首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
The purpose of the present work is to unveil the effect of very small amounts of Pt loaded onto a NiMn2O4 spinel catalyst on the chemical characteristics and catalytic activity for low-temperature steam reforming (LTSR) of propane. In the H2-TPR curves of the Pt-loaded catalysts, the reduction corresponding to Pt2+ → Pt0 occurred largely at approximately 200–350 °C. It is due to the high accumulation of hydrogen on the PtNi alloy. X-ray photoelectron spectroscopy measurements proved that the PtNi component acted as the active species. The catalysts with Pt loaded on 40NiMn2O4/60γ-Al2O3 show higher propane conversion due to the larger metal interface area created between Pt, Ni, and MnO. In particular, the 40Pt0.025NiMn2O4/60γ-Al2O3 catalyst maintained a very low amount of carbon deposition, a stable propane conversion of 100% and a hydrogen production capacity of 60% at 450 °C, even after 100 h of LTSR.  相似文献   

2.
Ethanol gasification using Cu–Ni–K/γ-Al2O3 catalysts was studied. The reaction was carried out at a low temperature (300°C) and atmospheric pressure. The influence of the diffusional effects, the residence time and the water/ethanol molar ratio in the feed on the ethanol conversion and on the product distribution was analysed. Additional experiments were performed with monometallic catalysts, such as Cu–K/γ-Al2O3 and Ni–K/γ-Al2O3 catalysts.Ethanol gasification is favoured by a diminution of the diffusional resistances, high residence time and low water to ethanol feed ratio. A probable reaction mechanism is postulated, which is consistent with the experimental results and let identify the function of each metal (copper and nickel).  相似文献   

3.
Al-water reaction promoted by catalysts is a promising hydrogen generation technology. In this work, a high-activity M-B/γ-Al2O3 (M = Co, Ni) catalyst is prepared by wet chemical reduction method. It is found that M-B/γ-Al2O3 catalyst significantly promotes the Al-water reaction and decreases the induction time. When the molar ratio of γ-Al2O3 to Co-M in Co–B/γ-Al2O3 catalyst is 1:1, the induction time is only 0.43 h. The catalytic activity of M-B/γ-Al2O3 is proportional to its active area. SEM analyses show that M-B particles are dispersed on γ-Al2O3 surface, which reduces the agglomeration of M-B and increases the active surface of M-B/γ-Al2O3, leading to a high catalytic activity. A possible mechanism is proposed, which shows that the dissociation of water molecules on γ-Al2O3 surface and the microgalvanic interaction between M-B and Al can promote the hydration process of passive oxide film on Al particle surface, speeding up the Al-water reaction.  相似文献   

4.
Syn-gas generation in the absence of oxygen by methane decomposition offers an interesting route to decrease reactor size and cost because methane is the only reactant in the gas phase. In this work, several catalysts were studied, Rh/CeO2, Pt/CeO2, Rh/(Ce0.91Gd0.09)O2−x, Pt/(Ce0.91Gd0.09)O2−x, Rh/γ-Al2O3 and Pt/γ-Al2O3 for methane reforming in the absence of gaseous oxygen. Rhodium showed a superior catalytic activity and selectivity with respect to Pt. This catalytic behavior may be due to the strong metal-support interaction, associated with the formation of mixed metal–oxide species at the interface. The addition of Gd3+ to ceria lowered the required temperatures for catalyst activation with respect to the un-doped material. Conversely to oxygen ion conducting materials, which showed a high selectivity for syn-gas generation, the non-oxygen conducting catalysts did not generated carbon monoxide. These results may be correlated to their oxygen storage capacity and ionic conductivity. Since gaseous oxygen was not delivered to the reactor, it is clear that the only source of oxygen was the catalyst. During the isothermal isotopic oxygen exchange experiments over Pt/(Ce0.91Gd0.09)O2−x and Pt/γ-Al2O3, results illustrated that oxygen in the gas phase was exchanged with the oxygen from the catalyst. Three different molecules were detected 16O–18O, 16O–16O and 18O18O. A higher amount of oxygen was exchanged over Pt/(Ce0.91Gd0.09)O2−x with respect to Pt/γ-Al2O3. It is proposed that mainly lattice and surface oxygen were exchanged over Pt/(Ce0.91Gd0.09)O2–x and Pt/γ-Al2O3, respectively. It is also suggested that two types of reaction mechanisms take place, the simple and multiple hetero-exchange with the participation of one and two catalyst oxygen atoms, respectively. Similarly to methane reforming, lower temperatures were required for the oxygen exchange experiments over Rh than over Pt, as illustrated by results of the temperature-programmed exchange reactions. In summary, the properties of doped ceria may open new catalytic routes for oxidation reactions without gaseous oxygen because post-oxidation can restore its oxygen storage capacity.  相似文献   

5.
6.
Nano-clusters of noble metals Ru, Rh, Pd, Pt and Au have been supported on γ-Al2O3, C and SiO2, of which the catalytic activities have been investigated for hydrolysis of NH3BH3. Among these catalysts, the Ru, Rh and Pt catalysts exhibit high activities to generate stoichiometric amount of hydrogen with fast kinetics, whereas the Pd and Au catalysts are less active. Support effect has been studied by testing the hydrogen generation reaction in the presence of Pt supported on γ-Al2O3, VULCAN® carbon and SiO2, and it is found that Pt on γ-Al2O3, which has the smallest particle size, is the most active. Concentration dependence of the hydrogen generation from aqueous NH3BH3 solutions has been investigated in the presence of Pt/γ-Al2O3 by keeping the amount of Pt/γ-Al2O3 catalyst unchanged, which exhibits that the hydrogen release versus time (ml H2 min−1) does not significantly change with increasing the NH3BH3 concentration, indicating that the hydrogen release rate is not dependent on the NH3BH3 concentration and the high activity of the Pt catalyst can be kept at high NH3BH3 concentrations. Activation energies have been measured to be 23, 21 and 21 kJ mol−1 for Ru/γ-Al2O3, Rh/γ-Al2O3 and Pt/γ-Al2O3 catalysts, respectively, which may correspond to the step of B–N bond breaking on the metal surfaces. The particle sizes, surface morphology and surface areas of the catalysts have been obtained by TEM and BET experiments.  相似文献   

7.
A new method for the synthesis of the catalyst systems Pt–Mo was suggested. nPt0(Hx−2nMoO3)/GC electrodes were prepared by a redox reaction between the hydrogen-containing molybdenum bronzes and potassium tetrachloroplatinate (II) in acid solutions at open circuit potential. The electrodes were characterized by CVA, SEM, X-ray microanalysis, XRD, XPS and ICP-AES. Pt0conglomerates formation with nonuniform distribution over the molybdenum bronzes surface has been revealed. nPt0(Hx−2nMoO3)/GC electrodes showed high catalytic activity (not inferior to Pt–Ru-catalyst) in the oxidation of carbon monoxide and methanol as compared with Pt/GC-electrodes. Catalytic effect is apparently achieved by effective oxidation of strongly chemisorbed species (COads, HCOads), which occurs at boundaries platinum – molybdenum oxide. Therefore nPt0(Hx−2nMoO3) can be considered as one of perspective catalysts for DMFC.  相似文献   

8.
In this work, an anatase Ti0.7W0.3O2-supported Pt3Ru nanoparticles (NPs) were fabricated by combining the advantages of the non-carbon Ti0.7W0.3O2 nanosupport and the synergistic effect of the bimetallic Pt3Ru nanoalloy that was investigated as electrocatalyst toward alcohol electrochemical oxidation. The bimetallic Pt3Ru nanoparticles with ~3 nm in diameter were relatively well-dispersed on the surface of the anatase Ti0.7W0.3O2 nanosupport via a surfactant-free microwave-assisted polyol route that, which was attributable to the good dispersibility of ethylene glycol and the rapid, uniformity of the microwave heating. For methanol and ethanol electrochemical oxidation, the as-obtained Pt3Ru (NPs)/Ti0.7W0.3O2 electrocatalyst exhibited the low onset potential (~0.10 V vs. NHE for MOR and ~0.35 V vs. NHE for EOR) and high mass activity (~350.84 mA mgPt?1 for MOR and ~274.59 mA mgPt?1 for EOR) compared to the commercial Pt (NPs)/C (E-TEK) electrocatalyst. Additionally, the CO-stripping and CA results indicated the remarkably enhanced CO-tolerance of the Pt3Ru (NPs)/Ti0.7W0.3O2 catalyst. After the 5000-cycle accelerated durability test (ADT) in acidic ethanol media, the bimetallic Pt3Ru (NPs)/Ti0.7W0.3O2 catalyst only showed the mass activity loss of 19.11% of its initial mass activity, compared with the severe deterioration of 44.04% of the commercial Pt (NPs)/C (E-TEK) catalyst. The outstanding results could be interpreted due to the bifunctional mechanism of the Pt3Ru nanoalloys combining with the synergistic effect between the bimetallic nanoalloy and the mesoporous Ti0.7W0.3O2 nanosupport as well as the superior anti-corrosion of the TiO2-based nanosupport under acidic and oxidative environments.  相似文献   

9.
A novel catalyst precursor ZnAl-LDHs/γ-Al2O3 was prepared by in-situ synthesis method, and the copper was supported on calcined hydrotalcite catalyst precursor by wet impregnation. The correlation between the structure and the catalytic activity for methanol steam reforming was studied by XRD, SEM, TPR, chemisorption N2O, IR and N2 adsorption techniques. The results showed that the ZnAl-LDHs was successfully synthesized by in-situ synthesis method on γ-Al2O3 and the copper mass fraction had a great effect on the interactions between support and copper species. Furthermore, the catalyst reducibility and copper surface area evidently influenced catalytic activity for methanol steam reforming. The 10% Cu/γ-Al@MMO exhibited the best catalytic activity, that was, the methanol conversion was 99.98% and the CO concentration was only 0.92% at 300 °C in hydrogen production by methanol steam reforming.  相似文献   

10.
In order to obtain sustainable H2, the catalytic steam reforming of acetic acid derived from biomass was performed by using the catalysts modified with basic promoters (Mg, La, Cu, and K). La and K increased the total basicity of Ni/γ-Al2O3 by 30.6% and 93.4%, respectively, which could induce ketonization, producing acetone. In contrast, Mg reduced the number of middle and strong basic sites by 17.2% and improved the number of weak basic sites by 5% for Ni/γ-Al2O3, which promoted the steam reforming of acetic acid (ca. 100% of H2 and carbon selectivity at even 450 °C) without ketonization. Moreover, the amount of carbon deposited on Ni/Mg/γ-Al2O3 was 55.1% less than that deposited on Ni/γ-Al2O3. When Cu was employed, the conversion was ca. 60% with less than 70% of H2 selectivity, at all temperatures considered herein.  相似文献   

11.
A catalytic comparative study of COx-free hydrogen production by methane decomposition was carried out. Catalytic performances of bulk Ni-mixed oxides derived from Ni/Mg/Al-hydrotalcites (ex-HTs-Ni) were compared with those obtained with Ni supported on mixed oxides derived from Mg/Al-hydrotalcites (Ni/ex-HTs), or on commercial supports (γ-Al2O3, MgO and MgO-modified γ-Al2O3). Catalyst characterization and their catalytic performance showed both ex-HTs-Ni and Ni/ex-HTs appear to be a similar regardless of their method of preparation. Ni/γ-Al2O3 was the best supported catalyst, although the catalytic performances of the ex-HTs catalysts were better. Higher NiMg interaction in ex-HTs provides higher resistance to deactivation. Characterization by TG, Raman spectroscopy and TEM of spent catalysts in the reaction suggest the degree of ordering of the graphitic layers of the carbon deposit onto the catalyst surface is the key factor in the catalyst deactivation. The higher degree of ordering or graphitization of the carbon produced with the higher concentration of sp2 carbons on the surface of the Ni/γ-Al2O3 favours its faster deactivation by Ni-coverage than the bulk catalyst (ex-HT-Ni), in which the MWNT type carbon is mainly obtained.  相似文献   

12.
Nickel supported γ-alumina (Ni/γ-Al2O3) catalysts are well-known to be highly active on the autothermal reforming of methane, but to be unstable due to coke deposition. Cerium oxide (CeO2) is one of promising promoter to overcome the fast deactivation of nickel-based catalysts by coke formation. Herein, catalytic behavior of CeO2 over Ni/γ-Al2O3 catalysts on the autothermal reforming of methane was investigated. The catalytic activity was maintained for 100 h with H2/CO molar ratio of 1.9. The formation of CeAlO3 is observed at the reduction and reaction conditions. In this work, it was found that the formation of CeAlO3 promoted the catalytic oxidation toward CO2 and prevented the formation of α-Al2O3 and nickel-aluminate, resulting in stable activity for autothermal reforming of methane.  相似文献   

13.
The extensive use of fossil energy leads to the wanton emission of CO2 and serious environmental problems. The resource utilization of CO2 is an effective way to solve this problem. The key of CO2 resource utilization is the design and preparation of high active CO2 hydrogenation catalyst. In this paper, supported Cu/γ-Al2O3 catalysts were prepared by wet impregnation and grinding methods, respectively. The physicochemical properties of the prepared Cu/γ-Al2O3 catalysts were characterized by XRD, BET, CO2-TPD and Quasi in-situ XPS, and the reducibility of the precursors was studied by H2-TPR. The results show that Cu content directly affects the Cu0 species crystallinity and even affects the adsorption and activation of CO2 molecules for the Cu/γ-Al2O3 catalyst. The dispersion of Cu0 species in the prepared Cu/γ-Al2O3 catalysts can be further improved by grinding method. The CO2 reaction rate on the Cu/γ-Al2O3 catalyst prepared by grinding method can be significantly increased to 2.12 × 10?5 mol/gcat/s at 400 °C.  相似文献   

14.
The metal-oxide interaction has been considered as an effective factor for catalytic performance in methanol steam reforming. In this work, Ti modified Cu/γ-Al2O3/Al catalyst was prepared by anodization technology. It is found that the addition of Ti can largely increase the surface area of the carrier and thus improve the dispersion of copper. The co-existence of Ti4+ and Ti3+ makes the charge transfer between Cu and Ti easier, which improves the redox performance of copper. The DFT calculations reveal that Ti also enhance the adsorption capacity of water and methanol on the surface of the catalysts. Besides, Ti also reduce the acid density on the carrier, inhibit methanol dehydration reaction and thereby reduce the selectivity of the DME. The optimal catalyst CuTi1.9/γ-Al2O3/Al achieves nearly 100% conversion at 275 °C, while the methanol conversion of Cu/γ-Al2O3/Al is 82%. And the H2 output of CuTi1.9/γ-Al2O3/Al reached 69.17 mol/(kgcat·h) at 300 °C.  相似文献   

15.
Bagasse conversion to H2, CO and light gaseous hydrocarbons as gaseous fuels, and higher alcohols and ethers as liquid fuels and fuel additives were performed in a basic water medium with near-critical condition in presence of potassium promoted Cu/γ-Al2O3–MgO catalysts. The catalysts were extensively characterized using ICP, XRD, TPR, BET, CO chemisorption and TEM techniques. In order to investigate support stability at reaction condition, XRD test also was carried out for used catalysts. Maximum dispersion of 48% and minimum average particles sizes of 8.4 nm were obtained for Cu20–K7.5/γ-Al2O3–MgO catalyst. Copper and potassium effects on quality and quantity of gaseous and liquid products were investigated. The maximum amounts of H2 (10 mmol g−1 of bagasse) and total produced gases (41 mmol g−1 of bagasse) were obtained with unpromoted Cu20/γ-Al2O3–MgO catalyst. Addition of K increased the bagasse conversion to liquid fuels. Potassium made the process more selective for alcohols and ethers production. Maximum amount of alcohols and ethers (83.3 mmol g−1 of bagasse) was obtained for Cu20–K7.5/γ-Al2O3–MgO catalyst.  相似文献   

16.
In this work, metal-organic framework compound CPL-1 of a formula {[Cu2(pzdc)2(pyz)]?2H2O}n (pzdc = pyrazine-2,3-dicarboxylate, pyz = pyrazine) possessing kinetic quantum sieving effect on H2/D2 separation was selected to prepare two new chromatography stationary phase materials CPL-1@γ-Al2O3 and MnCl2@CPL-1@γ-Al2O3 by loading CPL-1 on γ-Al2O3 particles with size 80–100 mesh through repeating in situ crystallization process, and afterwards by loading MnCl2 on CPL-1@γ-Al2O3 via impregnation approach. The two optimized materials were thoroughly characterized by IR, XRD, SEM, EDS and TG/DTA method. The experimental results showed that, under liquid nitrogen temperature by using just 1-m chromatographic column and cheap He gas as carrier gas, the MnCl2@CPL-1@γ-Al2O3 can solve the problem of long separation time and trailing phenomenon existing in the CPL-1@γ-Al2O3 column, can realize highly effective hydrogen isotope H2/D2 separation with good separation resolution (R = 1.62) and approximate Gauss distribution of chromatographic peak, can be used for both qualitative and quantitative analysis of hydrogen isotope H2/D2 with short separation time of 6.5 min.  相似文献   

17.
γ-Al2O3 was composited with ZSM-5 molecular sieve to improve its catalytic performance and hydrothermal stability during the conversion of crude methanol into dimethyl ether (DME). When prepared by a liquid-phase coating chemical compounding, the ZSM-5/γ-Al2O3 composite catalyst reached an excellent methanol conversion of 91.9% and DME selectivity of 100%. The DME yield was increased by about 13% compared to only using γ-Al2O3. Partial desiliconization and dealumination of the ZSM-5 molecular sieve effectively reduced the surface acid center strength and increased the mesoporous ratio. The special composite phase interface effectively decreased surface charge density of γ-Al2O3 and formed the B (Brønsted) - L (Lewis) synergistic active centers. All these factors contribute to improving the catalytic performance, hydrothermal stability and resistance to deactivation of ZSM-5/γ-Al2O3 during the conversion of crude methanol to DME.  相似文献   

18.
The self-sustained catalytic combustion of propane is experimentally studied in a two-pass, quartz heat-recirculation reactor (HRR) and compared to that in a no (heat) recirculation reactor (NRR). Structured monolithic reactors with Pt/γ-Al2O3, LaMnO3/γ-Al2O3, and Pt doped perovskite catalysts have been compared in the HRR and NRR configurations. Heat recirculation enhances combustion stability, by widening the operating window of self-sustained operation, and changes the mode of stability loss from blowout to extinction. It is found that thermal shields (upstream and downstream of the monolith) play no role in the stability of a HRR but increase the stability of a NRR. The stability of a HRR follows this trend: Pt/γ-Al2O3 > doped perovskite > LaMnO3/γ-Al2O3. Finally, a higher cell density monolith enlarges the operating window of self-sustained combustion, and allows further increase of the power density of the process.  相似文献   

19.
Ni/γ-Al2O3 catalyst was prepared by direct treatment of Ni(NO3)2/γ-Al2O3 precursor with dielectric barrier discharge (DBD) hydrogen plasma at different input powers, characterized by XRD, H2-TPR, CO2-TPD, N2 adsorption and TEM, respectively, and used as the catalyst for CO2 reforming of methane (CRM). The results showed that the input power obviously affected the reduction degree and catalytic performances of catalysts. Low input power under 40 W mainly resulted in the decomposition of nickel nitrate into Ni oxides. The reduction degree, catalytic activity and stability increase with the input power. Similar catalytic performances in CRM reaction can be obtained when the power exceeds 80 W. Compared with the Ni/Al2O3 catalyst prepared by traditional method, Ni/γ-Al2O3 samples prepared by H2 DBD plasma exhibit better activities, stability and anti-carbon deposit performances. It is mainly ascribed to smaller Ni particle size, more basic sites and weaker basicity. The increase of Ni particle sizes due to the sintering at high temperature results in the decrease of catalytic activities and coke formation.  相似文献   

20.
CO preferential oxidation reaction (CO-PROX) can effectively eliminate CO in H2 rich atmosphere to avoid CO poison the Pt anode of Proton Exchange Membrane Fuel Cell (PEMFC). To match the operation temperature window for PEMFC, PtCo nanoparticles supported on K modified Al2O3 (PtCo/K–Al2O3) were prepared to promote CO-PROX activity. The addition of K species weakened the interaction between PtCo nanoparticle and support, which improved the dispersion of Pt particles and redox property of PtCo/Al2O3. It also facilitated the formation of Pt3Co species and active surface ?OH groups, which were involved in CO-PROX reaction. According to in situ DRIFTS spectra, HCO3? and HCOO? were intermediates of PtCo/K–Al2O3 catalyzed CO-PROX at low temperature and high temperature, respectively. Thus, the addition of 1 wt% K to PtCo/Al2O3 (PtCo/1K–Al2O3) could completely oxidize CO in the temperature range of 127–230 °C with O2 selectivity at 50%. The 100% CO conversion temperature window of PtCo/1K–Al2O3 is expanded by 100 °C in comparison of PtCo/Al2O3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号