首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this study, the performance of a new cell immobilization material, namely ceramic ball, was examined for continuous biohydrogen production in comparison to suspended cell culture system (CSTR). Production of biohydrogen in both systems was assessed under thermophilic conditions. Both systems were operated at varying hydraulic retention times (HRT) by shortening HRT values from 24 to 1.5 h at an influent sucrose concentration of 10 g/l. The immobilized bioreactor configuration outcompeted the CSTR bioreactor in terms of both volumetric hydrogen production (2.7 l H2/l/day for immobilized system @ HRT = 3 h and 0.5 l H2/l/day for CSTR @ HRT = 24 h) and resistance to cell-washout (CSTR reactor lost significant amount of biomass at short HRT values). It was concluded that immobilized bioreactor configuration is much more robust than CSTR against high organic loading rates and 5 fold more volumetric hydrogen production was achieved in 8 fold smaller immobilized bioreactor.  相似文献   

2.
This study investigated the external operational factors that would reduce the thermodynamic constrains preventing the simultaneous achievement of high hydrogen productivities (HPs) and hydrogen yields (HYs) in the bioreactor. At hydraulic retention time (HRT) of 1, the maximum HPs and HYs achieved was 35 L H2/h and 3.91 mol H2/mol glucose, respectively. At this stage, the bacterial granules occupied approximately 75% of the bioreactor and consisted of the settled biomass density of 40.6 g/L (settled granule bed height = 13.8 cm). The formation of bacterial granules improved the bioreactor performance and resulted in higher substrate conversion efficiency (95%), nutrient influent (7.5 L/h) and de-gassed effluent recycle rates (3.5 L/min). In conclusion, this study demonstrated that high nutrient influent and high de-gassed effluent recycle rates reduced the thermodynamic constrains preventing the achievement of higher H2 productivities in the bioreactor system.  相似文献   

3.
The aim of the study is biohydrogen production from hydrolyzed waste wheat by dark fermentation in a continuously operated up-flow packed bed reactor. For this purpose, the effect of hydraulic retention time (HRT) on the rate (RH2) and yield (YH2) of hydrogen gas formation were investigated. In order to determine the most suitable hydraulic retention time yielding the highest hydrogen formation, the reactor was operated between HRT = 1 h and 8 h. The substrate was the acid hydrolyzed wheat powder (AHWP). Waste wheat was sieved down to 70 μm size (less than 200 mesh) and acid hydrolyzed at pH = 2 and 90 °C in an autoclave for 15 min. The sugar solution obtained from hydrolysis of waste wheat was used as substrate at the constant concentration of 15 g/L after neutralization and nutrient addition for biohydrogen production by dark fermentation. The microbial growth support particle was aquarium biological sponge (ABS). Heat-treated anaerobic sludge was used as inoculum. Total gas volume and hydrogen percentage in total gas, hydrogen gas volume, total sugar and total volatile fatty acid concentrations in the feed and in the effluent of the system were monitored daily throughout the experiments. The highest yield and rate of productions were obtained as YH2 = 645.7 mL/g TS and RH2 = 2.51 L H2/L d at HRT = 3 h, respectively.  相似文献   

4.
This study aims to investigate the effect of substrate concentration and hydraulic retention time (HRT) on hydrogen production in a continuous anaerobic bioreactor from unhydrolyzed common reed (Phragmites australis) an invasive wetland and perennial grass. The bioreactor has capacity of 1 L and working volume of 600 mL. It was operated at pH 5.5, temperature at 37 °C, hydraulic retention time (HRT) 12 h, and variation of substrate concentration from 40, 50, and 60 g COD/L, respectively. Afterward, the HRT was then varied from 12, 8, to 4 h for checking the optimal biohydrogen production. Each condition was run until reach steady state on hydrogen production rate (HPR) which based on hydrogen percentage and daily volume. The results were obtained the peak of substrate concentration was at the 50 g COD/L with HRT 12 h, average HPR and H2 concentration were 28.71 mL/L/h and 36.29%, respectively. The hydrogen yield was achieved at 106.23 mL H2/g CODre. The substrate concentration was controlled at 50 g COD/L for the optimal HRT experiments. It was found that the maximum of average HPR and H2 concentration were 43.28 mL/L/h and 36.96%, respectively peak at HRT 8 h with the corresponding hydrogen yield of 144.35 mL H2/g CODre. Finally, this study successful produce hydrogen from unhydrolyzed common reed by enriched mixed culture in continuous anaerobic bioreactor.  相似文献   

5.
The production of hydrogen using microorganisms is an environment-friendly and less energy-intensive way of producing hydrogen. Rhodoplanes piscinae is a photosynthetic bacterium with the ability of hydrogen production under photosynthetic conditions. In this study, a new strain 51ATA was isolated from Lake Akkaya, Nigde, Turkey that is exposed to some industrial effluent charges. The new strain was identified as R. piscinae by phylogenetic analysis of the 16S ribosomal DNA (rDNA) sequence. The quality of molasses as a substrate for hydrogen production was evaluated by comparing it with other substrates, such as glucose and acetate. Five different culture media of various concentrations (1.0 g/L, 2.0 g/L, 5.0 g/L, 10 g/L, and 20 g/L) for each substrate were used. Results have shown that molasses was the best substrate for the biohydrogen production. The highest amount of biohydrogen obtained from each (20 g/L) substrate was (1.27 L H2/L from molasses-containing culture), (0.72 L H2/L from glucose-containing culture), and acetate-containing culture (0.21 L H2/L) respectively. From these results, we could conclude that R.piscinae 51ATA strain is as good as the other bacterial species used for hydrogen production and may be considered as a high potential strain for hydrogen production when used in combination with molasses under phototrophic conditions.  相似文献   

6.
The kinetics of cotton cellulose hydrolysis using concentrated sulfuric acid and the performance of fermentative hydrogen production from the hydrolysate in the batch system was carried out in this study. Effects of sulfuric acid concentrations, cotton cellulose concentrations and operating temperatures on the cotton cellulose hydrolysis were investigated. It was found that cotton cellulose can dissolve completely in sulfuric acid concentration above 55% (by volume) at room temperature. The reduced sugar yields were varied from 64.3 to 73.9% (g R-sugar/g cotton cellulose) with the initial cotton cellulose concentrations of 30-70 g/L at a temperature of 40 °C.The reduced sugar concentrations and the initial pH of biohydrogen production were investigated at 37 °C. It was found that the optimal values of the hydrogen yield and substrate utilization were 0.95 mol H2/mol R-sugar and 98% with an initial pH of 8.2, when substrate concentration was fixed at 20 g R-sugar/L. The maximum hydrogen yield was 0.99 mol H2/mol R-sugar at a substrate concentration of 15 g R-sugar/L. Using the Gompertz Equation Model simulation, the maximum hydrogen production rate was 253 mL H2/h/L at a substrate of 30 g/L and initial pH of 8.4.  相似文献   

7.
The production of biohydrogen and 5-aminolevulinic acid (5-ALA) by Rhodobacter sphaeroides O.U.001 was investigated in a biorefinery concept. Waste barley was used as a substrate after acid hydrolysis. The hydrolysate was analyzed in terms of its total simple sugar, organic acid, ammonium, element and total phenol contents. Four different growth media having 5 g/L, 7 g/L, 9 g/L and 11 g/L sugar content were prepared using the waste barley hydrolysate to produce biohydrogen and 5-ALA. The increased sugar concentrations resulted in higher cell density and hydrogen accumulation. Accordingly, the highest cell density (OD660: 1.78) and hydrogen production (0.4 L H2/L culture) were observed in the 11 g/L sugar-containing medium. A 67.4 μM 5-ALA was produced upon vitamin B12 and levulinic acid additions. These results showed that waste barley can be used as a substrate for R. sphaeroides for biohydrogen and 5-ALA production within a biorefinery concept.  相似文献   

8.
Fermentative hydrogen generation was studied using palm kernel cake (PKC) as sustainable cellulosic biomass. PKC was subjected to an acid hydrolysis approach using dilute H2SO4 (7% v/v). PKC hydrolysate obtained was then diluted (70%) and used as a substrate for hydrogen generation. Chemical analysis showed that the main fermentable sugars in diluted PKC hydrolysate were glucose, xylose and mannose with the concentrations of 2.75 g/L, 2.60 g/L and 27.75 g/L, respectively. Hydrogen production was carried out by the cultivation of Clostridium acetobutylicum YM1 on PKC hydrolysate. The effect of incubation temperature, the initial pH of culture medium and microbial inoculum size on hydrogen production was studied using a statistical model. The analysis of the model generated showed that the initial pH value of the culture medium and inoculum size had significant effects on the hydrogen production. The study showed that the optimum conditions for the biohydrogen production were 30.57 °C temperature, pH 5.5 and 20% inoculum size. A verification experiment was performed in the optimum conditions determined. Experimental results of the verification test showed that a cumulative hydrogen volume of 1575 ml/L was generated with consuming 2.75 g/L glucose, 2.20 g/L xylose and 16.31 g/L mannose.  相似文献   

9.
Effects of pretreatment of natural bacterial source and raw material on biohydrogen production in fermentative biohydrogen production process were investigated systematically. Biohydrogen production from stale corn slurry was found to be feasible and effective by A1 (water soak) pretreated compost and B1 (gelatinization) pretreated stale corn. The results were further confirmed by the verification test with working volume of 8 L, in which the maximum hydrogen yield of 262 mL H2/g-substrate, hydrogen production rate of 39 mL/g h−1 and the corresponding hydrogen content of 50% was observed at fixed substrate concentration of 10 g/L, working pH 5.0-5.5 and 36 ± 1 °C. The effluent was mostly composed of acetate and butyrate. Subsequently, two new hydrogen producing strains were isolated from the effluent sludge in the running bioreactor, and they were preliminarily identified as Clostridium and Enterobacter, respectively, according to the routine screening examinations.  相似文献   

10.
The aim of the present study was to assess the influence of substrate concentration on the fermentative hydrogen production from sweet sorghum extract, in a continuous stirred tank bioreactor. The reactor was operated at a Hydraulic Retention Time (HRT) of 12 h and carbohydrate concentrations ranging from 9.89 to 20.99 g/L, in glucose equivalents. The maximum hydrogen production rate and yield were obtained at the concentration of 17.50 g carbohydrates/L and were 2.93 ± 0.09 L H2/L reactor/d and 0.74 ± 0.02 mol H2/mol glucose consumed, corresponding to 8.81 ± 0.02 L H2/kg sweet sorghum, respectively. The main metabolic product at all steady states was butyric acid, while ethanol production was high at high substrate concentrations. The experiments showed that hydrogen productivity depends significantly on the initial carbohydrate concentration, which also influences the distribution of the metabolic products.  相似文献   

11.
The present study investigated the effect of the initial proportions of carbohydrates, proteins and lipids within the substrate on the resulting biohydrogen productivity by dark fermentation. Organic matter removal and the related metabolic by-products generated during the process were also assessed. The results obtained showed that initial substrate composition in terms of carbohydrates, proteins and lipids has a significant effect on maximal potential hydrogen production (Hmax), hydrogen production rate (Rmax), hydrogen yield (YH2) and metabolites distribution. Tests with proteins and lipids as unique substrate did not produce H2. A simplex-centroid design (SCD) and compositional data analysis of the substrate was used to determine the best condition to convert the substrate into H2. Hmax, Rmax and YH2 were significantly increased using an initial proportion of 56% carbohydrates (15 g/L), 22% proteins (6 g/L), and 22% lipids (6 g/L), which was concomitant with the generation of acetic and butyric acids. Protein and lipid proportions higher than 29% and lower than 12% led to decreased Hmax, Rmax and YH2 values with a consequent accumulation of propionic acid.  相似文献   

12.
This study conducted the utilization of vegetable residues by an enriched microflora inoculum to produce biohydrogen via anaerobic batch reactor. Dark fermentation processes were carried out with 3 kinds of vegetable residue substrates including broccoli (Brassica oleracea var. italica.), onion (Alium cepa Linn.), and sweet potato (Ipomoea batatas (L.) Lam). Vegetable wastes were pretreated into 2 forms, i.e. mashed and powdered vegetable, prior to the fermentation. The substrate used for the biohydrogen production were vegetable residues and inoculum at the vegetable residues/inoculum ratio of 1:1 (based on TS). The digestion processes were performed under 120 rpm speed of shaking bottle in the incubator with control temperature of 35?C. In this work, the maximum hydrogen production was achieved by anaerobic digestion at mashed onion with bioreactor inoculum that produced total hydrogen of 424.1 mL H2 with hydrogen yield and hydrogen concentration of 151.67 mL H2/g VSadded and 43.54%, respectively. In addition, the hydrogen production continues took only 7 days for the vegetables blended with the bioreactor inoculum. Finally, it was found that the high potential of degradation of vegetable wastes an enriched microflora in dark fermentation also showed alternative solution to eliminate agricultural wastes to produce green energy.  相似文献   

13.
The short-chain fatty acids (SCFAs) accumulated in waste activated sludge (WAS) fermentation was adopted as an alternative extra carbon source for biohydrogen production in microbial electrolysis cells (MECs). WAS was pretreated by bi-frequency ultrasonic and the highest SCFAs were accumulated at 3rd day. Three groups of tests were conducted in single chamber MECs for H2 production under different SCOD concentrations. SCOD removals were up to 60% at diluted influent, but reduced to 50% at original concentration. Highest H2 yield was 1.2 mL H2/mg COD at 2-fold dilution with 155% energy efficiency. Results showed that >90% of acetate and ∼90% of propionate were effectively converted to hydrogen, and next were n-butyrate and n-valerate (at dilutions), but <20% of iso-butyrate and iso-valerate were converted. The overall biohydrogen recovery in this study was 120 ml H2/g VSS/d. This work shows a possibility of cascade utilization of WAS fermentation liquid and H2 generation in MEC.  相似文献   

14.
Immobilized cell bioreactor was operated in batch mode for biohydrogen generation by dark fermentation from acid hydrolyzed waste wheat powder. It was aimed to optimize the fermentation conditions with the purpose of obtaining the highest hydrogen yield (YH2) and production rate (HPR) by applying Box–Wilson statistical experimental design method. Particle number (PN = 120–240; X1), initial total sugar concentration (TS0 = 10–30 g/l; X2) and fermentation temperature (T = 35–55 °C; X3) were selected as independent variables. Polyester fibers with particle diameter “Dp” = 0.5 cm were used as support material to immobilize microorganisms with heat-pretreated sludge. Quadratic equations for production yield and rate were developed by using experimental results. The maximum YH2 (3.21 mol H2/mol glucose) and HPR (73.3 ml H2/h) were predicted at the optimum conditions of PN = 240, TS0 = 10 g/l and T = 44.9 °C. Also, analysis of variance, as well as sum of ranking difference test results demonstrated that fitting models were statistically significant.  相似文献   

15.
The study evaluates the biohydrogen production from herbal wastewater as the substrate by the enriched mixed slaughterhouse sludge as the seed source. In the following experiments, batch-fermentations are carried out with the optimum substrate concentrations, fermentation pH and fermentation temperature to observe the effects of H2 production, hydrogen yield and other fermentation end products at different conditions. The hydrogen production is increased as substrate concentration increased up to 8 g COD/L WW, but drastically decreased at 10 g COD/L WW. When the pH of fermentation is controlled to 6.5, a maximum amount of hydrogen yield could be obtained. The hydrogen production is maximum at 50 °C (930 ± 30 mL/L WW) compared to 30 °C (436 ± 16 mL/L WW). Acid-forming pathway with butyric acid as a major metabolite dominated the metabolic flow during the hydrogen production. The experimental results indicated that effective hydrogen production from the herbal wastewater could be obtained by thermophilic acidogenesis at proper operational conditions.  相似文献   

16.
The feasibility of hydrogen production from red algae was investigated. Galactose, the main sugar monomer of red algae, was readily converted to hydrogen by dark fermentation. The maximum hydrogen production rate and yield of galactose were 2.46 L H2/g VSS/d and 2.03 mol H2/mol galactoseadded, respectively, which were higher than those for glucose (0.914 L H2/g VSS/d and 1.48 mol H2/mol galactoseadded). The distribution of soluble byproducts showed that H2 production was the main pathway of galactose uptake. 5-HMF, the main byproduct of acid hydrolysis of red algae causes noncompetitive inhibition of H2 fermentation. 1.37 g/L of 5-HMF decreased hydrogen production rate by 50% compared to the control. When red algae was hydrolyzed at 150 °C for 15 min and detoxified by activated carbon, 53.5 mL of H2 was produced from 1 g of dry algae with a hydrogen production rate of 0.518 L H2/g VSS/d. Red algae, cultivable on vast tracts of sea by sunlight without any nitrogen-based fertilizer, could be a suitable substrate for biohydrogen production.  相似文献   

17.
Enterobacter aerogenes has a known ability to convert glycerol during a fermentative process to yield hydrogen and ethanol as the main products. A Box-Behnken design and response surface methodology were used to determine the optimal concentration of some media constituents and oxygen to maximize the yield of biohydrogen. Results indicated that the concentration of the salts studied: NH4NO3, FeSO4, and Na2HPO4 and; the presence of oxygen in the pre-culture significantly influence the production of biohydrogen. Optimal conditions were determined to be 7.5% O2 in the inoculum transfer step, ratio of inocula 18%, 8 g/L of Na2HPO4, 0.00625 g/L of FeSO4 and 1.5 g/L of NH4NO3. These optimal conditions resulted in a measured yield of 0.85 mol H2/mol glycerol at a substrate concentration of 15 g/L and a maximum predicted yield of 0.95 mol H2/mol glycerol at a substrate concentration of 21 g/L. These results were obtained using lower concentrations of salts than in previous studies, corresponding to a 76% cost savings. These experimental results also demonstrated the importance of optimizing the amount of oxygen present in the biological system rather than maintaining complete anaerobic conditions.  相似文献   

18.
This study investigated the effects of substrate concentration, HRT (hydraulic retention time), and pre-treatment of the substrate molasses on biohydrogen production from waste molasses (condensed molasses fermentation solubles, CMS) with a CSTR (continuously-stirred tank reactor). First, the hydrogen production was performed with various CMS concentrations (40–90 g COD/L, total sugar 8.7–22.6 g/L) with 6 h HRT. The results show that the maximal hydrogen production rate (HPR) occurred at 80 g COD/L substrate (19.8 g ToSu/L, ToSu: Total Sugar), obtaining an HPR of 0.417 mol/L/d. However, maximum hydrogen yield (HY) of 1.44 mol H2/mol hexose and overall hydrogen production efficiency (HPE) of 25.6% were achieved with a CMS concentration of 70 g COD/L (17.3 g ToSu/L). The substrate inhibition occurred when CMS concentration was increased to 90 g COD/L (22.6 g ToSu/L). Furthermore, it was observed that the optimal HPR, HY, and HPE all occurred at HRT 6 h. Operating at a lower HRT of 4 h decreased the hydrogen production performance because of lower substrate utilization efficiency. The employment of pre-heating treatment (60 °C for 1 h) of the substrate could markedly enhance the fermentation performance. With 6 h HRT and substrate pre-heating treatment, the HPE raised to 29.9%, which is 18% higher than that obtained without thermal pretreatment.  相似文献   

19.
Biological water-gas shift (WGS) reaction is a green and sustainable alternative to thermochemical-catalytic WGS process for hydrogen production from carbon monoxide (CO). However, CO tolerant carboxydotrophic microbes for hydrogen production and scaling up the technology using a bioreactor system present challenges in successful application of this technology. This study demonstrated the capability of anaerobic microbial consortium for biohydrogen production from CO using a moving bed biofilm reactor (MBBR). The CO conversion pathway followed by the anaerobic biomass was first elucidated by inhibiting the methanogens present using 2-bromoethanesulfonate (BES) at an optimum concentration of 10 mmol/L. An increase in inlet CO concentration to the MBBR enhanced the H2 production, but the CO conversion efficiency was low. More than 80% CO conversion efficiency was obtained only for a low inlet CO concentration. A maximum H2 concentration of 19.5 mmol/L along with 2 mmol/L of acetate were obtained for 36 mmol/L of inlet CO concentration in the bioreactor. The carbon flux analysis showed that the CO was mainly utilized for methane free H2 production, and only <10% of carbon flux was diverted towards acetate formation. Overall, this study demonstrated that MBBR system can be used for steady state biohydrogen production over a prolonged operation period.  相似文献   

20.
The main objective of the study is to investigate the effect of hydraulic retention times on continuous dark fermentative biohydrogen production in an up-flow packed bed reactor (UPBR) containing a novel microorganism immobilization material namely polyester fiber beads. The hydrogen producing dark fermentative microorganisms were obtained by heat-pretreatment of anaerobic sludge from the acidogenic phase of an anaerobic wastewater treatment plant. Glucose was the sole carbon source and the initial concentration was 15 ± 1 g/L throughout the continuous feeding. UPBR was operated under the thermophilic condition at T = 48 ± 2 °C and at varying HRTs between 2 h and 6 h. The hydrogen productivity of continuously operated UPBR increased with increasing HRT. Hydrogen production volume varied between 4331 and 6624 ml/d, volumetric hydrogen production rates (VHPR) were obtained as 3.09–4.73 L H2/L day, and hydrogen production yields (HY) were 0.49 mol/mol glucose-0.89 mol/mol glucose depending on HRT. Maximum daily hydrogen volume (6624 ml/d), the yield (0.89 mol/mol glucose) and VHPR (4.73 L H2/L day) were obtained at HRT = 6 h. The production rate and the yield decreased with increasing organic loading rate due to substrate inhibition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号