共查询到20条相似文献,搜索用时 12 毫秒
1.
The present research paper reports preliminary results about the utilization of anhydrous aluminum chloride (AlCl3) for accelerating hydrogen generation through hydrolysis of aqueous solution of sodium borohydride (NaBH4) at 80 °C. To the best of our knowledge, AlCl3 has never been considered for that reaction although many transition metal salts had already been assessed. AlCl3 reactivity was compared to those of AlCl3·6H2O, AlF3, CoCl2, RuCl3 and NiCl2. With AlCl3 and a NaBH4 solution having a gravimetric hydrogen storage capacity (GHSC) of 2.9 wt.%, almost 100% hydrogen was generated in few seconds, i.e., with a hydrogen generation rate (HGR) of 354 L min−1 g−1(Al). This HGR is one of the highest rates ever reported. Higher HGRs were obtained by mixing AlCl3 with CoCl2, RuCl3 or NiCl2. For example, the system RuCl3:AlCl3 (50:50 mass proportion) showed a HGR > 1000 L min−1 g−1(Ru:Al). The hydrolysis by-products (once dried) were identified (by XRD, IR and elemental analysis) as being Al(OH)3, NaCl and Na2B(OH)4Cl and it was observed that even in situ formed Al(OH)3 has catalytic abilities with HGRs of 5 L min−1 g−1(Al). All of these preliminary results are discussed, which concludes that AlCl3 has a potential as accelerator for single-use NaBH4-based storage system. 相似文献
2.
Herein we report for the first time the preparation and catalytic use of the ceria supported manganese(0) nanoparticles in hydrogen generation from the hydrolysis of sodium borohydride. They are in situ formed from the reduction of manganese(II) ions on the surface of ceria nanopowders during the catalytic hydrolysis of sodium borohydride in aqueous solution at room temperature. Manganese(0) nanoparticles are isolated from the reaction solution by centrifugation and characterized by a combination of analytical techniques. Nanoceria supported manganese(0) nanoparticles are highly active and long-lived catalysts providing a turnover frequency of 417 h?1 and 45,000 turnovers in hydrogen generation from the hydrolysis of sodium borohydride at 25.0 ± 0.1 °C. They also have high durability as they retain 55% of their initial catalytic activity after the fifth cycle of hydrolysis providing a release of 4 equivalent H2 gas per mol of sodium borohydride. The noticeable activity loss in successive runs of hydrolysis is attributed to the deactivation due to agglomeration. High activity and stability of ceria supported manganese(0) nanoparticles are ascribed to the unique nature of reducible cerium oxide. The formation of cerium(III) defects under catalytic conditions provides strong binding for the manganese(0) nanoparticles to oxide surface which makes the catalytic activity and stability favorable. Our report also includes the results of kinetic study of catalytic hydrolysis of sodium borohydride depending on the temperature, catalyst and substrate concentration. 相似文献
3.
The present paper reports preliminary results relating to a search for durable cobalt-based catalyst intended to catalyze the hydrolysis of sodium borohydride (NaBH4). Fluorination of Co [Suda S, Sun YM, Liu BH, Zhou Y, Morimitsu S, Arai K, et al. Catalytic generation of hydrogen by applying fluorinated-metal hydrides as catalysts. Appl Phys A 2001; 72: 209–12.] has attracted our attention whereas the fluorination of Co boride has never been envisaged so far. Our first objective was to compare the reactivity of fluorinated Co with that of Co boride. We focused our attention on the formation of Co boride from fluorinated Co. Our second objective was to show the fluorination effect on the reactivity of Co. Our third objective was to find an efficient, durable Co catalyst. It was observed a limited stabilization of the Co surface by virtue of the fluorination, which made the formation of surface Co boride more difficult while the catalytic activity was unaltered. The fluorination did not affect the number of surface active sites. Nevertheless, it did not prevent the formation of Co boride. The fluorination of Co boride was inefficient. Hence, fluorination is a way to gain in stabilization of the catalytic surface but it is quite inefficient to hinder the boride formation. Accordingly, it did not permit to compare the reactivity of Co boride with that of Co. 相似文献
4.
Hani Nasser Abdelhamid 《International Journal of Hydrogen Energy》2021,46(1):726-765
Hydrogen is a promising alternative energy source to conventional fuels, including fossil fuel. Thus, several methods were reported for the generation of hydrogen. This review provided a comprehensive bibliometric analysis of the publications that focus on the hydrolysis or hydrolytic dehydrogenation of sodium borohydride (NaBH4). Surveying articles in the literature showed a promising future for this technology, although some challenges lie ahead. The process can be reversible via the regeneration of the reaction by-product (NaBO2?2H2O or NaBO2?4H2O). The key parameters affecting the hydrolysis reaction of aqueous NaBH4 were also summarized. The analysis of the publications indicated that hydrogen production techniques need further investigations to be competitive and for renaissance of the current applications. This review also presented concerns behind the commercialization of the generation of hydrogen gas using the hydrolysis of NaBH4. Several materials have been reported for hydrogen generation, but thus far, no single material can simultaneously meet all the required criteria for mobile applications. Researchers and political decision-makers should manage the progress and open new channels for commercialization purposes. The hydrolysis of NaBH4 is promising for several applications, including material science, environmental fields, and energy-based applications. 相似文献
5.
6.
《International Journal of Hydrogen Energy》2022,47(9):5929-5946
Hydrogen is a promising energy carrier for realizing the transition from fossil fuels to renewable energy sources. Nowadays, the development of the hydrogen economy faces many challenges connected with its efficient production, storage, distribution, and end-use. During the past decade, the alcoholysis, particularly methanolysis, of sodium borohydride (NaBH4) has attracted much attention due to the nonflammability, nontoxicity, potential for utilization in cold conditions of the reaction system. Highly efficient catalysts are of great significance to guarantee the efficiency of the reaction and control the hydrogen release. In this review, we summarize recent advances in both metallic and nonmetallic catalysts for the alcoholysis of NaBH4. This review also summarizes the advantages and disadvantages of various catalysts in the investigations to assess the potential opportunities and challenges for their application in NaBH4 methanolysis. The catalytic mechanisms related to NaBH4 methanolysis were also discussed. 相似文献
7.
Lluís Soler Jorge Macans Maria Muoz Juan Casado 《International Journal of Hydrogen Energy》2007,32(18):4702-4710
A new method to produce high purity hydrogen using reactions of aluminum and sodium borohydride with aqueous alkaline solutions is described. This process mainly consumes water and aluminum (or its alloys) which are cheaper raw materials than the borohydride. As a consequence, this process could be competitive for in situ production of hydrogen. Moreover, a synergistic effect has been observed in hydrogen production rates and yields combining aluminum or aluminum alloys with sodium borohydride in aqueous solutions. Good results have been obtained for powders of Al, Al/Si and Al/Co alloys. The development of this idea could improve yields and reduce costs in power units based on fuel cells which use borohydride as raw material for hydrogen production. 相似文献
8.
This paper reports new data on the production of hydrogen from water vapor plus NaBH4, or NaBH4 + 10% CoCl2. Data were collected with the aid of an isothermal semi-batch reactor with in-situ H2 rate measurement. The reaction of NaBH4 to generate H2 proceeds via three steps: deliquescence, dissolution and reaction. The deliquescence regime of NaBH4 in the presence of 10 weight percent CoCl2 is defined. The H2 yield is quantified at various reaction conditions (reaction temperature 70–120 °C, relative humidity 31–69%). CoCl2 significantly accelerates the rate of H2 production compared to deliquescence + reaction of pure NaBH4. It is also found that a combination of high temperature and high relative humidity contributes to high H2 rate and yield, and either of the two factors dominates the reaction at different conditions. A two-part reactor model accounting for the mechanism of the steam hydrolysis by NaBH4 is developed. The model captures the dissolution + reaction step as well as reaction-only step and was validated by experimental data. 相似文献
9.
10.
Low cost transition metal catalysts with high performance are attractive for the development of on-board hydrogen generation systems by catalytic hydrolysis of sodium borohydride (NaBH4) in fuel cell fields. In this study, hydrogen production from alkaline NaBH4 via hydrolysis process over carbon-supported cobalt catalysts was studied. The catalytic activity of the supported cobalt catalyst was found to be highly dependent on the calcination temperatures. The hydrogen generation rate increases with calcination temperatures in the range of 200–400 °C, but a high calcination temperature above 500 °C led to markedly decreased activity. X-ray diffraction patterns reveal that the catalysts experience phase transition from amorphous Co–B to crystalline cobalt hydroxide with increase in calcination temperatures. The reaction performance is also dependent on the concentration of NaBH4, and the hydrogen generation rate increases for lower NaBH4 concentrations and decreases after reaching a maximum at 10 wt.% of NaBH4. 相似文献
11.
Co-B catalysts were prepared by the chemical reduction of CoCl2 with NaBH4 for hydrogen generation from borohydride hydrolysis. The catalytic properties of the Co-B catalysts were found to be sensitive to the preparation conditions including pH of the NaBH4 solution and mixing manner of the precursors. A Co-B catalyst with a very high catalytic activity was obtained through the formation of a colloidal Co(OH)2 intermediate. The ultra-fine particle size of 10 nm accounted for its super activity for hydrogen generation with a maximum rate of 26 L min−1 g−1 at 30 °C. The catalyst also changed the hydrolysis kinetics from zero-order to first-order. 相似文献
12.
Hydrogen generation through sodium borohydride (NaBH4) hydrolysis has attracted much attention. This reaction has to be catalyzed by metal-based materials. We studied the catalytic potential of cobalt (II) and (III) salts. Some of them have never been studied, and compared to e.g. cobalt nanoparticles or powder, and cobalt borides. CoCl2 showed the best performance. In our opinion, CoCl2 should not be dismissed from the large number of catalysts. One could conceive portable applications using CoCl2; this is briefly discussed. CoCl2 was compared to both commercial cobalt boride and in-situ formed (through our hydrolysis conditions) cobalt boride. Their hydrogen generation rates were 86.3, 1.0 and 1.6 L min−1 g−1(Co), respectively. The hydrogen generation rate of CoCl2 is one of the highest ones reported so far. It is assumed that cobalt boride surface evolves during the reaction and depends on the hydrolysis medium features. Further studies are required to fully explain the complex reaction mechanisms. 相似文献
13.
S. Galli M. De Francesco G. Monteleone R. Oronzio A. Pozio 《International Journal of Hydrogen Energy》2010
Chemical hydrides can be a simple and safe hydrogen vector for polymer fuel cells. In particular the catalytic hydrolysis of sodium borohydride (NaBH4) is here envisaged to produce on-demand hydrogen to be supplied to a small solid polymer fuel cell in a portable energy generator. 相似文献
14.
Acid-catalyzed hydrolysis of sodium borohydride (NaBH4) has been studied (reactivity and kinetics) at high acid concentration (0.32 M). A mineral (hydrochloric acid, HCl) and an organic benign (acetic acid, CH3COOH) acid have been chosen. Our study has three distinct objectives, namely: (i) combining the simplicity of the storage of solid NaBH4 with the simplicity of the aqueous solution of acid; (ii) showing CH3COOH can be as reactive as HCl in specific well-chosen operating conditions; and (iii) emphasizing the relative greenness of the CH3COOH-based process. All of these objectives have been fulfilled and show that CH3COOH is a benign relatively green acid catalyst of choice for catalyzing hydrogen generation from NaBH4, the acid–water–NaBH4 system being quite simple. 相似文献
15.
《International Journal of Hydrogen Energy》2022,47(45):19702-19717
Hydrogen is expected to play an important role as an energy carrier in the world's future energy systems, as it is environmentally friendly and flexible in use. Hydrolysis of NaBH4 is a promising and effective method, especially for fuel cells and other portable devices, thanks to hydrogen release. Therefore, catalyst research is of great importance in the development of this technology. In this study, Ni/Dolomite catalyst was synthesized by wet impregnation method and used in hydrolysis process. Additionally, the effects of reaction temperature (30–60 °C), nickel content (10–40 wt%), catalyst amount (25–125 mg), NaOH concentration (0.10–0.75 M), and an initial amount of NaBH4 (25–125 mg) on hydrogen yield were investigated. Eventually, the catalyst with 40 wt% Ni content was assigned as the most suitable catalyst, attaining H2 production of 100% with a rate of 88.16 mL H2/gcat.min at 60 °C with 5 mL of 0.25 M NaOH, NaBH4, and Ni/Dolomite catalyst (100 mg). 相似文献
16.
《International Journal of Hydrogen Energy》2019,44(20):9811-9816
Sodium borohydride is the most investigated boron compound among hydrogen-carrier materials by researchers because of its stable structure, relatively high hydrogen storage capacity (NaBH4, 10.8% hydrogen by weighing), comparatively cost-efficiency, and non-flammability. This study aims to produce hydrogen from sodium borohydride solution whose hydrolysis was carried out both in the absence of any catalysts at above 100 °C. In order to increase the rate of hydrogen production using NaBH4 solution, the initial concentration of HCl and temperature were optimized using the Box- Wilson method. The field of the highest dehydrogenation yield was shown by drawing contour plot for the second order model. As a result of the experiments, the highest dehydrogenation yield (100%) of this solution was achieved in 3.76 M HCl concentration and at 157 °C; besides, the reaction time was the least under these conditions. 相似文献
17.
Chemical hydrides, such as sodium borohydride (NaBH4), offer promising gravimetric and volumetric hydrogen storage densities. The overall system energy density depends on the reactor performance. In this study, a novel intergrated reactor design in which catalyst bed is integrated with a heat exchanger for autothermal operation showed significant improvements in reactor performance. Over 200% enhancement in reactor throughput was achieved with the integrated reactor at 99% fuel conversion with constant reaction temperature profiles over a wide range of fuel flow rates. Impacts of improved performance on system operation and overall energy density of chemical hydride based hydrogen storage system were also discussed. 相似文献
18.
We report further increase in the figure-of-merit (FOM) for hydrogen generation from NaBH4 than reported in an earlier paper [1], where a sub-nanometer layer of metal catalysts are deposited on carbon nanotube paper (CNT paper) that has been functionalized with polymer-derived silicon carbonitride (SiCN) ceramic film. Ternary, Ru-Pd-Pt, instead of the binary Pd-Pt catalyst used earlier, together with a thinner CNT paper is shown to increase the figure-of-merit by up to a factor of six, putting is above any other known catalyst for hydrogen generation from NaBH4. The catalysts are prepared by first impregnating the functionalized CNT-paper with solutions of the metal salts, followed by reduction in a sodium borohydride solution. The reaction mechanism and the catalyst efficiency are described in terms of an electric charge transfer, whereby the negative charge on the BH4− ion is exchanged with hydrogen via the electronically conducting SiCN/CNT substrate [1]. 相似文献
19.
《International Journal of Hydrogen Energy》2023,48(76):29682-29698
Sodium borohydride NaBH4 (SB) has been rediscovered in the late 1990s and been presented as a promising hydrogen storage material owing to its high gravimetric hydrogen density of 10.8 wt% and ability to produce H2 by hydrolysis at ambient conditions. This looked promising, but soon hydrolysis of SB encountered numerous obstacles. In 2015, a progress report (Int J Hydrogen Energy 2015; 40:2673–91) showed that the 2000–2014 research did not overcome all of the obstacles, making SB far from being technologically mature. Eight years have passed since 2015. Have we put more effort into all aspects relating to hydrolysis of SB? If so, do we have produced scaled-up technologies and prototypes, of which we would have a better knowledge? Have we been able to gain in technological readiness level? Answering these questions is the main objective of this article. A secondary objective is to summarize the newly acquired knowledge. Five main observations stand out. First, the 2015–2022 period is regrettably similar to the 2000–2014 since, again, catalysts have dominated the field and the other aspects (e.g. recycling of the by-product to regenerate SB, scale-up and implementation) have received little attention. Second, hydrolysis of SB still runs into numerous obstacles, some of the obstacles being known since a long time and other ones being relatively new and unknown. Third, there has been little gain in terms of technological readiness level while few research groups have shown that there is room for new ideas and innovation. Fourth, energy, exergy and economic analyses are needed to evaluate the overall cost of H2 from SB. Fifth, SB has not effectively thought from the end user perspective. In conclusion, many obstacles remain to be overcome before hydrolysis of SB can be a commercial solution for carrying and producing H2. However, all efforts should be dedicated to (i) construct, operate and optimize H2 production systems (i.e. prototypes and demonstrators), (ii) handle SB at the gram-to-kilogram scale, (iii) make production of SB even more efficient, and (iv) overcome all obstacles while thinking from the end user perspective. 相似文献
20.
Meryem Sena Akkuş Hatice Begüm Murathan Derya Öncel Özgür Gülay Özkan Göksel Özkan 《International Journal of Hydrogen Energy》2018,43(23):10734-10740
This study aims to produce H2 from sodium borohydride (NaBH4) and to initiate its hydrolysis at elevated temperature in the absence of a catalyst. Experimental results indicated that the hydrogen generation yield increased up to %99 at 150 °C in the NaBH4 concentration of %5 wt in the acidic medium. It can be concluded that experimental characterization of the by-products is quite important since they affected the reaction mechanism or pathway. When the experiments are carried out under aqueous condition, the primary by- product is sodium metaborate while it is boric acid under acidic condition. It is postulated that by-product boric acid decreased the mass transfer limitation due to its higher solubility that prevents the formation of shell and thus increases the contact area between NaBH4 and vapor. A series of fed-batch reactions were performed to confirm the hypothesis, and the conversions of NaBH4 reached 99% under the acidic condition. 相似文献