Y, Co and Y/Co oxide coatings on the oxidation behaviour of a ferritic stainless steel (16–18 wt% Cr) has been investigated. Samples were oxidized in air for up to 500 h at temperatures ranging from 700 to 800 °C. Coated and uncoated samples were characterized, before and after heat treatment, using X-ray diffraction (XRD), scanning electron microscopy (SEM), thermogravimetric (TG) analysis and four-point probe resistance measurements.Surface morphology investigations of coated and uncoated stainless steels showed differences for Y and Co in terms of oxide formation. In all cases, Cr–Mn spinel and Cr2O3 were the two main surface oxides; however, the morphology of the spinel phase was dependent on the type of coating. The lowest resistances were obtained for the Y/Co-coated samples, which had ASR values up to seven times lower than corresponding uncoated ferritic stainless steels.  相似文献   

18.
In an attempt to optimize the properties of FeCoNi coating for planar solid oxide fuel cell (SOFC) interconnect application, the coating composition is modified by increasing the ratio of Fe/Ni. An Fe1·5CoNi0.5 (Fe:Co:Ni = 1.5:1:0.5, atomic ratio) metallic coating is fabricated on SUS 430 stainless steel by magnetron sputtering, followed by oxidation in air at 800°C. The Fe1·5CoNi0.5 coating is thermally converted to (Fe,Co,Ni)3O4 and (Fe,Co,Mn,Ni)3O4 without (Ni,Co)O particles. After oxidation for 1680 h, no further migration of Cr is detected in the thermally converted coating region. A low oxidation rate of 5.9 × 10?14 g2 cm?4 s?1 and area specific resistance of 12.64 mΩ·cm2 is obtained for Fe1·5CoNi0.5 coated steels.  相似文献   

19.
This study investigates the microstructure evolution and mechanical properties of bare and Co coated AISI 441 ferritic stainless steel/YSZ ceramic reactive air brazed joints achieved by Ag–CuO braze for Solid Oxide Fuel/Electrolysis Cells applications. Interfacial microstructure of steel/YSZ joints is analyzed by SEM and TEM with EDS. A thick and porous oxide layer rich in Fe, Cr, and Cu is found in bare steel/YSZ ceramic joints, which is induced by the severe oxidation and its intense reaction with CuO during the brazing process. For the coated steel/YSZ ceramic joint, a comparably dense and uniform (Co, Fe, Cu)3O4 spinel layer is formed on the steel surface, which is tightly bonded with Ag–CuO braze without visible bonding defects. Meanwhile, the oxidation of steel substrates and its interaction with CuO is significantly suppressed. Co coated steel/YSZ joints possess reliable mechanical properties with the shear strength of 51 MPa, which is 54.5% higher than that of bare steel/YSZ ceramic joints (33 MPa). Besides, the microstructure evolution of coated steel/YSZ ceramic joints during brazing is schematically illustrated by a physical model.  相似文献   

20.
Buckling damage and spallation during oxidation are prime challenges in electroplated Cu–Mn oxide spinel coatings prepared for SOFC interconnects. (Cu,Mn)3O4 spinel coating is formed on AISI-430 stainless steel by oxidizing electroplated copper and manganese layers at 750 °C in air. Nickel strike deposition significantly reduces coating spallation. During oxidation at 750 °C, spinel coating hinders chromium migration and improves the oxidation behavior of the alloy by a decrease of 98.9% in the parabolic oxidation rate constant. Formation mechanism of the spinel is investigated, revealing that manganese initially forms MnO, Mn2O3, and Mn3O4. Over the time, copper oxidizes to CuO, and Mn2O3 replaces MnO and Mn3O4. Finally, (Cu,Mn)3O4 spinel forms after 6 h of oxidation by the co-existence of CuO and Mn2O3. It is concluded that manganese oxidation induces buckling damage due to a volume increase of up to 137% in the coating during the earliest stages of the oxidation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号