首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The electrochemical performance of membrane electrode assemblies (MEAs) with ultra-low platinum load (0.02 mgPt cm?2) and different compositions of Nafion/C in the catalytic layer have been investigated. The electrodes were fabricated depositing the catalytic ink, prepared with commercial catalyst (HiSPEC 2000), onto the gas diffusion layers by wet powder spraying. The MEAs were electrochemically tested using current-voltage curves and electrochemical impedance spectroscopy measurements. The experiments were carried out at 70 °C in H2/O2 and H2/air as reactant gases at 1 and 2 bar pressure and 100% of relative humidity. For all MEAs tested, power density increases when the gasses pressure is increased from 1 to 2 bar. On the other hand, power density also increased when oxygen is used instead of air as oxidant gas in cathode. The lower power density (34 mW cm?2) and power per Pt loading (0.86 kW gPt?1) corresponds to the MEA prepared without Nafion in anode and cathode catalytic layers working with hydrogen and air at 1 bar pressure as reactants gas. The MEA with 30% wt Nafion/C reached the highest power density (422 mW cm?2) and power per Pt loading (10.60 kW gPt?1) using hydrogen and oxygen at 2 bar pressure. Finally, electrode surface microstructure and cross sections of MEAs were analyzed by Scanning Electron Microscopy (SEM). Examination of the electrodes, revealed that the most uniform ionomer network surface corresponds to the electrode with 40 wt% Nafion/C, and MEA ionomer-free catalytic layer shows delamination, it leads to low electrochemical performance.  相似文献   

2.
This paper reports use of an ultrasonic spray for producing ultra-low Pt load membrane electrode assemblies (MEAs) with the catalyst coated membrane (CCM) fabrication technique. Anode Pt loading optimization and rough cathode Pt loading were investigated in the first stage of this research. Accurate cathode Pt coating with catalyst ink using the ultrasonic spray method was investigated in the second stage. It was found that 0.272 mgPt/cm2 showed the best observed performance for a 33 wt% Nafion CCM when it was ultrasonically spray coated with SGL 24BC, a Sigracet manufactured gas diffusion layer (GDL). Two different loadings (0.232 and 0.155 mgPt/cm2) exposed to 600 mA/cm2 showed cathode power mass densities of 1.69 and 2.36 W/mgPt, respectively. This paper presents impressive cathode mass power density and high fuel cell performance using air as the oxidant and operated at ambient pressure.  相似文献   

3.
The objective of this study was to fabricate an efficient structural catalyst electrode of Pt/C consisting of double catalyst layers (DCL) with catalyst-ink spray and electrophoresis deposition (EPD) methods. The prepared Pt/C DCL electrode with Pt-dispersed and Pt-concentrated catalyst layers demonstrated better electrochemical properties than individual Pt/C single catalyst layer (SCL) electrodes. An S1E1 DCL electrode with Pt loading weight ratio of 1:1 between the Pt-dispersed and Pt-concentrated layers exhibited a higher electrochemical surface area (ECSA, 57.2 m2/gPt) and lower internal resistance (20 Ω) than an individual Pt-dispersed SCL electrode prepared with only the spray method (S1E0, 31.9 m2/gPt and 132 Ω) and an individual Pt-concentrated SCL electrode prepared with only the EPD method (S0E1, 34.1 m2/gPt and 120 Ω). The S1E1 DCL electrode exhibited 2.1 and 1.7 times higher mass activity for methanol oxidation reaction (MOR) than S1E0 and S0E1 SCL electrodes, respectively (1,230 mA/mgPt for S1E1 vs. 595 mA/mgPt for S1E0 and 715 mA/mgPt for S0E1). In addition, the S1E1 DCL electrode demonstrated high MOR durability after 1,000 sequential cycles while losing 30% activity. Meanwhile, S0E1 and S1E0 SCL electrodes rapidly lost 52% and 55% activity, respectively. These improved electrochemical performances of DCL electrode were owing to the advantages of separating Pt catalysts into two layers, which provides more Pt catalytic active sites to the electrolyte than those in SCL electrodes. Our observation may aid in minimizing the usage amount of Pt catalysts (~0.16 mgPt/cm2) compared to those in present commercial Pt/C composites (~0.3 mgPt/cm2) as well as maximize efficient Pt utilization. More importantly, with regard to proton exchange membrane fuel cell (PEMFC) activity as a crucial in-situ characterization of a catalyst, a membrane electrode assembly (MEA) containing S1E1 as the anode electrode could generate mass maximum power density of 3.84 W/mgPt, 3.6 times higher than the present commercial one (1.07 W/mgPt).  相似文献   

4.
Polybenzimidazole (PBI) was studied as an ionomer binder at varying ratios (1–7) in a 20–40 wt% Pt–Pd/C cathode-coupled catalyst layer for the oxygen reduction reaction (ORR) in a high-temperature proton exchange membrane fuel cell (HT-PEMFC). Catalytic activity was examined by CV and LSV, while the properties of the catalysts were characterized by FESEM-EDX, N2 adsorption–desorption, XRD and FTIR. The results showed that the distribution of metals on the carbon surface, carbon wall thickness and the interaction between ionomer and coupled catalysts affected the ORR performance. The fabricated membrane electrode assembly with 5:95 PBI: 30 wt% Pt–Pd/C catalyst ratio exhibited the best performance and highest durability for HT-PEMFC at 170 °C, yielding a power density of 1.30 Wcm−2 with 0.02 mgPt/cm Pt loading. This performance of ultra-low metal loading of coupled Pt–Pd/C electrocatalyst with PBI binder was comparable to those reported by other studies, highlighting a promising catalyst for fuel cell application.  相似文献   

5.
This study focuses on the elaboration of PEMFC electrodes containing ultra-low platinum (Pt) loadings by direct liquid injection metal organic chemical vapor deposition (DLI-MOCVD). DLI-MOCVD offers a large number of advantages for the elaboration of model PEMFC electrodes. First, by using different metal precursors or elaboration temperature, the size of the Pt nanoparticles and thus the intrinsic catalytic activity can easily be tailored in the nanometer range. In this work, Pt nanoparticles (1-5 nm) with remarkable low degree of agglomeration and uniform distribution were deposited onto the microporous side of a commercial gas-diffusion layer (GDL). Second, reduction of the Pt loading is made possible by varying the Pt deposition time and its influence of the cell performance can be extracted without variation of the thickness of the catalytic layer (in previous studies, a decrease of the catalyst utilization was observed when increasing the Pt loading, i.e. the thickness of the catalytic layer (CL)). The electrocatalytic activity of home-made Pt nanoparticles elaborated by DLI-MOCVD was measured in liquid electrolyte or in complete fuel cell operating on H2/O2 or H2/air and compared vs. that of a commercially available electrode containing 500 μgPt cm−2 (PtRef500). At the cathode, the performance of the electrodes containing 104-226 μg of Pt per cm2 of electrode compares favorably with that of the PtRef500 in H2/O2 conditions. In H2/air conditions, additional mass-transport losses are detected in the low-current density region but the high effectiveness of our electrodes improves the performance in the high-current density region. At the anode, the Pt loading can be reduced to 35 μgPt cm−2 without any voltage loss in agreement with previous observations.  相似文献   

6.
Previously, nanofiber-nanoparticle electrodes produced via a simultaneous electrospinning and electrospraying (E/E) process (E/E electrodes) resulted in polymer electrolyte membrane fuel cells with high power densities at ultra-low platinum (Pt) loadings (<0.1 mgPt cm−2). In this study, E/E electrodes were fabricated at various Nafion contents to investigate the impact of ionomer content on catalyst layer transport resistances and fuel cell power density at ultra-low Pt loadings. Regardless of the Nafion content in the electrospray, the Nafion nanofiber diameters and catalyst aggregate particle sizes are constant in the E/E electrodes evidenced by electron microscopy. Therefore, this study allows for the exclusive investigation of the effect of transport resistances on fuel cell performances at different ionomer contents at a constant catalyst layer morphology, which differs from conventional electrodes. At higher magnifications, changes are evident in the micrographs around the catalyst aggregate particles, where an increase in ionomer thin film thickness is observed with increasing ionomer content. The maximum fuel cell performance and a minimum in catalyst layer resistance for E/E electrodes is observed at a total Nafion content of 62 wt%, which differs from conventional electrodes (ca. 30 wt%).  相似文献   

7.
High cost and poor durability of Pt-based cathode catalysts for oxygen reduction reaction (ORR) severely hamper the popularization of proton exchange membrane fuel cells (PEMFCs). Tailoring carbon support is one of effective strategies for improving the performance of Pt-based catalysts. Herein, petroleum vacuum residue was used as carbon source, and nitrogen-doped porous carbon (N-PPC) was synthesized using a simple template-assisted and secondary calcination method. Small Pt nanoparticles (Pt NPs) with an average particles size of 1.8 nm were in-situ prepared and spread evenly on the N-PPC. Interestingly, the lattice compression (1.08%) of Pt NPs on the N-PPC (Pt/N-PPC) was clearly observed by aberration-corrected high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM), which was also verified by the shift of (111) crystal plane of Pt on N-PPC to higher angles. The X-ray photoelectron spectroscopy (XPS) results suggest that the N-PPC support had a strong effect on anchoring Pt NPs and endowing surface Pt NPs with lowered d band center. Thus, the Pt/N-PPC as a catalyst simultaneously boosted the ORR activity and durability. The specific activity (SA) and mass activity (MA) of the Pt/N-PPC at 0.9 V reached 0.83 mA cm−2 and 0.37 A mgPt−1, respectively, much higher than those of the commercial Pt/C (0.21 mA cm−2 and 0.11 A mgPt−1) in 0.1 M HClO4. The half-wave potential (E1/2) of Pt/N-PPC exhibited only a minimal negative shift of 7 mV after 30,000 accelerated durability tests (ADT) cycles. More importantly, an H2–O2 fuel cell with a Pt/N-PPC cathode achieved a power density of 866 mW cm−2, demonstrating that the prepared catalyst has a promising application potential in working environment of PEMFCs.  相似文献   

8.
A proton exchange membrane fuel cell (PEMFC) electrode having a modified morphology of conventional Teflon (PTFE) bonded electrodes was studied using the AC impedance method. The electrode differs from other types of electrodes in the presence of a thin catalyst-supporting layer between the gas diffusion backing and the catalyst layer. The thickness and composition of the supporting layer were optimized on the basis of the information from AC impedance measurements. The optimal thickness of the supporting layer and its PTFE content turned out to be approximately 3.5 mg cm−2 and 30 wt.%, respectively. The catalyst layer was cast on top of the supporting layer, from solution that has the proper ratio of ionomer Nafion and Pt/C catalyst. The optimal amount of the ionomer in the catalyst layer was approximately 0.8 mg cm−2 when Pt loading was kept at 0.4 mg cm−2. These values are rationalized in terms of the catalyst active area and the transport of the involved species for the electrode reaction.  相似文献   

9.
In high-temperature polymer electrolyte membrane fuel cells (HT-PEMFCs), it is important that the structure of the electrode catalyst layer is formed uniformly. To achieve this, the binder must be well dispersed; however, polytetrafluoroethylene (PTFE), which is commonly employed in the preparation of HT-PEMFCs, is difficult to disperse during electrode manufacture due to its high hydrophobicity. In this study, we fabricate electrodes containing a surfactant to improve the dispersion of the PTFE binder and to enhance reproducibility during electrode manufacture. The electrodes are commonly prepared via a bar coating method, which is known to exhibit poor dispersion due to the small amounts of solvent employed compared to the spraying method. We then compare the properties of the obtained electrodes prepared in the presence and absence of the surfactant through physical and electrochemical characterization. It is found that the electrode containing the surfactant is structurally superior, and its single cell performance is significantly higher (i.e., 0.65 V at 0.2 Am cm−2). The single cells are suitable for operation at 150 °C using H2/air at atmospheric pressure and a total platinum loading of 2.0 mg cm−2.  相似文献   

10.
High Pt loading has better tradeoff in polymer electrolyte membrane fuel cell (PEMFC) in terms of improved performance and operational longevity. But, to employ low amounts of Pt electrocatalysts via an alternative carbon-based support and utilization technique is vital. This study presents the use of a one-step novel technique, an electrophoretic deposition (EPD) method, through which reduced graphene oxide (rGO) supported Pt nanoparticles have been directly fabricated onto carbon paper to form electrodes for PEMFC. Our process involves simultaneous synthesis and deposition of Pt-reduced GO nanocomposites onto oxygen plasma pre-treated carbon paper in an organo-aqueous media at various deposition time. Through this technique, homogenously distributed Pt nanoparticles ranging from 5 to 6 nm in size on graphene support were successfully synthesized to form catalyst layer on carbon paper. The characteristics of fabricated electrodes were investigated ex-situ by Raman spectroscopy, FE-SEM, XPS, ICP, FIB, TEM. Furthermore, catalytic activity towards hydrogen oxidation reaction was evaluated via CV measurements and fuel cell performance tests were also conducted. The highest ECSA value of 27.4 m2g-1 and the Pt utilization efficiency of 1.48 kW/gPt?1 were achieved at an optimized Pt loading of 0.129 mg cm?2. A maximum power density of 280 mW cm?2 was obtained with increasing EPD time and Pt precursor concentration at the same time. The achieved results are attributed to the dispersion of Pt nanoparticles on rGO nanosheets displaying synergetic performance as catalyst necessary for PEMFCs, thanks to the EPD technique's viability, ease in handling, and reproducibility in the synthesis route. In the previous studies on Pt/GO based fuel cell electrodes by EPD, on one hand, Pt NPs were synthesized on GO by chemical methods first and electrodes were fabricated by a subsequent EPD. On the other hand, the fuel cell performances of those electrodes have been rarely shown. To the best of our knowledge, this is the first time in literature not only about the use of EPD technique for the fabrication of fuel cell electrodes in one-step but also the evaluation of fuel cell performance of the electrodes fabricated by EPD.  相似文献   

11.
To improve the utilization of platinum and reduce the manufacturing cost of proton exchange membrane fuel cell (PEMFC), the electrostatic spraying was used to prepare the cathode catalyst layer of membrane electrode assembly (MEA) with platinum loading varying from 0.1 to 0.01 mg cm?2. The performance of fuel cell was tested and analyzed by electrochemical impedance and polarization curve. Our results show that the platinum carbon (Pt/C) particles deposited by electrostatic spraying were well dispersed and the microporous structure of catalyst layer (CL) were relatively uniform. Replacing the CCS type MEA (catalyst coated on gas diffusion layer substrate) with the CCM type MEA (catalyst coated on proton exchange membrane) can reduce its electrochemical impedance and improve the power density of fuel cell. Compared to the Pt/C catalyst with a platinum mass fraction of 60%, a lower platinum-carbon ratio catalyst is more conducive to the uniform dispersion of catalyst particles and efficient utilization of platinum in the preparation of MEA with ultra-low platinum loading. However, their difference in peak power density decreases with the increase of platinum loading. Besides, increasing the back pressure can improve the performance of fuel cell, when the back pressure increased to 0.15 Mpa and the feeding gases were set as H2/O2, the peak power density of 0.56 W cm?2 was obtained by the MEA with cathode platinum loading of 0.01 mg cm?2, which is corresponding to the cathode platinum utilization of 56 kW·gPt?1cathode.  相似文献   

12.
Addressed herein is the synthesis of binary CuPt alloy nanoparticles (NPs), their assembly on reduced graphene oxide (rGO), Vulcan XC72 (VC) and their hybrid (rGO-VC) to be utilized as electrocatalysts for fuel cell reactions (HOR and ORR) in acidic medium and PEMFC tests. The synthesis of nearly-monodisperse Cu45Pt55 alloy NPs was achieved by using a chemical reduction route comprising the reduction of commercially available metal precursors in a hot surfactant solution. As-synthesized Cu45Pt55 alloy NPs were then assembled on three support materials, namely rGO, VC and rGO-VC) via liquid phase self-assembly method. After the characterization, the electrocatalysts were prepared by mixing the yielded materials with Nafion and their electrocatalysis performance was investigated by studying CV and LSV for HOR and ORR in acidic medium. Among the three electrocatalysts tested, Cu45Pt55/rGO-VC hybrid showed the highest catalytic activity with ECSA of 119 m2 g−1 and mass activity of 165 mA mg−1Pt. After the evaluation of electrochemical performance of the three prepared electrocatalysts, their performance was then evaluated in fuel cell conditions. In similar to electrochemical activities, the Cu45Pt55/rGO-VC hybrid electrocatalyst showed a superior fuel cell performance and power output by providing a maximum power of 480 mW cm−2 with a relatively low Pt loading (0.28 mg cm−2). Additionally, the Cu45Pt55/rGO-VC hybrid electrocatalyst exhibited substantially better activity as compared to Pt/rGO-VC electrocatalyst. Therefore, the present study confirmed that alloying Pt with Cu enhances the catalytic activity of Pt metal along with the help of beneficial features of rGO-VC hybrid support material. It should be noted that this is the first example of studying PEMFC performance of CuPt alloy NPs supported on rGO, VC and rGO-VC hybrid.  相似文献   

13.
Platinum (Pt) is often used as anodic catalyst for direct methanol fuel cell (DMFC). However, platinum is difficult to achieve large-scale application because of its low stability and high cost. In this work, the electrocatalytic activity and stability of the Pt-based catalyst for methanol oxidation (MOR) are significantly improved by adding Ce and Ni to the catalyst. Additionally, the rare earth element-Pr (Dy) is also chosen to be added into the catalysts for comparison. A series of PtMNi (M = Ce, Pr, Dy) catalysts are prepared by impregnation and galvanic replacement reaction methods using carbon black as support. The electrocatalytic mass activity of PtCeNi/C, PtDyNi/C, PtPrNi/C and Pt/C is 3.92, 1.86, 1.69 and 0.8 A mgPt−1, respectively. The mass activity of these the above four catalysts after stability measurement is 3.14, 1.49, 1.27 and 0.72 A mgPt−1. Among them, PtCeNi/C has the highest catalytic activity. These as-prepared catalysts are also characterized by various analyzing techniques, such as TEM, HRTEM, XRD, XPS, ICP-OES, STEM, STEM-EDS elemental mapping and line-scanning etc. It shows that PtCeNi/C exhibits best catalytic activity (3.92 A mgPt−1) among the as-obtained catalysts, 4.9 times higher than that of commercial Pt/C (0.8 A mgPt−1). PtCeNi/C is also with excellent anti-CO poisoning ability. The outstanding catalytic performance of PtCeNi/C for the MOR is mainly attributable to uniform-sized PtCeNi nanoparticles, uniform Ni, Ce and Pt element distribution, and electron interaction among Pt-, Ni- and Ce-related species (electron transferring from Pt to CeO2).  相似文献   

14.
High-performance platinum nanoparticle catalysts (Pt–NPCs) remain the most widespread applied electrocatalysts for oxygen reduction reaction (ORR). Here, cetyltrimethylammonium bromide (CTAB), a surface-controlling agent, is introduced to modulate the microstructure and size of Pt nanoparticles (NPs) via a microwave-assisted heating process. The Pt-NPC assisted by 5 wt% CTAB exhibits the highest mass activity (MA) of 0.072 A mgPt?1 and specific activity (SA) of 0.077 mA cm?2, higher than those of commercial Pt/C (0.023 A mgPt?1 and 0.035 mA cm?2). Transmission electron microscopy (TEM) results indicate that Pt NPs are uniformly dispersed onto carbon supports with an average size of 2.39 nm. When applied in membrane electrode assembly (MEA), it exhibits the highest power density of 1.142 W cm?2, which is about 1.24 times larger than that of commercial Pt/C.  相似文献   

15.
The advanced electrochemical catalytic activity for oxygen reduction reaction (ORR) based on the octahedral Pt–Ni alloyed catalyst has been demonstrated. However, a means of fabricating catalyst electrodes for use in PEMFCs that is cost-effective, scalable, and maintains the high activity of Pt–Nialloy/C has remained out of reach. Electrophoretic deposition (EPD) is a colloidal production process that has a history of successful deployment at the industrial scale. Here, we report on the facile preparation of an effective and active cathode consisting of Pt–Ni alloy loaded on the carbon cloth substrate using the electrophoretic deposition (EPD) technique, in which the optimum applied voltages and suspension pH are systematically investigated to obtain the highly porous Pt–Nialloy/C catalyst electrode. In a half cell test, the EPD-made Pt–Nialloy/C catalyst electrodes fabricated at 45 V and in a solution with a pH of 9.0 yields the best performances. On the other, as an active cathode, the EPD-made Pt–Nialloy/C electrodes deliver a superior performance in single cell test, with the maximum power density reaches 7.16 W/mgPt, ~28.1% higher than that of the spray-made Pt/C conventional electrode. The outperformance is attributed to the significantly higher porosity and surface roughness of the EPD-made electrode.  相似文献   

16.
A study of a phosphoric acid (PA)‐doped polybenzimidazole (PBI) membrane fuel cell is reported. The fuel cell used polytetrafluoroethylene (PTFE) in the catalyst layer of the membrane electrode assembly to act as a binder and did not use PBI. The PTFE provided an amorphous phase to hold the PA added to the catalyst layers. The study investigated several parameters of the fuel cell electrode, catalyst layer including: PA loading, PTFE content and catalyst loading and wt% of Pt in the carbon supported catalysts and doping of the PBI membrane. There was a minimum amount of acid doping that gave good cell performance for oxygen reduction in the cathode layer. Good performance of the fuel cell was achieved at 120°C with air of 0.27 W cm?2 using a 0.51 mgPt cm?2 loading of catalyst. Peak power of 0.4 W cm?2 was achieved with air at 150°C using a membrane doping of PA of 5.6 PRU (doped acid molecules per repeat polymer unit). Heat treatment of the PTFE‐bonded electrodes to increase hydrophobicity did not improve the cell performance. The effect of a perfluorinated surfactant although reported to enhance oxygen solubility in the catalyst layer led to a poorer cell performance. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

17.
Membrane electrode assemblies (MEAs) for fuel cell applications consist of electron conductive support materials, proton conductive ionomer, and precious metal nanoparticles to enhance the catalytic activity towards H2 oxidation and O2 reduction. An optimized connection of all three phases is required to obtain a high noble metal utilization, and accordingly a good performance. Using polyaniline (PANI) as an alternative support material, the generally used ionomer Nafion® could be replaced in the catalyst layer. PANI has the advantage to be electron and proton conductive at the same time, and can be used as a catalyst support as well. In this study, a new technique building up alternating layers of PANI supported catalyst and single-walled carbon nanotubes (SWCNT) supported catalyst is introduced. Multilayers of PANI and SWCNT catalysts are used on the cathode side, whereas the anode side is composed of commercial platinum/carbon black catalyst and Nafion®, applied by an airbrush. No additional Nafion® ionomer is used for proton conductivity of the cathode. The so called spray coating method results in high power densities up to 160 mW cm−2 with a Pt loading of 0.06 mg cm−2 at the cathode, yielding a Pt utilization of 2663 mW mgPt−1. As well as PANI, supports of SWCNTs have the advantage to have a fibrous structure and additional, they provide high electron conductivity. The combination of the new technique and the fibrous 1-dimensional support materials leads to a porous 3-dimensional electrode network which could enhance the gas transport through the electrode as well as the Pt utilization. The spray coating method could be upgraded to an in-line process and is not restricted to batch production.  相似文献   

18.
The activity of catalyst could be enhanced by the temperature rising, so it is a suitable way to reduce the noble metal loading for the catalyst. However, the corrosion of carbon supports will be remarkable in the high temperature proton exchange membrane fuel cells (HT-PEMFC, >100 °C). This report demonstrated a novel Ti3C2Tx and CNT hybrid material as the catalytic support, and Pt nanowires (Pt NWs) is loaded on the hybrid support to construct the catalyst for HT-PEMFC. The Pt NWs/Ti3C2Tx-CNT performs higher electrochemical activity, better stability than that of commercial Pt/C. The mass activity and specific activity of Pt NWs/Ti3C2Tx-CNT catalysts are 3.89 and 3.02 times as that of Pt/C, respectively. The power densities of HT-PEMFC showed 155.4 mW cm−2 and 182 mW cm−2 at 150 and 180 °C, respectively.  相似文献   

19.
《Journal of power sources》2006,156(2):224-231
One way to alleviate the emission of air pollutants and CO2 due to burning fossil fuels is the use of fuel cells. Sputter deposition techniques are good candidates for the fabrication of electrodes used for proton exchange membrane fuel cells (PEMFCs). Input power and sputtering-gas pressure are two important parameters in a sputtering process. However, little is known about the effects of these sputtering parameters on the performance of PEMFC electrodes. Therefore, this study applied a radio frequency (RF) magnetron sputter deposition process to prepare PEMFC electrodes and investigated the effects of RF power and sputtering-gas pressure in electrode fabrication on electrode/cell performance. At a Pt loading of 0.1 mg cm−2, the electrode fabricated at 100 W, 10−3 Torr was found to exhibit the best performance mainly due to its lowest kinetic (activation) resistance (dominating the cell performance) in comparison to those fabricated by 50 and 150 W at 10−3 Torr, as well as by 10−4 and 10−2 Torr at 100 W. In the tested ranges, the control of sputtering-gas pressure seems to be more critical than that of RF power for the activation loss. In addition to electrochemically active surface area, electrode microstructure should also be responsible for electrode/cell polarization, particularly the activation polarization.  相似文献   

20.
Improved activity and durability performance of a two-cell (86 cm2) proton exchange membrane water electrolyzer (PEMWE) stack is reported for the first time. Both membrane electrode assemblies (MEAs) contain one order of magnitude lower platinum group metal (PGM) loadings compared to the state-of-the-art PEMWEs and incorporate novel Pt recombination layers. The high-performance and cost-effective MEAs are fabricated by the unique reactive spray deposition technology (RSDT). This advanced methodology allows for one-step fabrication of MEAs and ensures precise control and distribution of the catalyst composition and loading. The RSDT-fabricated MEAs contain only 0.2 and 0.3 mgPGM cm?2 loading in the cathode and anode electrodes, respectively, and demonstrate excellent activity and durability for over 3000 h of operation at industrially-relevant operating conditions without showing significant loss in performance. This novel work shows that a significant cost reduction for PEMWEs is achieved while maintaining excellent durability, high catalysts activities, and low hydrogen cross-over.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号