首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hydrogen is a key product for a cleaner energy sector. However, the suitability of the different hydrogen production options should be checked from a life-cycle perspective. The Life Cycle Sustainability Assessment (LCSA) methodology is helpful for this purpose, allowing a thorough interpretation of a product system's performance by integrating economic, environmental and social indicators. This work presents an LCSA of renewable hydrogen from biomass gasification, and its sustainability benchmarking against conventional hydrogen from steam methane reforming. Environmental (global warming and acidification), economic (levelised cost) and social (child labour, gender wage gap, and health expenditure) life-cycle indicators are characterised and jointly interpreted. The results show that hydrogen from biomass gasification cannot yet be thoroughly considered a sustainable alternative to conventional hydrogen mainly due to economic and social concerns. However, improvement actions leading to an increase in process efficiency would significantly enhance the system's performance in each of the three sustainability dimensions.  相似文献   

2.
This work uses harmonised life-cycle indicators of hydrogen to explore its role in the environmental performance of proton exchange membrane fuel cell (PEMFC) passenger vehicles. To that end, three hydrogen fuel options were considered: (i) conventional, fossil-based hydrogen from steam methane reforming; (ii) renewable hydrogen from biomass gasification; and (iii) renewable hydrogen from wind power electrolysis. In order to increase the robustness of the life-cycle study, the environmental profile of each hydrogen option was characterised by three harmonised indicators: carbon footprint, non-renewable energy footprint, and acidification footprint. When enlarging the scope of the assessment according to a well-to-wheels perspective, the results show that the choice of hydrogen fuel significantly affects the life-cycle performance of PEMFC vehicles. In this regard, the use of renewable hydrogen –instead of conventional hydrogen from steam methane reforming– is essential when pursuing low carbon and energy footprints. Nevertheless, the identification of the most favourable renewable hydrogen option was found to be conditioned by the prioritised life-cycle indicators.  相似文献   

3.
With the proposal of carbon neutral goals in various countries, the deepening of global action on climate change and the acceleration of green economy recovery in the post epidemic era, building a low-carbon and clean hydrogen supply system has gradually become a global consensus. In order to promote the development of clean hydrogen market, the standards of green hydrogen have been discussed at global level. The quantitative definition of different hydrogen production methods based on the greenhouse gases (GHG) emission of life cycle assessment (LCA) methods is gradually recognised by the industry. China issued the “Standard and evaluation of low-carbon hydrogen, clean hydrogen and renewable hydrogen” in December 2020. This is the first formal green hydrogen standard worldwide, which provides calculation methods for GHG of different hydrogen production paths. This chapter discusses the major green hydrogen standards initiative in the world, analyses the key factors of the global green hydrogen standard, and introduces how to establish the quantitative standards and evaluation system of low-carbon hydrogen, clean hydrogen, and renewable hydrogen by using the method in China.  相似文献   

4.
Methane decomposition to yield hydrogen and carbon (CH4 ? 2H2 + C) is one of the cleanest alternatives, free of CO2 emissions, for producing hydrogen from fossil fuels. This reaction can be catalyzed by metals, although they suffer a fast deactivation process, or by carbonaceous materials, which present the advantage of producing the catalyst from the carbon obtained in the reaction. In this work, the environmental performance of methane decomposition catalyzed by carbonaceous catalysts has been evaluated through Life Cycle Assessment tools, comparing it to other decomposition processes and steam methane reforming coupled to carbon capture systems. The results obtained showed that the decomposition using the autogenerated carbonaceous as catalyst is the best option when reaction conversions higher than 65% are attained. These were confirmed by 2015 and 2030 forecastings. Moreover, its environmental performance is highly increased when the produced carbon is used in other commercial applications. Thus, for a methane conversion of 70%, the application of 50% of the produced carbon would lead to a virtually zero-emissions process.  相似文献   

5.
When comparing the life-cycle environmental performance of hydrogen energy systems, significant concerns arise due to potential methodological inconsistencies between case studies. In this regard, protocols for harmonised life cycle assessment (LCA) of hydrogen energy systems are currently available to mitigate these concerns. These protocols have already been applied to conventional hydrogen from steam methane reforming as well as to a large number of both fossil and renewable hydrogen options, allowing robust comparisons between them. However, harmonised life-cycle indicators of nuclear-based hydrogen options are not yet available in the literature. This study fills this gap by using the recently developed software GreenH2armony® to calculate the harmonised carbon, energy and acidification footprints of nuclear-based hydrogen produced through different pathways (viz., low-temperature electrolysis, high-temperature electrolysis, and thermochemical cycles). Overall, the harmonised case studies of nuclear-based hydrogen show a generally good performance in terms of carbon footprint and acidification, but an unfavourable performance in terms of non-renewable energy footprint.  相似文献   

6.
A life cycle assessment of hydrogen and gasoline vehicles, including fuel production and utilization in vehicles powered by fuel cells and internal combustion engines, is conducted to evaluate and compare their efficiencies and environmental impacts. Fossil fuel and renewable technologies are investigated, and the assessment is divided into various stages.  相似文献   

7.
Dynamic life cycle assessment (LCA) of renewable energy technologies   总被引:2,自引:0,他引:2  
Martin   《Renewable Energy》2006,31(1):55-71
Before new technologies enter the market, their environmental superiority over competing options must be asserted based on a life cycle approach. However, when applying the prevailing status-quo Life Cycle Assessment (LCA) approach to future renewable energy systems, one does not distinguish between impacts which are ‘imported’ into the system due to the ‘background system’ (e.g. due to supply of materials or final energy for the production of the energy system), and what is the improvement potential of these technologies compared to competitors (e.g. due to process and system innovations or diffusion effects). This paper investigates a dynamic approach towards the LCA of renewable energy technologies and proves that for all renewable energy chains, the inputs of finite energy resources and emissions of greenhouse gases are extremely low compared with the conventional system. With regard to the other environmental impacts the findings do not reveal any clear verdict for or against renewable energies.Future development will enable a further reduction of environmental impacts of renewable energy systems. Different factors are responsible for this development, such as progress with respect to technical parameters of energy converters, in particular, improved efficiency; emissions characteristics; increased lifetime, etc.; advances with regard to the production process of energy converters and fuels; and advances with regard to ‘external’ services originating from conventional energy and transport systems, for instance, improved electricity or process heat supply for system production and ecologically optimized transport systems for fuel transportation.The application of renewable energy sources might modify not only the background system, but also further downstream aspects, such as consumer behavior. This effect is, however, strongly context and technology dependent.  相似文献   

8.
In the present study, a comparative well to pump life cycle assessment is conducted on the hydrogen production routes of water electrolysis, biomass gasification, coal gasification, steam methane reforming, hydrogen production from ethanol and methanol. The CML 2001 impact assessment methodology is employed for assessment and comparison. Comparatively higher life cycle Carbon dioxide and Sulphur oxide emissions of 27.3 kg/kg H2 and 50.0 g/kg H2 respectively are determined for the water electrolysis hydrogen production route via U.S. electricity mix. In addition, the life cycle global warming potential of this route (28.6 kg CO2eq/kg H2) is found to be comparatively higher than other routes followed by coal gasification (23.7 kg CO2eq/kg H2). However, the ethanol based hydrogen production route is estimated to have comparatively higher life cycle emissions of nitrogen dioxide (19.6 g/kg H2) and volatile organic compounds (10.3 g/kg H2). Moreover, this route is determined to have a comparatively higher photochemical ozone creation potential of 0.0045 kg-etheneeq/kg H2 as well as eutrophication potential of 0.0043 kg PO4eq/kg H2. The results of this study are comparatively discussed to signify the importance of life cycle assessment in comparing the environmental sustainability of hydrogen production routes.  相似文献   

9.
Analysis of lower carbon power systems has tended to focus on the operational carbon dioxide (CO2) emissions from power stations. However, to achieve the large cuts required it is necessary to understand the whole-life contribution of all sectors of the electricity industry. Here, a preliminary assessment of the life cycle carbon emissions of the transmission network in Great Britain is presented. Using a 40-year period and assuming a static generation mix it shows that the carbon equivalent emissions (or global warming potential) of the transmission network are around 11 gCO2-eq/kWh of electricity transmitted and that almost 19 times more energy is transmitted by the network than is used in its construction and operation. Operational emissions account for 96% of this with transmission losses alone totalling 85% and sulphur hexafluoride (SF6) emissions featuring significantly. However, the CO2 embodied within the raw materials of the network infrastructure itself represents a modest 3%. Transmission investment decisions informed by whole-life cycle carbon assessments of network design could balance higher financial and carbon ‘capital’ costs of larger conductors with lower transmission losses and CO2 emissions over the network lifetime. This will, however, necessitate new regulatory approaches to properly incentivise transmission companies.  相似文献   

10.
A life cycle assessment has been undertaken in order to determine the environmental feasibility of hydrogen as an automotive fuel in Western Australia. The criterion for environmental feasibility has been defined as having life cycle impacts equal to or lower than those of petrol. Two hydrogen production methods have been analysed. The first is steam methane reforming (SMR), which uses natural gas (methane) as a feedstock. The second method analysed is alkaline electrolysis (AE), a mature technology that uses water as a feedstock. The life cycle emissions and impacts were assessed per kilometre of vehicle travel.  相似文献   

11.
The interest in steam reforming process as an efficient method for hydrogen production has been greatly increasing, due to its efficiency during hydrogen production and low environmental problems compared to other techniques. The main objective of this review was to present a comprehensive study of environmental, economic aspects of hydrogen production from steam reforming of raw materials such as biomass, bio-gas, ethanol, and natural gas. From literature review, it was found that among methods for hydrogen production, steam reforming of natural gas has lower installed capital due to the precence of high amounts of unconverted hydrocarbons in the produced gas (so-called tar) during other methods such as steam reforming of bio-gas.  相似文献   

12.
A streamlined life cycle assessment (LCA) is reported of a nuclear-based copper–chlorine (Cu–Cl) hydrogen production cycle, including estimates of fossil fuel energy use and greenhouse gas (GHG) emissions. Calculations revealed that the process requires 474 kJ of fossil fuel energy per MJ of hydrogen, which is less than for other hydrogen production processes. Moreover, GHG emissions are estimated to be 27 gCO2e per MJ of hydrogen, which is only slightly higher than the corresponding value for wind-based hydrogen production. A sensitivity analysis demonstrated that the performance of the system could be further improved at higher yields of hydrogen. Although the system significantly outperformed fossil-based gasoline and hydrogen production pathways, the integrated nuclear and thermochemical cycle still requires significant research and development before commercialization is possible.  相似文献   

13.
A new system is proposed for the treatment of waste aluminium. The total exergy loss (EXL) in the system for the co-production of 1 kg of hydrogen at 30 MPa and 26 kg of aluminium hydroxide is evaluated from the viewpoint of life cycle assessment (LCA) by comparison with the EXLs in conventional systems. The exergy flow diagram reveals that the exergy of waste aluminium, which contains only 15 mass% metal, is still large, while that of pure aluminium hydroxide is relatively small. Therefore, the EXL in the proposed system (150.9 MJ) is 55% less than that in the conventional system (337.7 MJ) in which the gas compressor and production of aluminium hydroxide consume significantly more exergy. The results also indicate that exergy analysis should be applied to the LCA as a critical measure for practical use, in addition to the conventional LCA of carbon dioxide emission.  相似文献   

14.
The renewable energy sources are often presented as ‘clean’ sources, not considering the environmental impacts related to their manufacture. The production of the renewable plants, like every production process, entails a consumption of energy and raw materials as well as the release of pollutants. Furthermore, the impacts related to some life cycle phases (as maintenance or installation) are sometimes neglected or not adequately investigated.The energy and the environmental performances of one of the most common renewable technologies have been studied: the solar thermal collector for sanitary warm water demand. A life cycle assessment (LCA) has been performed following the international standards of series ISO 14040. The aim is to trace the product's eco-profile that synthesises the main energy and environmental impacts related to the whole product's life cycle. The following phases have been investigated: production and deliver of energy and raw materials, production process, installation, maintenance, disposal and transports occurring during each step. The analysis is carried out on the basis of data directly collected in an Italian factory.  相似文献   

15.
A. Boyano  G. Tsatsaronis 《Energy》2011,36(4):2202-2214
Steam methane reforming (SMR) is one of the most promising processes for hydrogen production. Several studies have demonstrated its advantages from the economic viewpoint. Nowadays process development is based on technical and economical aspects; however, in the near future, the environmental impact will play a significant role in the design of such processes. In this paper, an SMR process is studied from the viewpoint of overall environmental impact, using an exergoenvironmental analysis. This analysis presents the combination of exergy analysis and life cycle assessment. Components where chemical reactions occur are the most important plant components from the exergoenvironmental point of view, because, in general, there is a high environmental impact associated with these components. This is mainly caused by the exergy destruction within the components, and this in turn is mainly due to the chemical reactions. The obtained results show that the largest potential for reducing the overall environmental impact is associated with the combustion reactor, the steam reformer, the hydrogen separation unit and the major heat exchangers. The environmental impact in these components can mainly be reduced by improving their exergetic efficiency. A sensitivity analysis for some important exergoenvironmental variables is also presented in the paper.  相似文献   

16.
Hydrogen is broadly utilized in various industries. It can also be considered as a future clean energy carrier. Currently, hydrogen is mainly produced from typical fuels such as coal; however, there exist some other clean alternatives which use water decomposition techniques. Water splitting via the copper-chlorine (Cu–Cl) thermochemical cycle is a superb option for producing clean carbon-free fuel. Here, the life cycle assessment (LCA) technique is used to investigate the environmental consequences of an integrated solar Cu–Cl fuel production facility for large-scale hydrogen production. The impact of varying important input parameters including irradiation level, plant lifetime, and solar-to-hydrogen efficiency on various environmental impacts are investigated next. For instance, an improve in the solar-to-hydrogen efficiency from 15% to 30%, results in a reduction in the GWP from 1.25 to 6.27E-01 kg CO2 eq. An uncertainty analysis using Monte Carlo simulation is conducted to deal with the study uncertainties. The results of the LCA show that the potential of acidification and global warming potential (GWP) of the current system are 8.27E-03 kg SO2 eq. and 0.91 kg CO2 eq./kg H2, respectively. According to the sensitivity analysis, the plant lifetime has the highest effect on the total GWP of the plant with a range of 0.63–1.88 kg of CO2 eq./kg H2. Results comparison with past thermochemical-based studies shows that the GWP of the current integrated system is 7% smaller than that of a solar sulfur-iodine thermochemical cycle.  相似文献   

17.
Currently, the increasing price of oil and the possibility of global energy crisis demand for substitutive energy to replace fossil energy. Many kinds of renewable energy have been considered, such as hydrogen, solar energy, and wind energy. Many countries including China have their own plan to support the research of hydrogen, because of its premier features. But, at present, the cost of hydrogen energy production, storage and transportation process is higher than that of fossil energy and its commercialization progress is slow. Life cycle cost analysis (LCCA) was used in this paper to evaluate the cost of hydrogen energy throughout the life cycle focused on the stratagem selection, to demonstrate the costs of every step and to discuss their relationship. Finally, the minimum cost program is as follows: natural gas steam reforming – high-pressure hydrogen bottles transported by car to hydrogen filling stations – hydrogen internal-combustion engines.  相似文献   

18.
In this study, nuclear energy based hydrogen and ammonia production options ranging from thermochemical cycles to high-temperature electrolysis are comparatively evaluated by means of the life cycle assessment (LCA) tool. Ammonia is produced by extracting nitrogen from air and hydrogen from water and reacting them through nuclear energy. Since production of ammonia contributes about 1% of global greenhouse gas (GHG) emissions, new methods with reduced environmental impacts are under close investigation. The selected ammonia production systems are (i) three step nuclear Cu–Cl thermochemical cycle, (ii) four step nuclear Cu–Cl thermochemical cycle, (iii) five step nuclear Cu–Cl thermochemical cycle, (iv) nuclear energy based electrolysis, and (v) nuclear high temperature electrolysis. The electrolysis units for hydrogen production and a Haber–Bosch process for ammonia synthesis are utilized for the electrolysis-based options while hydrogen is produced thermochemically by means of the process heat available from the nuclear power plants for thermochemical based hydrogen production systems. The LCA results for the selected ammonia production methods show that the nuclear electrolysis based ammonia production method yields lower global warming and climate change impacts while the thermochemical based options yield higher abiotic depletion and acidification values.  相似文献   

19.
A comprehensive life cycle assessment (LCA) is reported for five methods of hydrogen production, namely steam reforming of natural gas, coal gasification, water electrolysis via wind and solar electrolysis, and thermochemical water splitting with a Cu–Cl cycle. Carbon dioxide equivalent emissions and energy equivalents of each method are quantified and compared. A case study is presented for a hydrogen fueling station in Toronto, Canada, and nearby hydrogen resources close to the fueling station. In terms of carbon dioxide equivalent emissions, thermochemical water splitting with the Cu–Cl cycle is found to be advantageous over the other methods, followed by wind and solar electrolysis. In terms of hydrogen production capacities, natural gas steam reforming, coal gasification and thermochemical water splitting with the Cu–Cl cycle methods are found to be advantageous over the renewable energy methods.  相似文献   

20.
A cradle-to-gate life cycle assessment is carried out to evaluate the environmental impact of producing 1 kg of hydrogen implementing innovative chemical looping technologies: chemical looping hydrogen production (CLH), sorption enhanced reforming (SER), and sorption enhanced chemical looping reforming (SECLR). The performance of the looping technologies is compared against conventional hydrogen production without and with CO2 capture, as well as against green hydrogen production in order to determine the more environmentally-friendly option. Comparing the looping technologies with the reference blue hydrogen production it shows that CLH has a lower environmental burden, presenting smaller values in 9 out of 12 environmental impact indicators. If we confront the looping technologies against each other, CLH shows better performance in 11 out of 12 environmental indicators. As expected, green hydrogen has a much smaller overall environmental impact with the exception of human toxicity, terrestrial ecotoxicity and mineral depletion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号