首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We describe a metal hydride (MH) hydrogen storage tank for light fuel cell vehicle application developed at HySA Systems. A multi-component AB2-type hydrogen storage alloy was produced by vacuum induction melting (10 kg per a load) at our industrial-scale facility. The MH alloy has acceptable H sorption performance, including reversible H storage capacity up to ∼170 NL/kg (1.5 wt% H). The cassette-type MH tank was made up of 2 cylindrical aluminium canisters with transversal internal copper fins and external aluminium fins for improving the heat exchange between the heating medium and the MH tank. Heat supply and removal was provided from the outside using air at T = 15–25 °C. The MH tank was tested at the conditions of natural or forced (velocity ∼2 m/s) air convection. The tests included H2 charge of the tank at P = 15–40 bar and its discharge at P = 1 bar. The tank in the H2 discharge mode was also tested together with open cathode low-temperature proton exchange membrane fuel cell (LT PEMFC).  相似文献   

2.
The performance and cost of compressed hydrogen storage tank systems has been assessed and compared to the U.S. Department of Energy (DOE) 2010, 2015, and ultimate targets for automotive applications. The on-board performance and high-volume manufacturing cost were determined for compressed hydrogen tanks with design pressures of 350 bar (∼5000 psi) and 700 bar (∼10,000 psi) capable of storing 5.6 kg of usable hydrogen. The off-board performance and cost of delivering compressed hydrogen was determined for hydrogen produced by central steam methane reforming (SMR). The main conclusions of the assessment are that the 350-bar compressed storage system has the potential to meet the 2010 and 2015 targets for system gravimetric capacity but will not likely meet any of the system targets for volumetric capacity or cost, given our base case assumptions. The 700-bar compressed storage system has the potential to meet only the 2010 target for system gravimetric capacity and is not likely to meet any of the system targets for volumetric capacity or cost, despite the fact that its volumetric capacity is much higher than that of the 350-bar system. Both the 350-bar and 700-bar systems come close to meeting the Well-to-Tank (WTT) efficiency target, but fall short by about 5%.  相似文献   

3.
Many countries in Europe are investing in fuel cell bus technology with the expected mobilization of more than 1200 buses across Europe in the following years. The scaling-up will make indispensable a more effective design and management of hydrogen refueling stations to improve the refueling phase in terms of refueling time and dispensed quantity while containing the investment and operation costs. In the present study, a previously developed dynamic lumped model of a hydrogen refueling process, developed in MATLAB, is used to analyze tank-to-tank fuel cell buses (30–40 kgH2 at 350 bar) refueling operations comparing a single-tank storage with a multi-tank cascade system. The new-built Aalborg (DK) hydrogen refueling station serves as a case study for the cascade design. In general, a cascading refueling approach from multiple storage tanks at different pressure levels provides the opportunity for a more optimized management of the station storage, reducing the pressure differential between the refueling and refueled tanks throughout the whole refueling process, thus reducing compression energy. This study demonstrates the validity of these aspects for heavy-duty applications through the technical evaluation of the refueling time, gas heating, compression energy consumption and hydrogen utilization, filling the literature gap on cascade versus single tank refueling comparison. Furthermore, a simplified calculation of the capital and operating expenditures is conducted, denoting the cost-effectiveness of the cascade configuration under study. Finally, the effect of different pressure switching points between the storage tanks is investigated, showing that a lower medium pressure usage reduces the compression energy consumption and increases the station flexibility.  相似文献   

4.
Since 2003, the National Fuel Cell Research Center at the University of California, Irvine (UCI) has operated the first U.S. publicly accessible hydrogen refueling station (HRS). During this period, the UCI HRS supported all manufacturers in the early, pre-commercialization years of the fuel cell electric vehicle (FCEV). This paper describes and analyzes the performance of the UCI HRS during the first five years of FCEV commercialization, over which time the station has dispensed the most hydrogen daily in the California network. The station performance is compared to aggregate data published by NREL for all U.S. HRSs. Using the Hydrogen Delivery Scenario Analysis Model, typical daily refueling profiles are analyzed to determine the effect on HRS design. The results show different daily refueling profiles could substantially affect HRS design and ultimately the cost of hydrogen. While technical issues have been reduced, the compressor, dispenser, and fueling rate are areas for improvement.  相似文献   

5.
The “low-temperature” intermetallic hydrides with hydrogen storage capacities below 2 wt% can provide compact H2 storage simultaneously serving as a ballast. Thus, their low weight capacity, which is usually considered as a major disadvantage to their use in vehicular H2 storage applications, is an advantage for the heavy duty utility vehicles. Here, we present new engineering solutions of a MH hydrogen storage tank for fuel cell utility vehicles which combines compactness, adjustable high weight, as well as good dynamics of hydrogen charge/discharge. The tank is an assembly of several MH cassettes each comprising several MH containers made of stainless steel tube with embedded (pressed-in) perforated copper fins and filled with a powder of a composite MH material which contains AB2- and AB5-type hydride forming alloys and expanded natural graphite. The assembly of the MH containers staggered together with heating/cooling tubes in the cassette is encased in molten lead followed by the solidification of the latter. The tank can provide >2 h long H2 supply to the fuel cell stack operated at 11 kWe (H2 flow rate of 120 NL/min). The refuelling time of the MH tank (T = 15–20 °C, P(H2) = 100–150 bar) is about 15–20 min.  相似文献   

6.
Hydrogen fuel cell vehicle (HFCV) is one of the key contributors to sustainable development of the society. For commercial deployment and market acceptability of fuel cell vehicles, efficient storage of hydrogen with an optimum refueling is one of the important challenge. Compressed hydrogen storage in Type IV tanks is a mature and promising technology for on-board application. The fast refueling of the storage tank without overheating and overfilling is an essential requirement defined by SAE J2601. In this regard, station parameters such as hydrogen supply temperature, filling rate and vehicle tank parameters such as filling time strongly influences the storage capacity of the tank, affecting driving range of the fuel cell vehicle. This paper investigates the impact of these parameters on storage density of the tank defined in terms of state of charge. For this, refueling simulation based on SAE J2601 protocol has been performed using computational fluid dynamic approach to investigate the influence of station parameters on storage density of the tank. Further, the root cause analysis was carried out to investigate the contribution of station and vehicle tank parameters for enhancing the storage density of the tank. Finally, the regression model based on these refueling parameters was developed to predict the density attained at different filling conditions. The results confirmed the strong contribution of pressure, filling time, supply temperature and least contribution of temperature, filling rates in enhancing the storage density of the tank. The results can provide new insight into refueling behavior of the Type IV tank for fuel cell vehicle.  相似文献   

7.
In recent years, significant research and development efforts were spent on hydrogen storage technologies with the goal of realizing a breakthrough for fuel cell vehicle applications. This article scrutinizes design targets and material screening criteria for solid state hydrogen storage. Adopting an automotive engineering point of view, four important, but often neglected, issues are discussed: 1) volumetric storage capacity, 2) heat transfer for desorption, 3) recharging at low temperatures and 4) cold start of the vehicle. The article shall help to understand the requirements and support the research community when screening new materials.  相似文献   

8.
The high price of hydrogen fuel in the fuel cell vehicle refuelling market is highly dependent on the one hand from the production costs of hydrogen and on the other from the capital cost of a hydrogen refuelling station's components to support a safe and adequate refuelling process of contemporary fuel cell vehicles. The hydrogen storage technology dominated in the vehicle sector is currently based on high-pressure compressed hydrogen tanks to extend as much as possible the driving range of the vehicles. However, this technology mandates the use of large hydrogen compression and cooling systems as part of the refuelling infrastructure that consequently increase the final cost of the fuel. This study investigated the prospects of lowering the refuelling cost of small urban hydrogen vehicles through the utilisation of metal hydride hydrogen storage. The results showed that for low compression hydrogen storage, metal hydride storage is in favour in terms of the dispensed hydrogen fuel price, while its weight is highly comparable to the one of a compressed hydrogen tank. The final refuelling cost from the consumer's perspective however was found to be higher than the compressed gas due to the increased hydrogen quantity required to be stored in fully empty metal hydride tanks to meet the same demand.  相似文献   

9.
Worldwide about 550 hydrogen refueling stations (HRS) were in operation in 2021, of which 38% were in Europe. With their number expected to grow even further, the collection and investigation of real-world station operative data are fundamental to tracking their activity in terms of safety issues, performances, maintenance, reliability, and energy use. This paper analyses the parameters that characterize the refueling of 350 bar fuel cell buses (FCB) in five HRS within the 3Emotion project. The HRS are characterized by different refueling capacities, hydrogen supply schemes, storage volumes and pressures, and operational strategies. The FCB operate over various duty cycles circulating on urban and extra-urban routes. From data logs provided by the operators, a dataset of four years of operation has been created. The results show a similar hydrogen amount per fill distribution but quite different refueling times among the stations. The average daily mass per bus and refueling time are around 14.62 kg and 10.28 min. About 50% of the total amount of hydrogen is dispensed overnight, and the refueling events per bus are typically every 24 h. On average, the buses' time spent in service is 10 h per day. The hydrogen consumption is approximately 7 kg/100 km, a rather effective result reached by the technology. The station utilization is below 30% for all sites, the buses availability hardly exceeds 80%.  相似文献   

10.
The U.S. Department of Energy (DOE) has developed the Framework model to simulate fuel cell-based light-duty vehicle operation for various hydrogen storage systems. This transient model simulates the performance of the storage system, fuel cell, and vehicle for comparison to DOE's Technical Targets using four drive cycles. Metal hydride hydrogen storage models have been developed for the Framework model. Despite the utility of this model, it requires that material researchers input system design specifications that cannot be easily estimated. To address this challenge, a design tool has been developed that allows researchers to directly enter physical and thermodynamic metal hydride properties into a simple sizing module that then estimates the systems parameters required to run the storage system model. This design tool can also be used as a standalone MS Excel model to estimate the storage system mass and volume outside of Framework and compare it to the DOE Technical Targets. This model will be explained and exercised with existing hydrogen storage materials.  相似文献   

11.
This paper designs an off-grid charging station for electric and hydrogen vehicles. Both the electric and hydrogen vehicles are charged at the same time. They appear as two electrical and hydrogen load demand on the charging station and the charging station is powered by solar panels. The output power of solar system is separated into two parts. On part of solar power is used to supply the electrical load demand (to charge the electric vehicles) and rest runs water electrolyzer and it will be converted to the hydrogen. The hydrogen is stored and it supplies the hydrogen load demand (to charge the hydrogen-burning vehicles). The uncertainty of parameters (solar energy, consumed power by electrical vehicles, and consumed power by hydrogen vehicles) is included and modeled. The fuel cell is added to the charging station to deal with such uncertainty. The fuel cell runs on hydrogen and produces electrical energy to supply electrical loading under uncertainties. The diesel generator is also added to the charging station as a supplementary generation. The problem is modeled as stochastic optimization programming and minimizes the investment and operational costs of solar and diesel systems. The introduced planning finds optimal rated powers of solar system and diesel generator, operation pattern for diesel generator and fuel cell, and the stored hydrogen. The results confirm that the cost of changing station is covered by investment cost of solar system (95%), operational cost of diesel generator (4.5%), and investment cost of diesel generator (0.5%). The fuel cell and diesel generator supply the load demand when the solar energy is zero. About 97% of solar energy will be converted to hydrogen and stored. The optimal operation of diesel generator reduces the cost approximately 15%.  相似文献   

12.
Last three decades, costumers and manufacturers of automotive sector have been influenced positively by Hydrogen and fuel cells (FCs). The main goal of automakers can be pointed as minimizing the fuel consumption and exhaust emissions while improving the range limits, energy efficiency and latest technology adaptation. Therewithal, electric assisted propulsion systems added to vehicles and are called as electric vehicles (EVs). For that matter, Battery Electric Vehicles (BEVs) and hydrogen Fuel Cell Electric Vehicles (FCEVs) have become the focus of researchers and producers. In this mini foreseen review, overview of the next quarter century vision of FCEVs are expressed and discussed by the helped of previous researches and with future forecast reports. The introduction part is summarized the general approach and future expectations of FCs in detailed. Technical overview is represented for FCs and FCEVs in terms of current state of technology to foreseen expectancy. Infrastructure analysis and future aspects overview part is also discussed for sector's perspective on FCEVs. The near future perspective of the FCEVs, which is seen as the next step in EVs, is discussed in detail in the next quarter century vision. Authors concluded that, between the 2030s-2050s, hydrogen FCEVs will continue their rising demand scale under the circumstances of decreasing expensive technology; enhanced energy optimization; extended range limits and increasing hydrogen refueling stations.  相似文献   

13.
A comprehensive review of the hydrogen storage systems and investigations performed in search for development of fast refueling technology for fuel cell vehicles are presented. Nowadays, hydrogen is considered as a good and promising energy carrier and can be stored in gaseous, liquid or solid state. Among the three ways, high pressure (such as 35 MPa or 70 MPa) appears to be the most suitable method for transportation due to its technical simplicity, high reliability, high energy efficiency and affordability. However, the refueling of high pressure hydrogen can cause a rapid increase of inner temperature of the storage cylinder, which may result not only in a decrease of the state of charge (SOC) but also in damages to the tank walls and finally to safety problems. In this paper, the theoretical analysis, experiments and simulations on the factors related to the fast refueling, such as initial pressure, initial temperature, filling rate and ambient temperature, are reviewed and analyzed. Understanding the potential relationships between these parameters and the temperature rise may shed a light in developing novel controlling strategies and innovative routes for hydrogen tank fast filling.  相似文献   

14.
Being produced from renewable energy, hydrogen is one of the most efficient energy carriers of the future. Using metal alloys, hydrogen can be stored and transported at a low cost, in a safe and effective manner. However, most metals react with hydrogen to form a compound called metal hydride (MH). This reaction is an exothermic process, and as a result releases heat. With sufficient heat supply, hydrogen can be released from the as-formed metal hydride. In this work, we propose an integrated power system of a proton exchange membrane fuel cell (PEMFC) together with a hydride tank designed for vehicle use. We investigate different aspects for developing metal hydride tanks and their integration in the PEMFC, using water as the thermal fluid and a FeTi intermetallic compound as the hydrogen storage material. Ground truth simulations show that the annular metal hydride tank meets the hydrogen requirements of the fuel cell, but to the detriment of the operating temperature of the fuel cell (FC).  相似文献   

15.
Two vehicle fire tests were conducted to investigate the spread of fire to adjacent vehicles from a hydrogen fuel cell vehicle (HFCV) equipped with a thermal pressure relief device (TPRD) : – 1) an HFCV fire test involving an adjacent gasoline vehicle, 2) a fire test involving three adjoining HFCV assuming their transportation in a carrier ship. The test results indicated that the adjacent vehicles were ignited by flames from the interior and exterior materials of the fire origin HFCV, but not by the hydrogen flames generated through the activation of TPRD.  相似文献   

16.
Finite element (FE) analysis of a filament wound 700-bar compressed hydrogen storage Type 4 tank is presented. Construction of the FE model was derived from an initial netting analysis to determine the optimal dome shape, winding angle, and helical and hoop layer thicknesses. The FE model was then used to predict the performance of the composite tank subject to the operating requirements and design assumptions, and to provide guidance for design optimization. Variation of the winding angle and helical layer thickness in the dome section was incorporated in the FE model. The analysis was used to determine the minimum helical and hoop layer thicknesses needed to assure structural integrity of the tank. The analysis also examined the use of “doilies” to reinforce the dome and the boss sections of the tanks to reduce the number of helical layers wound around the cylindrical section of the tank. The results of the FE analyses showed that the use of doilies reduces the stresses near the dome end but the stresses at the tank shoulder are not affected. A new integrated end-cap design is proposed to reinforce the dome section. With the integrated end-cap, FE analysis showed that the high stress points shift from the dome to the cylindrical section of the tank.  相似文献   

17.
Fuel cell vehicles have a high potential to reduce both energy consumption and carbon dioxide emissions. However, due to the low density, hydrogen gas limits the amount of hydrogen stored on board. This restriction also prevents wide penetration of fuel cells. Hydrogen storage is the key technology towards the hydrogen society. Currently high-pressure tanks and liquid hydrogen tanks are used for road tests, but both technologies do not meet all the requirements of future fuel cell vehicles. This paper briefly explains the current status of conventional technologies (simple containment) such as high-pressure tank systems and cryogenic storage. Another method, hydrogen-absorbing alloy has been long investigated but it has several difficulties for the vehicle applications such as low temperature discharge characteristics and quick charge capability due to its reaction heat. We tested a new idea of combining metal hydride and high pressure. It will solve some difficulties and improve performance such as gravimetric density. This paper describes the latest material and system development.  相似文献   

18.
Efficiencies of hydrogen storage systems onboard fuel cell vehicles   总被引:2,自引:1,他引:2  
Energy efficiency, vehicle weight, driving range, and fuel economy are compared among fuel cell vehicles (FCV) with different types of fuel storage and battery-powered electric vehicles. Three options for onboard fuel storage are examined and compared in order to evaluate the most energy efficient option of storing fuel in fuel cell vehicles: compressed hydrogen gas storage, metal hydride storage, and onboard reformer of methanol. Solar energy is considered the primary source for fair comparison of efficiencies for true zero emission vehicles. Component efficiencies are from the literature. The battery powered electric vehicle has the highest efficiency of conversion from solar energy for a driving range of 300 miles. Among the fuel cell vehicles, the most efficient is the vehicle with onboard compressed hydrogen storage. The compressed gas FCV is also the leader in four other categories: vehicle weight for a given range, driving range for a given weight, efficiency starting with fossil fuels, and miles per gallon equivalent (about equal to a hybrid electric) on urban and highway driving cycles.  相似文献   

19.
Energy storage is needed for renewable systems due to the intermittent nature of wind and solar energy. Hydrogen can be used to store variable renewable energy such as solar and wind energy. According to this fact, there is an increasing interest in use of solar-hydrogen systems for power supply in remote areas or other standalone applications. One of these applications is Hydrogen production station working by solar energy to use in fuel cell vehicle. Time consuming aspect of solar-hydrogen production is the most prominent reason for presenting a new scheme as a parking-refueling station for fuel cell vehicles in this study. To do this, Simulation, economic and environmental evaluations of the solar parking-refueling station are considered in this article. Because of using an independent hydrogen compression system, the suggested parking-refueling station can be used in a standalone area such as rural and military applications. Results show that the proposed system seems to be economic in present condition. It also illustrates that the Levelized Cost of Product (Km-Passenger) is in a range of 0.15–0.28 US$. Although using the tracker system is not economically efficient, the effect of such a structure is more obvious in the points far from tropical area.  相似文献   

20.
Over the last several decades, hydrogen fuel cell vehicles (FCVs) have emerged as a zero tailpipe-emission alternative to the battery electric vehicle (EV). To address questions about consumer reaction to FCVs, this report presents the results of a “ride-and-drive” clinic series (N = 182) held in 2007 with a Mercedes-Benz A-Class “F-Cell” hydrogen FCV. The clinic evaluated participant reactions to driving and riding in an FCV, as well as vehicle refueling. Pre-and post-clinic surveys assessed consumer response. More than 80% left with a positive overall impression of hydrogen. The majority expressed a willingness to travel 5–10 min to find a hydrogen station. More than 90% of participants would consider an FCV driving range of 300 miles (480 km) to be acceptable. Stated willingness-to-pay preferences were explored. The results show that short-term exposure can improve consumer perceptions of hydrogen performance and safety among people who are the more likely early adopters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号