首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, waste tires are comparatively studied and assessed as a feedstock relative to coal and coconut char. An Integrated Gasification Combined Cycle (IGCC) is developed by using the Aspen Plus to assess the suggested gasification feedstocks based on their carbon dioxide emissions and hydrogen production to feed rate ratios. Note that many tires are disposed of every year in North America and are stockpiled in the masses in landfills, which cause various environmental implications. In the present study, it is found that waste tires as a feedstock for gasification are a viable solution to this ever-rising problem. The hydrogen production to feed rate ratio is found to be 0.158 which is very competitive with high-quality coals and coconut char. The net power production from the combined cycle when tires are used as the feedstock for the gasifier is found to be 11.1kW. The optimal hydrogen production to feed rate ratio is also achieved at the maximum net power production rate. The energy and exergy efficiencies of the overall system are found to be 55.01% and 52.31% when the waste tires are used as a feedstock.  相似文献   

2.
The detailed thermodynamic evaluation for combined system assisted on solar energy for poly-generation are studied in this paper. This poly-generation cycle is operated by the concentrating solar radiation by using the parabolic dish solar collector series. The beneficial exits of this integrated plant are the electricity, fresh-water, hot-water, heating-cooling, and hydrogen while there are different heat energy recovery processes within the plant for development performance. A Rankine cycle with three turbines is employed for electricity production. In addition to that, the desalination aim is performed by utilizing the waste heat of electricity production cycle in a membrane distillation unit for fresh-water generation. Also, a PEM electrolyzer sub-component is utilized for hydrogen generation aim in the case of excess power generation. Finally, the hot-water production cycle is performed via the exiting working fluid from the very high-temperature generator of the cooling cycle. Moreover, based on the thermodynamic assessment outputs, the whole energy and exergy efficiencies of 58.43% and 54.18% are computed for the investigated solar plant, respectively.  相似文献   

3.
Renewable energy-based hydrogen production plants can offer potential solutions to both ensuring sustainability in energy generation systems and designing environmentally friendly systems. In this combined work, a novel solar energy supported plant is proposed that can generate hydrogen, electricity, heating, cooling and hot water. With the suggested integrated plant, the potential of solar energy usage is increased for energy generation systems. The modeled integrated system generally consists of the solar power cycle, solid oxide fuel cell plant, gas turbine process, supercritical power plant, organic Rankine cycle, cooling cycle, hydrogen production and liquefaction plant, and hot water production sub-system. To conduct a comprehensive thermodynamic performance analysis of the suggested plant, the combined plant is modeled according to thermodynamic equilibrium equations. A performance assessment is also conducted to evaluate the impact of several plant indicators on performance characteristics of integrated system and its sub-parts. Hydrogen production rate in the suggested plant according to the performance analysis performed is realized as 0.0642 kg/s. While maximum exergy destruction rate is seen in the solar power plant with 8279 kW, the cooling plant has the lowest exergy destruction rate as 1098 kW. Also, the highest power generation is obtained from gas turbine cycle with 7053 kW. In addition, energetic and exergetic efficiencies of solar power based combined cycle are found as 56.48% and 54.06%, respectively.  相似文献   

4.
Energy and exergy analyses of an integrated system based on anaerobic digestion (AD) of sewage sludge from wastewater treatment plant (WWTP) for multi-generation are investigated in this study. The multigeneration system is operated by the biogas produced from digestion process. The useful outputs of this system are power, freshwater, heat, and hydrogen while there are some heat recoveries within the system for improving efficiency. An open-air Brayton cycle, as well as organic Rankine cycle (ORC) with R-245fa as working fluid, are employed for power generation. Also, desalination is performed using the waste heat of power generation unit through a parallel/cross multi-effect desalination (MED) system for water purification. Moreover, a proton exchange membrane (PEM) electrolyzer is used for electrochemical hydrogen production option in the case of excess electricity generation. The heating process is performed via the rejected heat of the ORC's working fluid. The production rates for products including the power, freshwater, hydrogen, and hot water are obtained as 1102 kW, 0.94 kg/s, 0.347 kg/h, and 1.82 kg/s, respectively, in the base case conditions. Besides, the overall energy and exergy efficiencies of 63.6% and 40% are obtained for the developed system, respectively.  相似文献   

5.
In this study, a novel marine diesel engine waste heat recovery layout is designed and thermodynamically analyzed for hydrogen production, electricity generation, water desalination, space heating, and cooling purposes. The integrated system proposed in this study utilizes waste heat from a marine diesel engine to charge an organic Rankine and an absorption refrigeration cycle. The condenser of the Organic Rankine Cycle (ORC) provides the heat for the single stage flash distillation unit (FDU) process, which uses seawater as the feedwater. A portion of the produced freshwater is used to supply the Polymer Electrolyte Membrane (PEM) electrolyzer array. This study aims to store the excess desalinated water in ballast tanks after an Ultraviolet (UV) treatment. Therefore it is expected to preclude the damage of ballast water discharge on marine fauna. The integrated system's thermodynamic analysis is performed using the Engineering Equation Solver software package. All system components are subjected to performance assessments based on their energy and exergy efficiencies. Additionally, the capacities for power generation, freshwater production, hydrogen production, and cooling are determined. A parametric study is conducted to evaluate the impacts of operating conditions on the overall system. The system's overall energy and exergy efficiencies are calculated as 25% and 13%, respectively, where the hydrogen production, power generation, and freshwater production capacities are 306.8 kg/day, 659 kW, and 0.536 kg/s, respectively. Coefficient of Performance (COP) of the absorption refrigeration cycle is calculated as 0.41.  相似文献   

6.
Desalination driven by renewable energies is an interesting technology in isolated coastal areas. Its feasibility and reliability are guaranteed by innumerable designs implemented and experiences carried out, mainly focused on small capacity systems. However, only mature and efficient technologies are suitable for medium or large scale desalination. In the case of seawater desalination, wind-powered reverse osmosis is the most efficient, mature and cost-effective technology. This paper assesses the most suitable design for seawater reverse osmosis desalination driven by off-grid wind energy systems. A high innovative design based on gradual capacity with nominal production of 1000 m3/d is compared to a conventional fixed capacity desalination plant. Due to the intermittent wind resource, the gradual capacity desalination plant is able to fit the available energy and maximize the annual water production.  相似文献   

7.
Today, effective and low-emission energy systems have been needed to combat environmental problems and to satisfy the growing energy requirement in a sustainable way. In this case, it has gained importance to the production of different useful commodities with the multigeneration plant that is obtained by integrating different systems. With this viewpoint, the key objective of this work is to design and analyze the solar collector and combustion chamber-assisted multigeneration model for power, heating, hydrogen, ammonia and freshwater generation. A newly designed plant comprises a gas turbine cycle, which includes a parabolic dish solar collector and combustion chamber, a Rankine power plant, a multi-effect desalination part, a hydrogen generation part, an ammonia generation part, and a solid oxide fuel cell unit. Comprehensive thermodynamic modeling, economic analysis and multiobjective optimization are executed to observe the performance of the whole plant and sub-system by employing energetic and exergetic approaches. Moreover, a parametric investigation is addressed to review the impacts of some important point changes on the modeled plant's efficiency. Analyses consequences display that the power and hydrogen generation amounts are 12,835 kW and 0.0607 kgs?1. Also, freshwater generation capacity with desalination unit is computed as 4.89 kgs?1. Moreover, total cost rate of the modeled plant is computed as 1074 $/h. Finally, the evaluated plant's energetic and exergetic efficiency is 58.38% and 54.21%, respectively.  相似文献   

8.
The study presented in this paper examines the operation of an integrated system. The study aims to present a method for utilizing geothermal energy in a way that minimizes energy waste and delivers maximum efficiency. A high-temperature geothermal well with a temperature of 300 °C is used as its primary source of energy. The system produces space heating, space cooling, electric power, hot water, freshwater and hydrogen as its outputs. These outputs utilize the excess energy that is obtained from the geothermal well, and by doing so, reduces waste, and increases the overall efficiency of the system. Among these outputs, freshwater and hydrogen are considered the most valuable, as water is an essential life resource and hydrogen is a prized form of energy. The novelty of this system compared to other geothermal sources is that it does not rely on any other source of input energy. It produces both freshwater, hydrogen and considerable amounts of electric power for commercial, industrial and/or residential use. Electric power is produced by two power cycles; the first one is a double flash steam cycle in the geothermal system and the second one is an organic Rankine cycle. 40% of the total electric power produced is sent to an electrolyzer to produce hydrogen gas. Freshwater is produced by single flash desalination. The system produces 22.1 MW of power as net electricity output. The system is assessed energetically and exergetically; it is found that the energy efficiency is 49.1%, while the exergy efficiency is 67.9%. Further parametric studies are carried out using Engineering Equation Solver (EES) to investigate the influence of operating conditions on the energy and exergy of the system. Moreover, major exergy destruction areas in the system are also identified.  相似文献   

9.
Disposal of waste tires is one of the most important problems that should be solved. This problem can be solved by considering waste tires for production of hydrogen or fuel for diesel engines. This paper presents the studies on the performance and emission characteristics of a four stroke, four cylinders, naturally aspirated, direct-injected diesel engine running with various blends of waste tire pyrolysis oil (WTPO) with diesel fuel. Fuel properties, engine performance, and exhaust emissions of WTPO and its blends were analyzed and compared with those of petroleum diesel fuel. The experimental results showed that WTPO–diesel blends indicated similar performance with diesel fuel in terms of torque and power output of the test engine. It was found that the blends of pyrolysis oil of waste tire WTPO10 can efficiently be used in diesel engines without any engine modifications.  相似文献   

10.
Multi-effect distillation (MED) systems are proven and energy efficient thermally-driven desalination systems for handling harsh seawater feed in the Gulf region. The high cycle efficiency is markedly achieved by latent energy re-use with minimal stage temperature-difference across the condensing steam and the evaporating saline seawater in each stage. The efficacies of MED system are (i) its low stage-temperature-difference between top brine temperature (TBT) and final condensing temperature, (ii) its robustness to varying salinity and ability to handle harmful algae Blooming (HABs) and (iii) its compact foot-print per unit water output. The practical TBT of MED systems, hitherto, is around 65 °C for controllable scaling and fouling with the ambient-limited final condenser temperature, usually from 30 to 45 °C.The adsorption (ADC) cycles utilize low-temperature heat sources (typically below 90 °C) to produce useful cooling power and potable water. Hybridizing MED with AD cycles, they synergistically improve the water production rates at the same energy input whilst the AD cycle is driven by the recovered waste heat. We present a practical AD + MED combination that can be retrofitted to existing MEDs: The cooling energy of AD cycle through the water vapor uptake by the adsorbent is recycled internally, providing lower temperature condensing environment in the effects whilst the final condensing temperature of MED is as low as 5–10 °C, which is below ambient. The increase in the temperature difference between TBT and final condensing temperature accommodates additional MED stages. A detailed numerical model is presented to capture the transient behaviors of heat and mass interactions in the combined AD + MED cycles and the results are presented in terms of key variables. It is observed that the water production rates of the combined cycle increase to give a GOR of 8.8 from an initial value of 5.9.  相似文献   

11.
A techno-economic assessment of hydrogen production from waste heat using a proton exchange membrane (PEM) electrolyzer and solid oxide electrolyzer cell (SOEC) integrated separately with the Rankine cycle via two different hybrid systems is investigated. The two systems run via three available cement waste heats of temperatures 360 °C, 432 °C, and 780 °C with the same energy input. The waste heat is used to run the Rankine cycle for the power production required for the PEM electrolyzer system, while in the case of SOEC, a portion of waste heat energy is used to supply the electrolyzer with the necessary steam. Firstly, the best parameters; Rankine working fluid for the two systems and inlet water flow rate and bleeding ratio for the SOEC system are selected. Then, the performance of the two systems (Rankine efficiency, total system efficiency, hydrogen production rate, and economic and CO2 reduction) is investigated and compared. The results reveal that the two systems' performance is higher in the case of steam Rankine than organic, while a bleeding ratio of 1% is the best condition for the SOEC system. Rankine output power, total system efficiency, and hydrogen production rate rose with increasing waste heat temperature having the same energy. SOEC system produces higher hydrogen production and efficiency than the PEM system for all input waste heat conditions. SOEC can produce 36.9 kg/h of hydrogen with a total system efficiency of 23.8% at 780 °C compared with 27.4 kg/h and 14.45%, respectively, for the PEM system. The minimum hydrogen production cost of SOEC and PEM systems is 0.88 $/kg and 1.55 $/kg, respectively. The introduced systems reduce CO2 emissions annually by about 3077 tons.  相似文献   

12.
This paper deals with energy, exergy, economic, and environmental (4E) analysis of two new combined systems for simultaneous power and hydrogen production. The combined systems are integrated from a city gate station (CGS) system, a Rankine cycle (RC), an absorption power cycle (APC), and a proton exchange membrane (PEM) electrolyzer. Since the pressure of natural gas (NG) in transmission pipeline is high, this pressure is reduced at CGS to a lower pressure. However, this NG has also ample potential to be recovered for multiple productions, too. In the proposed systems, the outlet energy of NG is used for power and hydrogen production by employing RC/APC and PEM electrolyzer. The power sub-cycles are driven by waste heat of CGS, while PEM electrolyzer is driven by this waste heat along with a portion of CGS-Turbine output power. A comprehensive thermodynamic modeling and parametric study of the proposed combined systems are conducted from the 4E analysis viewpoint. The results of two proposed systems are compared with each other, considering a fixed value of 1 MW for RC- and APC-Turbines power. Under the same external conditions and using steam as working fluid of RC, the thermal efficiency of the combined CGS/PEM-RC and -APC systems are obtained 32.9% and 33.6%, respectively. The overall exergy efficiency of the combined CGS/PEM-RC and -APC systems are also calculated by 47.9% and 48.9%, respectively. Moreover, the total sum unit cost of product (SUCP) and CO2 emission penalty cost rate are obtained 36.9 $/GJ and 0.033 $/yr for the combined CGS/PEM-RC and 36 $/GJ and 0.211 $/yr for the combined CGS/PEM-APC systems, respectively. The results of exergy analysis also revealed that the vapor generator (in both systems) has the main contribution in the overall exergy destruction.  相似文献   

13.
In order to meet the energy and fuel needs of societies in a sustainable way and hence preserve the environment, there is a strong need for clean, efficient and low-emission energy systems. In this regard, it is aimed to generate cleaner energy outputs, such as electricity, hydrogen and ammonia as well as some additional useful commodities by utilizing both methane gas and the waste heat of an integrated unit to the whole system. In this paper, a novel multi-generation plant is proposed to generate power, hydrogen and ammonia as a chemical fuel, drying, freshwater, heating, and cooling. For this reason, the Brayton cycle as prime unit using methane gas is integrated into the s-CO2 power cycle, organic Rankine cycle, PEM electrolyzer, freshwater production unit, cooling cycle and dryer unit. In order then to evaluate the designed integrated multigeneration system, thermodynamic analyses and parametric studies are performed, revealing that the energy and exergy efficiencies of the whole plant are found to be 69.08% and 65.42%. In addition, ammonia and hydrogen production rates have been found to be 0.2462 kg/s and 0.0631 kg/s for the methane fuel mass flow rate of 1.51 kg/s. Also, the effects of the reference temperature, pinch point temperature of superheater, combustion chamber temperature, gas turbine input pressure, and mass flow rate of fuel on numerous parameters and performance of the plant are investigated.  相似文献   

14.
The weather-dependent electricity generation from Renewable Energy Sources (RES), such as solar and wind power, entails that systems for energy storage are becoming progressively more important. Among the different solutions that are being explored, hydrogen is currently considered as a key technology allowing future long-term and large-scale storage of renewable power.Today, hydrogen is mainly produced from fossil fuels, and steam methane reforming (SMR) is the most common route for producing it from natural gas. None of the conventional methods used is GHG-free. The Power-to-Gas concept, based on water electrolysis using electricity coming from renewable sources is the most environmentally clean approach. Given its multiple uses, hydrogen is sold both as a fuel, which can produce electricity through fuel cells, and as a feedstock in several industrial processes. Just the feedstock could be, in the short term, the main market of RES-based hydrogen.In this paper, we present the results obtained from a techno-economic-financial evaluation of a system to produce green hydrogen to be sold as a feedstock for industries and research centres. A system which includes a 200 kW photovoltaic plant and a 180 kW electrolyser, to be located in Messina (Italy), is proposed as a case study. According to the analyses carried out, and taking into account the current development of technologies, it has been found that investment to realise a small-scale PV-based hydrogen production plant can be remunerative.  相似文献   

15.
In the present paper, a multi-energy complementary power generation is designed. It's a hybrid plant of solar power, geothermal power and hydrogen power based on S–CO2 and T-CO2 brayton cycle driven. The thermal power for hydrogen production is gained from the extracting S–CO2 of solar power side and power consumption is 0.2% of PEM. The hybrid plant has the novel feature of time and energy complementarity. Through the thermodynamic analysis, the results reveal that energy efficiency and exergy efficiency could reach 78.14% and 84.04%, comparing with some other hybrid plans, the values have increased by about 20% and 30%, respectively. Through a sensitivity analysis, three optimal split radios have been put forward and the values are 0.68, 0.93 and 0.96, respectively. The Mg–Cl thermochemical cycle is used to hydrogen production and producing hydrogen energy is about 0.902 GJ/h. The economic analysis is investigated by COES and CRF, and the net economic profit is at least 42.11 million USD. The proposal system is based on the S–CO2 and T-CO2 driven and the daily average CO2 circulating flow could get 55.0 × 106 kg, it could decrease lots of greenhouse-gas emissions.  相似文献   

16.
A novel cogeneration system is proposed for power generation and seawater desalination. It combines the CRGT (chemically recuperated gas turbine) with the MED-TVC (multi-effect thermal vapor compression desalination) system. The CRGT contains a MSR (methane-steam reformer). The produced syngas includes plenty of steam and hydrogen, so the working medium flow increases and NOx emissions can achieve 1 ppm low. However, the water consumption is large, ∼23 t/d water per MW power output. To solve this problem and produce water for sale, MED-TVC is introduced, driven by exhaust heat. Such a dual-purpose plant was analyzed to investigate its performance and parameter selection, and compared with four conventional cogeneration systems with the same methane input. Some main results are following: In the base case of the CRGT with a TIT of 1308 °C and a compression ratio of 15, the MED-TVC with 9 effects, the specific work output, performance ratio and CRGT-consumed water ratio are 491.5 kJ/kg, 11.3 and 18.2%, respectively. Compared with the backpressure ST (steam turbine)/CC (combined cycle) plus MED/MSF (multistage flash), the CRGT + MED has better thermal performance, lower product cost and shorter payback period, which indicates the CRGT + MED dual-purpose system is a feasible and attractive choice for power and water cogeneration.  相似文献   

17.
A calcium oxide/steam chemical heat pump (CHP) is presented in the study as a means to upgrade waste heat from industrial processes for thermochemical hydrogen production. The CHP is used to upgrade waste heat for the decomposition of copper oxychloride (CuO.CuCl2) in a copper–chlorine (Cu–Cl) thermochemical cycle. A formulation is presented for high temperature steam electrolysis and thermochemical splitting of water using waste heat of a cement plant. Numerical models are presented for verifying the availability of energy for potential waste heat upgrading in cement plants. The optimal hydration and decomposition temperatures for the calcium oxide/steam reversible reaction of 485 K and 565 K respectively are obtained for the combined heat pump and thermochemical cycle. The coefficient of performance and overall efficiency of 4.6 and 47.8% respectively are presented and discussed for the CHP and hydrogen production from the cement plant.  相似文献   

18.
While energy demand in this fast developing world is increasing, its future is being compromised by the CO2 emissions produced through the burning of fossil fuels. Clean energy technologies are available, but there are still barriers hindering their full integration into the society, the majority of which are economic and social. For these reasons, the development of new technologies and configurations to make renewable energies systems more cost-effective is urgently needed. The plant design proposed in this paper consists of basic Dish-Stirling collectors supported by a reversible solid oxide fuel cell acting as a power generator and storage unit, and therefore offering dispatchable power on demand. Further, the system reuses the waste heat for seawater desalination, which is very convenient for arid areas with high solar radiation and shortage of freshwater. The present work is an analytical study in which thermodynamic investigation of the performance evaluation of a self-sustainable polygeneration system with integrated hydrogen production, power generation, and freshwater production is conducted. An evaluation in a real context (South Africa) showed the potential of this system to supply 500 kW, 24 h a day, while producing a considerable amount of freshwater. Although the distillation system presented is able to produce 8464 L per day, there is potential for it to increase its output by nine times or more.  相似文献   

19.
In the examined paper, a solar and wind energy supported integrated cycle is designed to produce clean power and hydrogen with the basis of a sustainable and environmentally benign. The modeled study mainly comprises of four subsystems; a solar collector cycle which operates with Therminol VP1 working fluid, an organic Rankine cycle which runs with R744 fluid, a wind turbine as well as hydrogen generation and compression unit. The main target of this work is to investigate a thermodynamic evaluation of the integrated system based on the 1st and 2 nd laws of thermodynamics. Energetic and exergetic efficiencies, hydrogen and electricity generation rates, and irreversibility for the planned cycle and subsystems are investigated according to different parameters, for example, solar radiation flux, reference temperature, and wind speed. The obtained results demonstration that the whole energy and exergy performances of the modeled plant are 0.21 and 0.16. Additionally, the hydrogen generation rate is found as 0.001457 kg/s, and the highest irreversibility rate is shown in the heat exchanger subcomponents. Also, the net power production rate found to be 195.9 kW and 326.5 kW, respectively, with organic Rankine cycle and wind turbine. The final consequences obtained from this work show that the examined plant is an environmentally friendly option, which in terms of the system's performance and viable, for electrical power and hydrogen production using renewable energy sources.  相似文献   

20.
In this paper, a waste heat recovery system for a cement plant is developed and analyzed with the softwares of Engineering Equation Solver (EES) and Aspen Plus. This system is novel in a way that hydrogen is uniquely produced from waste heat obtained from the cement slag and blended with natural gas for domestic use. The presented system has a steam Rankine cycle combined with an organic Rankine cycle, an alkaline electrolyzer unit, oxygen and hydrogen storage tanks, a blending unit, and a combustor. Moreover, multiple useful outputs are obtained, such as power, hydrogen, and natural gas, as well as hydrogen blend. The power obtained from the organic Rankine cycle becomes the highest when the organic fluid R600a is used as a working fluid. The power generated from turbines is fed to the grid externally and the cement plant for internal use. Also, some power is utilized to produce hydrogen via an alkaline electrolyzer which has an efficiency of 62.94%. With the change of the percentage of hydrogen in the blend from 0% to 50%, the annual consumption of natural gas reduces from 48.261 billion m3 to 37.086 billion m3. Furthermore, the overall exergy and energy efficiencies for the plant are found at 55% and 22%, respectively. The carbon dioxide emissions in the released exhaust gas reduce from 34% to 28% when the same volumetric flow rates of the blend and oxygen gas are fed to the reactor. NO and NO2 emissions increase from 4.06 g/day to 7.45 g/day, and from 0.02 g/day to 0.09 g/day when the hydrogen content is increased from 5% to 20%. Moreover, carbon monoxide emissions decrease from 0.05 g/day to 0.02 g/day, accordingly. As a result, both combustion energy and exergy efficiencies increase with the addition of hydrogen. Furthermore, CO and CO2 emissions decrease with the hydrogen content increases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号