首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, solar reactor efficiency analysis of the solar thermochemical two-step zinc oxide–zinc sulfate (ZnO–ZnSO4) water splitting cycle. In step-1, the ZnSO4 is thermally decomposed into ZnO, SO2, and O2 using solar energy input. In step-2, the ZnO is re-oxidized into ZnSO4 via water splitting reaction producing H2. The ZnSO4 is recycled back to the solar reactor and hence can be re-used in multiple cycles. The equilibrium compositions associated with the thermal reduction and water-splitting steps are identified by performing HSC simulations. The effect of Ar towards decreasing the required thermal reduction temperature is also explored. The total solar energy input and the re-radiation losses from the ZnO–ZnSO4 water splitting cycle are estimated. Likewise, the amount of heat energy released by different coolers and water splitting reactor is also determined. Thermodynamic calculations indicate that the cycle (ηcycle) and solar-to-fuel energy conversion efficiency (ηsolar-to-fuel) of the ZnO–ZnSO4 water splitting cycle are equal to 40.6% and 48.9% (without heat recuperation). These efficiency values are higher than previously investigated thermochemical water splitting cycles and can be increased further by employing heat recuperation.  相似文献   

2.
    
  相似文献   

3.
    
  相似文献   

4.
    
The sodium manganese mixed ferrite thermochemical cycle Na(Mn1/3Fe2/3)O2/(MnFe2O4 + Na2CO3) for sustainable hydrogen production has been implemented in a solar reactor-receiver, packed with indirectly heated MnFe2O4/Na2CO3 mixture pellets, with the aim of verifying its feasibility and of determining the critical aspects of the process. The reactor operates at nearly constant temperature in the range 750–800 °C; the shift between the hydrogen-producing and regeneration steps is obtained by switching the reactive gas from water to carbon dioxide. Hydrogen produced during 1-h operation of the reactor is in the range of 130–460 μmol/g of mixture, depending on experimental conditions. Compared to other existing prototypes, the implemented process obtains comparable production efficiencies while operating at lower temperature both in the hydrogen production and regeneration phases.  相似文献   

5.
A two-step thermochemical cycle process for solar hydrogen production from water has been developed using ferrite-based redox systems at moderate temperatures. The cycle offers promising properties concerning thermodynamics and efficiency and produces pure hydrogen without need for product separation.  相似文献   

6.
The hydrogen generation reaction in the H2O/ZnO/MnFe2O4 system was studied to clarify the possibility of whether this reaction system can be used for the two-step water splitting to convert concentrated solar heat to chemical energy of H2. At 1273 K, the mixture of ZnO and MnFe2O4 reacted with water to generate H2 gas in 60% yield. X-ray diffractometry and chemical analysis showed that 48 mol% of MnII (divalent manganese ion) in the A-site of MnFe2O4 was substituted with ZnII (divalent zinc ion) and that chemical formula of the solid product was estimated to be Zn0.58MnII0.42MnIII0.39Fe1.61O4 (MnIII: trivalent manganese ion). Its lattice constant was smaller than that of the MnFe2O4 (one of the two starting materials). From the chemical composition, the reaction mechanism of the H2 generation with this system was discussed. Since the Mn ions in the product solid after the H2 generation reaction are oxidized to Mn3+, which can readily release the O2− ions as O2 gas around 1300 K, the two-step of H2 generation and O2 releasing seem to be cyclic.  相似文献   

7.
    
The global trend in energy demand has paved way for clean hydrogen (H2) energy production at large scale. To address this issue, perovskite (ABX3) nanomaterials are widely researched to replace the noble metal electrocatalysts for electrochemical water splitting. In this work, the effect of annealing temperature on the structural and electrochemical properties of combustion derived strontium nickelate (SrNiO3) nanoparticles are studied. Benefitting from the unique features of perovskites, SrNiO3 nanoparticles displays excellent OER and HER activity in 1.0 M KOH with an overpotential of 259 mV and 451 mV to achieve 10 mAcm?2 respectively. SrNiO3 nanoparticles show superior HER activity when annealed at higher temperature and subtle change in OER activity. The stability of SrNiO3 nanoparticles were noteworthy as it shows no degradation even after 12 h. The overall water splitting of highly active SrNiO3 nanoparticles was carried out in a two-electrode system and the setup posted a cell voltage of 1.88 V at 10 mAcm?2 after continuous water splitting for 24 h. Thus, SrNiO3 nanoparticles may possibly serve as a potential bifunctional electrocatalyst for H2 production.  相似文献   

8.
This paper reports a thermodynamic comparison between the samarium and erbium oxide based solar thermochemical water splitting cycles. These cycles are a two-step process in which the metal oxide is first thermally reduced into the pure metal, and the produced metal can be used to split water to produce H2. The metal oxides can be reused for multiple cycles without consumption. The effect of water splitting temperature on various thermodynamic parameters which are essential to design the solar reactor system for the production of H2 via water splitting reaction using the samarium and erbium oxides is studied in detail. The total amount of solar energy needed for the thermal reduction of samarium and erbium oxides is estimated. The amount of heat energy released by the water splitting reactor is calculated. Also, the cycle and solar-to-fuel energy conversion efficiency for both cycles are determined by employing heat recuperation. Obtained results indicate that the efficiencies associated with these cycles are comparable to the previously studies thermochemical cycles. It is observed that higher water splitting temperature favors towards higher efficiencies. At constant thermal reduction temperature = 2280 K, by employing 50% heat recuperation, the solar-to-fuel energy conversion efficiency for the samarium cycle (30.98%) is observed to be higher than erbium cycle (28.19%).  相似文献   

9.
    
The high efficiency of SrTiO3 in the reaction of heterogeneous photocatalysis needs a suitable architecture that maximises photon absorption and minimises electron loss during excitation state. In order to further enhance the migration of charge carriers during excitation state, considerable effort has to be exerted to further develop the heterogeneous photocatalysis of this SrTiO3 under UV, visible, and solar illumination. Currently, unique and interesting features of binary photocatalyst system have gained more attention by researchers and it became a favourite research topic among various groups of scientists around the world. It was noticed that the binary photocatalyst system properties primarily depends on the nature of the surface properties, surface morphologies, as well as the role of optimum dopants amount incorporated into the SrTiO3. Thus, this article presents a critical review of recent achievements in the photocatalytic activity of the SrTiO3 for water splitting H2 generation technology.  相似文献   

10.
Sr2Ta2O7 nanosheets have been synthesized by a hydrothermal method without using any template. The thickness, widths, and lengths of Sr2Ta2O7 nanosheets are about 10–50 nm, 50–150 nm, and 500 nm, respectively. The optimum conditions for the formation of the nanosheets are maintaining the reactants at 260 °C for 7 days. On basis of the experimental data, a possible formation mechanism of the nanosheets under the hydrothermal conditions was proposed. The photocatalytic activity for water splitting was investigated under ultraviolet irradiation. It has been found that Sr2Ta2O7 nanosheets, compared to the bulk Sr2Ta2O7 sample, showed a higher photocatalytic activity even in the absence of a cocatalyst. The higher activity of the hydrothermally synthesized sample is attributed to its larger surface areas and nanoscale structure.  相似文献   

11.
Hydrogen produced from solar energy is one of the most promising solar energy technologies that can significantly contribute to a sustainable energy supply in the future. This paper discusses the unique advantages of using solar energy over other forms of energy to produce hydrogen. Then it examines the latest research and development progress of various solar-to-hydrogen production technologies based on thermal, electrical, and photon energy. Comparisons are made to include water splitting methods, solar energy forms, energy efficiency, basic components needed by the processes, and engineering systems, among others. The definitions of overall solar-to-hydrogen production efficiencies and the categorization criteria for various methods are examined and discussed. The examined methods include thermochemical water splitting, water electrolysis, photoelectrochemical, and photochemical methods, among others. It is concluded that large production scales are more suitable for thermochemical cycles in order to minimize the energy losses caused by high temperature requirements or multiple chemical reactions and auxiliary processes. Water electrolysis powered by solar generated electricity is currently more mature than other technologies. The solar-to-electricity conversion efficiency is the main limitation in the improvement of the overall hydrogen production efficiency. By comparison, solar powered electrolysis, photoelectrochemical and photochemical technologies can be more advantageous for hydrogen fueling stations because fewer processes are needed, external power sources can be avoided, and extra hydrogen distribution systems can be avoided as well. The narrow wavelength ranges of photosensitive materials limit the efficiencies of solar photovoltaic panels, photoelectrodes, and photocatalysts, hence limit the solar-to-hydrogen efficiencies of solar based water electrolysis, photoelectrochemical and photochemical technologies. Extension of the working wavelength of the materials is an important future research direction to improve the solar-to-hydrogen efficiency.  相似文献   

12.
    
This investigation reports the thermodynamic exploration of a novel three-step GeO2/GeO water splitting (WS) cycle. The thermodynamic computations were performed by using the data obtained from HSC Chemistry thermodynamic software. Numerous process parameters allied with the GeO2/GeO WS cycle were estimated by drifting the thermal reduction (TH) and water splitting temperature (TL). The entire analysis was divided into two section: a) equilibrium analysis and b) efficiency analysis. The equilibrium analysis was useful to determine the TH and TL required for the initiation of the thermal reduction (TR) of GeO2 and re-oxidation of GeO via WS reaction. Furthermore, the influence of PO2 on the TH required for the comprehensive dissociation of GeO2 into GeO and O2 was also studied. The efficiency analysis was conducted by drifting the TH and TL in the range of 2080 to 1280 K and 500–1000 K, respectively. Obtained results indicate that the minimum Q˙solarcycle=624.3kW and maximum ηsolartofuel=45.7% in case of the GeO2/GeO WS cycle can be attained when the TR of GeO2 was carried out at 1280 K and the WS reaction was performed at 1000 K. This ηsolartofuel=45.7% was observed to be higher than the SnO2/SnO WS cycle (39.3%) and lower than the ZnO/Zn WS cycle (49.3%). The Q˙solarcycle can be further decreased to 463.9 kW and the ηsolartofuel can be upsurged up to 61.5% by applying 50% heat recuperation.  相似文献   

13.
Photon management involving particularly an up-conversion process is proposed as a relatively novel strategy for improving the efficiency of hydrogen generation in photoelectrochemical cells (PEC) with wide-band gap photoanodes. Optically active photoanode has been constructed by electrodeposition of titanium dioxide nanopowders containing Nd3+ ions, synthesized via a sol-gel method, onto ITO/TiO2(thin film) substrates. Thin films of TiO2 have been deposited by means of RF magnetron sputtering in an ultra-high-vacuum system. X-ray diffraction, scanning electron microscopy, UV-VIS-NIR spectrophotometry, and photoluminescence have been applied to assess the properties of photoanodes. In experiments involving photon-assisted water splitting, an external up-converter containing Yb3+/Er3+ rare-earth ions has been used. Photocurrent as a function of voltage (VB) under illumination with white light is relatively high (280 μA at VB = 0 V) for pure TiO2 thin films and it is not affected by the electrodeposition of TiO2:Nd3+ powders. NIR-driven up-conversion with laser excitation at λ = 980 nm has been found responsible for a 13-fold increase in photocurrent at VB = 0 V in the modified PEC configuration.  相似文献   

14.
The hydrolysis step of the Zn/ZnO thermochemical cycle for hydrogen production is experimentally investigated in a laboratory-scale tube-reactor. The current work uses a new approach in which the heterogeneous oxidation of gaseous Zn with steam is carried out under a negative axial temperature gradient in order to improve cycle efficiency by reducing the proportion of steam and inert carrier gas used. It is shown that complete conversion of Zn to ZnO is possible at steam-to-Zn stoichiometries greater than 5.0. As the steam-to-Zn stoichiometry approaches unity at reduced inert gas fractions, condensation of Zn on the reactor walls becomes more likely. In addition, the observed gas-phase equilibrium shift toward increased production of ZnO at temperatures under 800 K is consistent with earlier theoretical predictions. While complete conversion with low inert gas and steam usage was not achieved, our approach shows great improvement over previous aerosol-based approaches when considering the total amounts of steam and inert gas used per unit of hydrogen produced. Therefore, the current temperature gradient approach is promising for the design of an efficient reactor for water splitting via Zn vapor.  相似文献   

15.
Thermochemical two-step water splitting using a redox system of iron-based oxides or ferrites is a promising process for producing hydrogen without CO2 emission by the use of high-temperature solar heat as an energy source and water as a chemical source. In this study, thermochemical hydrogen production by two-step water splitting was demonstrated on a laboratory scale by using a single reactor of an internally circulating fluidized bed. This involved the successive reactions of thermal-reduction (T-R) and water-decomposition (W-D). The internally circulating fluidized bed was exposed to simulated solar light from Xe lamps with an input power of 2.4-2.6 kWth for the T-R step and 1.6-1.7 kWth for the subsequent W-D step. The feed gas was switched from an inert gas (N2) in the T-R step to a gas mixture of N2 and steam in the W-D step. NiFe2O4/m-ZrO2 and unsupported NiFe2O4 particles were tested as a fluidized bed of reacting particles, and the production rate and productivity of hydrogen and the reactivity of reacting particles were examined.  相似文献   

16.
    
Photocatalysts currently in use are only able to utilize very small part of the solar spectrum that arrives at the earth's surface (mainly ultraviolet light). Most of the photons that are not absorbed by the photocatalysts are converted to heat. However, there is no consensus on the effect of reaction temperature on photo-thermo chemical synergetic catalysis, which has been studied herein using experimental investigations combined with thermodynamic analysis. An elaborate photo-thermo chemical reaction test rig was initially designed and set up that can test experimental variable while the other influence factors were kept constant. The effects of ultrasonic and operation temperature on Pt/TiO2 particle cluster distribution during the photo-thermo chemical synergetic catalytic water splitting process were analyzed by an upright microscope for the first time. The results indicated that the H2 production rate varies with reaction temperature, and 55 °C is the optimum temperature for the photo-thermo chemical synergetic catalytic water splitting process studied here. A maximum H2 production rate of 11.934 mmol/(h g) could be achieved using a classical Pt/TiO2 catalyst, when operating under the optimum reaction conditions.  相似文献   

17.
Solar driven hybrid sulfur-ammonia water splitting cycle (HySA) integrates a solar-photocatalytic hydrogen, H2, production step (H2 sub-cycle) with a high-temperature solar thermochemical oxygen, O2, evolution step (O2 sub-cycle), implementing efficient thermal energy storage as part of the cycle operation. Previous studies of the cycle omitted intermediate products, such as ammonium bisulfate, from the O2 sub-cycle and, thus, neglected their potential impact on the cycle's chemistry. Also, there are discrepancies in reported literature for the thermodynamic properties of ammonium sulfate, (NH4)2SO4, and ammonium bisulfate, NH4HSO4. In this study, thermal analysis experiments were conducted in order to determine the phase transition temperatures and enthalpies, and the heat capacity temperature dependence of the ammonium sulfate, (NH4)2SO4, and ammonium bisulfate, NH4HSO4. Our experimentally determined values for these parameters agree well with the data reported in DIPPR Project 801 database. Moreover, an exploratory thermodynamic analyses was performed using AspenPlus© and FactSage©, that included all potential reaction products, in order to identify critical parameters for an optimum O2 sub-cycle. A methodology is proposed and evaluated to mitigate AspenPlus©'s deficiency to handle solid phase changes. The thermodynamic analyses demonstrate that the NH4HSO4 inclusion in the O2 sub-cycle reduces the overall process energy requirements, and allows its use as an energy storage medium. Finally, we show that the use of molten salts, in combination with their interactions, significantly affects the efficiency and the operating conditions of the process, as well as the state of the mixtures.  相似文献   

18.
Photocatalytic water splitting with solar light is one of the most promising technologies for solar hydrogen production. From a systematic point of view, whether it is photocatalyst and reaction system development or the reactor-related design, the essentials could be summarized as: photon transfer limitations and mass transfer limitations (in the case of liquid phase reactions). Optimization of these two issues are therefore given special attention throughout our study. In this review, the state of the art for the research of photocatalytic hydrogen production, both outcomes and challenges in this field, were briefly reviewed. Research progress of our lab, from fundamental study of photocatalyst preparation to reactor configuration and pilot level demonstration, were introduced, showing the complete process of our effort for this technology to be economic viable in the near future. Our systematic and continuous study in this field lead to the development of a Compound Parabolic Concentrator (CPC) based photocatalytic hydrogen production solar rector for the first time. We have demonstrated the feasibility for efficient photocatalytic hydrogen production under direct solar light. The exiting challenges and difficulties for this technology to proceed from successful laboratory photocatalysis set-up up to an industrially relevant scale are also proposed. These issues have been the object of our research and would also be the direction of our study in future.  相似文献   

19.
20.
    
A pilot unit for a concentrated solar thermal reactor with solar tracking was constructed. A 70 cm diameter concentrator dish could provide temperatures around 800 °C at a fairly steady rate. In the search for a redox pair that can work at such temperatures, studies were conducted on the feasibility of the Pb/PbO cycle for the splitting of H2O for H2 production. Thermodynamics accounting for the vapor pressures of Pb and PbO indicated favorable water splitting until approximately 900 °C, at atmospheric steam pressures. After 1000 °C, the vapor pressure of PbO becomes greater than that of Pb, as a result, thermodynamic favorability in the gas phase begins to be suppressed. The thermodynamic estimations were tested experimentally both in lab scale, and in bench scale molten bed reactors. The process went through similar maxima in the hydrogen production rates. The field tests in solar concentrator using a Pb coated mullite system did not reveal much due to evaporative loss of Pb and PbO under high solar flux. In this paper, it was demonstrated that the relatively high vapor pressure of Pb and PbO can be exploited for designing efficient water splitting cycles at temperatures <1000 °C using a PbO vapor recovery and circulation system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号