首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Spirulina platensis is defined as the dried biomass of cyanobacteria in commercial use and is biomass with high carbon content. Spirulina platensis microalgae strain supported-CoB catalysts to produce hydrogen from sodium borohydride (NaBH4) were prepared for the first time. The Spirulina platensis microalgae strain was modified with phosphoric acid (H3PO4) to proton. Then, the supported catalyst was performed to produce hydrogen from NaBH4 hydrolysis. The optimum H3PO4 concentration, optimum Co amount, and optimum impregnation time of the H3PO4 with the microalgae strain were investigated. The maximum hydrogen production rate for the 30% CoB catalyst supported on microalgae strain treated with H3PO4 was found to be 3940 mL min−1g−1catalyst. X-ray powder diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), Brunauer–Emmett–Teller (BET), and scanning electron microscope (SEM) analysis were performed for characterization of CoB catalyst supported on Spirulina microalgae strain. After four consecutive uses, the performance and conversion values of this catalyst were investigated. At the same time, the effect of temperature on the hydrogen production from this hydrolysis reaction was examined. The activation energy with the CoB catalyst supported on Spirulina microalgae strain was calculated as 35.25 kJ mol−1. According to the kinetic model of a power law, n value was found as 0.25 for kinetic studies.  相似文献   

2.
Generation of hydrogen by hydrolysis of alkali metal hydrides has attracted attention. Unsupported CoB catalyst demonstrated high activity for the catalytic hydrolysis of NaBH4 solution. However, unsupported CoB nanoparticles were easy to aggregate and difficult to reuse. To overcome these drawbacks, CoB/SiO2 was prepared and tested for this reaction. Cobalt (II) acetate precursor was loaded onto the SiO2 support by incipient-wetness impregnation method. After drying at 100 °C, Co cations were deposited on the support. The dried sample was then dispersed in methanol/water solution and then fully reduced by NaBH4 at room temperature. The catalyst was characterized by N2 sorption, XRD and XPS. The results indicated that the CoB on SiO2 possessed amorphous structure. B and Co existed both in elemental and oxidized states. SiO2 not only affected the surface compositions of CoB, but also affected the electronic states of Co and B. B0 could donate partial electron to Co0. The structure effect caused by the SiO2 support helped to prevent CoB nanocluster from aggregation and therefore the activity increased significantly on hydrolysis of alkaline NaBH4 solution. The CoB/SiO2 catalyst showed much higher activity than the unsupported CoB catalyst. At 298 K, the hydrogen generation rate on CoB/SiO2 catalyst was 4 times more than that on the unsupported CoB catalyst. The hydrogen generation rate was as high as 10,586 mL min−1 g−1 catalyst at 298 K. CoB/SiO2 is a very promising catalyst for this reaction.  相似文献   

3.
In this study, montmorillonite (MMT) clay was modified with different acids to be used as support material. The modified MMT clay was used to obtain hydrogen in the hydrolysis reactions of NaBH4 (NaBH4-HR) as a support material for the Co–B and Co–Fe–B catalyst. During the activation of MMT clay, the effects of different acids, phosphoric acid (H3PO4) concentration, and impregnation time with H3PO4 were investigated. During the hydrogen generation from the NaBH4-HR, effects of Co loading, Fe loading, NaBH4 concentration, temperature and, catalyst durability were investigated. The maximum HGRs for MMT-H3PO4–CoB and MMT-H3PO4–Co–Fe–B treated with 5 M H3PO4 for 7 days were 1869 and 4536 mL/min/gcatalyst, respectively. The activation energies for MMT-H3PO4–CoB and MMT-H3PO4–Co–Fe–B catalyst samples were 49.5 and 38.90 kJ/mol.  相似文献   

4.
Cobalt-boron (CoB) catalyst supported on zeolite modified with hydrochloric acid (CoB-zeolite-HCl) and zeolite modified with acetic acid (CoB-zeolite-CH3COOH) is prepared for the hydrogen (H2) release from sodium borohydride (NaBH4). The supported catalyst samples were characterized by X-ray diffraction spectroscopy (XRD), scanning electron microscope (SEM), Fourier transforms infrared spectroscopy (FTIR), nitrogen adsorption and, inductively coupled plasma optical emission spectroscopy (ICP-OES). The effects of Co metal loading, NaBH4 concentration, NaOH concentration, temperature, and reusability on the catalytic performance of the CoB-zeolite-HCl catalyst were investigated. The completion time of the reaction using the raw zeolite supported CoB catalyst was about 265 min. However, the completion time of the reaction using the CoB-zeolite-HCl catalyst was decreased to about 80 min. BET surface area values showed that there is a 7-fold increase in the specific surface area for the zeolite activated with HCl compared to the BET surface area for the raw zeolite. The activation energy (Ea) of the catalyzed reaction was 42.45 kJ mol−1.  相似文献   

5.
CoB/ZIF-8 supported catalysts were successfully prepared using Co/Zn-ZIF-8 as the precursor by single-step reduction, which was applied in hydrogen release from the hydrolysis of NaBH4. Reducible Co ions of Co/Zn-ZIF-8 can be partially in-situ transformed into CoB by direct reduction, whereas ZIF-8 framework structure can be well preserved due to the resistance of Zn to reducing ambiences. Accordingly, CoB active components can be highly loaded onto ZIF-8 support to produce CoB/ZIF-8 catalysts. The texture evolution of Co/Zn-ZIF-8 during reduction was investigated by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscope and nitrogen adsorption–desorption isotherms. Compared with the reduction of Co-ZIF-67, the framework structure of Co/Zn-ZIF-8 can be effectively preserved although Co ions of Co/Zn-ZIF-8 were partially reduced into cobalt-based alloy. In the hydrogen release from hydrolysis of NaBH4, CoB/ZIF-8 supported catalyst exhibits excellent catalytic activity. The effect of NaOH concentration, NaBH4 concentration and reaction temperature on hydrolysis reaction of NaBH4 was deeply studied based on this catalyst. Compared with other published catalysts, this catalyst exhibits relatively low activation energy of about 57.72 kJ mol?1.  相似文献   

6.
In the present paper, the blast furnace slag (BFS) supported Co-B catalyst were investigated in detail. The impregnation-chemical reduction method was used while hydrochloric (HCl) acid treated BFS samples (BFS+) were prepared. Catalyst samples were analyzed in three main groups as base BFS (BFS0), BFS0-Co-B and BFS+-Co-B. The effects of these catalyst samples on hydrogen production from the solid-state sodium boron hydride (NaBH4) are analyzed in this study. The effects of some parameters such as the ingredients of blast furnace slag, the molarity of hydrochloric acid treatment, the Co percentages and the solution temperatures were investigated on the hydrolysis performance of NaBH4. The NaBH4 hydrolysis reaction with the BFS0 is treated by the BFS+-Co-B-20% catalyst was completed approximately 25 min and the hydrolysis reaction with the BFS0-Co-B-20% catalyst was completed approximately 20 min whereas the hydrolysis reaction of NaBH4 was completed in 1 h 35 min. The hydrogen production rates at pre-heated to max 40, 50 and 60 °C were measured as 55.12, 64.47 and 70.41 L/min.gcatalyst, respectively. According to another result of the study, the high-efficiency solid-state BFS-Co-B & NaBH4 mixtures were covered with the PVA (Polyvinyl alcohol) film to make them more resistant to environmental effects such as humidity.  相似文献   

7.
Hydrogen production via chemical processes has gained great attention in recent years. In this study, Co-based complex catalyst obtained by adsorption of Co metal to Amberlite IRC-748 resin and Diaion CR11 were tested for hydrogen production from alkaline NaBH4 via hydrolysis process. Their catalytic activity and microstructure were investigated. Process parameters affecting the catalytic activity, such as NaOH concentration, Co percentage and catalyst amount, as well as NaBH4 concentration and temperature were investigated. Furthermore, characteristics of these catalysts were carried out via SEM, XRD and FT-IR analysis. Hydrogen production rates equal to 211 and 221 ml min−1 gcat−1 could be obtained with Amberlite IRC-748 resin and Diaion CR11 Co based complex catalysts, respectively. The activation energies of the catalytic hydrolysis reaction of NaBH4 were calculated as 46.9 and 59.42 kJ mol−1 for Amberlite IRC-748 resin and Diaion CR11 based catalysts respectively kJ mol−1 from the system consisting of 3% Co, 10 wt% NaBH4 and 7 wt% NaOH as well as 50 mg catalyst dosage. It can be concluded that Co-based resins as catalysts for hydrogen production is an effective alternative to other catalysts having higher rate.  相似文献   

8.
In this study, grinded apricot kernel shell (GAKS) biobased waste was used for the first time as a cost-effective, efficient, green and metal-free catalyst for hydrogen generation from the hydrolysis reaction of sodium borohydride (NaBH4). For the hydrogen production by NaBH4 hydrolysis reaction, GAKS was treated with various acids (HCl, HNO3, CH3COOH, H3PO4), salt (ZnCl2) and base (KOH). As a result, the phosphoric acid (H3PO4) demonstrated better catalytic activity than other chemical agents. The hydrolysis of NaBH4 with the GAKS-catalyst (GAKScat) was studied depending on different parameters such as acid concentration, furnace burning temperature and time, catalyst amount, NaBH4 concentration and hydrolysis reaction temperature. The obtained GAKScat was characterized by ICP-MS, elemental analysis, TGA, XRD, FT-IR, Boehm, TEM and SEM analyses and was evaluated for its catalytic activity in the hydrogen production from the hydrolysis reaction of NaBH4. According to the results, the optimal H3PO4 percentage was found as 15%. The maximum hydrogen generation rate from the hydrolysis of NaBH4 with the GAKScat was calculated as 20,199 mL min−1 gcat−1. As a result, it can be said that GAKS treated with 15% H3PO4 as a catalyst for hydrogen production is an effective alternative due to its high hydrogen production rate.  相似文献   

9.
The aim of this work is to prepare CoB catalysts supported on raw bentonite (CoB/bentonite) and Na-exchanged bentonite (CoB/Na-bentonite) by the impregnation and chemical reduction method. The prepared catalysts were characterized using X-ray diffractometry (XRD), X-ray fluorescence spectroscopy (XRF), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS) and Fourier transform infrared spectroscopy (FTIR) techniques. The activities of the catalysts were tested in the hydrolysis reaction of sodium borohydride (NaBH4) in a semi-batch system. The volume of the evolved hydrogen gas was determined by a water displacement method. The effects of catalyst amount, NaOH (a base stabilizer) concentration, NaBH4 concentration and solution temperature on the hydrogen generation rate were investigated. The maximum hydrogen generation rates were determined as 921.94 mL/min.gcat for CoB/bentonite and 1601.45 mL/min.gcat for CoB/Na-bentonite when the 5 wt % NaBH4 and 10 wt % NaOH solutions were used at 50 °C. The activation energies (Ea) of the hydrolysis reaction over CoB/bentonite and CoB/Na-bentonite were determined as 55.76 and 56.61 kJ/mol, respectively.  相似文献   

10.
The development of efficient and non-noble catalyst is of great significance to hydrogen generation techniques. Three surface-oxidized cobalt borides of Co–B–O@CoxB (x = 0.5, 1 and 2) have been synthesized that can functionalize as active catalysts in both alkaline water electrolysis and the hydrolysis of sodium borohydride (NaBH4) solution. It is discovered that oxidation layer and low boron content favor the oxygen evolution reaction (OER) activity of Co–B–O@CoxB in alkaline water electrolysis. And surface-oxidized cobalt boride with low boron content is more active toward hydrolysis of NaBH4 solution. An alkaline electrolyzer fabricated using the optimized electrodes of Co–B–O@CoB2/Ni as cathode and Co–B–O@Co2B/Ni as anode can deliver current density of 10 mA cm−2 at 1.54 V for overall water splitting with satisfactory stability. Meanwhile, Co–B–O@Co2B affords the highest hydrogen generation rate of 3.85 L min−1 g−1 for hydrolysis of NaBH4 at 25 °C.  相似文献   

11.
Inorganic acids such as hydrochloric acid (HCl), nitric acid (HNO3) and sulphuric acid (H2SO4) are generally used in the acid modification of clays. Here, CoB catalyst was synthesized on the acetic acid-activated kaolin support material (CH3COOH -kaolin- CoB) with an alternative approach. This prepared catalyst, firstly, was used to catalyze the hydrolysis of NaBH4 (NaBH4-HR). The structure of the raw kaolin, kaolin-CH3COOH, and CH3COOH-kaolin-CoB samples were characterized by X-ray diffraction spectroscopy (XRD), Fourier transforms infrared spectroscopy (FTIR), scanning electron microscope (SEM), and nitrogen adsorption. At the same time, this catalyst performance was examined by Co loading, NaBH4 concentration, NaOH concentration, temperature and reusability parameters. The end times of this hydrolysis reaction using raw kaolin-CoB and CH3COOH-kaolin-CoB were found to be approximately 140 and 245 min, respectively. The maximum hydrogen generation rates (HGRs) obtained at temperatures 30 °C and 50 °C were 1533 and 3400 mL/min/gcatalyst, respectively. At the same time, the activation energy was found to be 49.41 kJ/mol.  相似文献   

12.
Graphene oxide (GO) modified Co–B catalysts for NaBH4 hydrolysis have been synthesized by the chemical reduction in this work. The structural features and catalytic performance of as-prepared samples have been investigated and discussed as a function of amounts of GO. According to structure characterization, the catalysts still retain the amorphous structure of Co–B alloy with the addition of GO, while GO exists as reduced GO (r-GO). The textural analysis and morphology observation indicate that the appropriate amount of GO in Co–B catalyst results in the obvious increase of specific surface area and uniform clustered morphology, which contributes to improve active surface area for catalytic reactions. The results of surface species characterization show that the electron density at active Co sites increases due to an electron transfer from B to Co facilitated by r-GO. It has been found that 50 mg GO modified Co–B catalyst exhibits especially high activity with a hydrogen generation rate of 14.34 L min−1·gcatalyst−1 and much lower activation energy of 26.2 kJ mol−1 for hydrolysis reaction of NaBH4. Meanwhile, the reusability evaluations show that the catalyst preserves high stability which can still maintain 81.5% of its initial activity after 5 catalytic cycles.  相似文献   

13.
Effective Co/Cu, CoB/Cu, and CoBM (M = Mo,Zn,Fe)/Cu catalysts were prepared on the copper surface by a simple electroless deposition method using a morpholine borane as a reducing agent in the glycine solution. The activity of the deposited catalysts was investigated for hydrogen generation from an alkaline sodium borohydride solution. It was determined that these synthesized catalysts demonstrated the catalytic activity for the hydrolysis reaction of NaBH4. The lowest obtained activation energy (EA) of the hydrolysis reaction of NaBH4was 27 kJ mol?1 for the CoBMo/Cu catalyst. The hydrogen generation rate of 15.30 ml min?1 was achieved using CoBMo/Cu catalysts at 313 K and it increased ~3.5 times with the increase of temperature to 343 K. The highest hydrogen generation rate obtained by CoBMo/Cu films may be related to the hierarchical cauliflower-shaped 3D structures and the high roughness surface area. Moreover, the CoBMo/Cu catalyst showed an excellent reusability.  相似文献   

14.
A Co/HTNT catalyst is developed by immobilizing Co on the surface of titanate nanotubes. The microstructure and composition of the catalyst are investigated with atomic absorption spectroscopy (AAS), high resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), Fourier transform infrared spectrometer (FT-IR) and X-ray photoelectron spectroscopy (XPS). The developed Co/HTNT catalyst shows great performance in catalyzing NaBH4 hydrolysis. The hydrolysis of 25 mg NaBH4 catalyzed by 50 mg Co/HTNT in 10 g NaOH solution (12.5 wt%) provides a hydrogen production rate of 1.04 L min?1 gCo?1 at 30 °C, and the activation energy of the reaction is 29.68 kJ mol?1. The high catalytic activity and economical property make this catalyst a promising choice for on-site hydrogen production from NaBH4 hydrolysis.  相似文献   

15.
In recent years, catalytic hydrolysis of sodium borohydride is considered to be a promising approach for hydrogen generation towards fuel cell devices, and highly efficient and noble-metal-free catalysts have attracted increasing attention. In our present work, Co3O4 nanocubes are synthesized by solvothermal method, and then vapor-phase phosphorization treatment is carried out for the preparation of novel Co−O−P composite nanocatalysts composed of multiple active centers including Co, CoO, and Co2P. For catalyst characterization, field-emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), energy dispersive spectrometry (EDS), X-ray diffraction (XRD) and X-ray photoelectric spectroscopy (XPS) are conducted. Optimal conditions for catalyst preparation and application were investigated in detail. At room temperature (25 °C), maximum hydrogen generation rate (HGR) is measured to be 4.85 L min−1 g−1 using a 4 wt% NaBH4 − 8 wt% NaOH solution, which is much higher than that of conventional catalysts with single component reported in literature. It is found that HGR remarkably increases with the increasing of reaction temperature, and apparent activation energy for catalytic hydrolysis of NaBH4 is calculated to be 63 kJ mol−1. After reusing for five times, the Co−O−P composite nanocatalysts still retains 78% of the initial activity.  相似文献   

16.
The fast release of hydrogen from borohydride is highly desired for a fuel cell system. However, the generation of hydrogen from borohydride is limited by the low activity and low stability of the catalyst. Herein, a highly active catalyst is synthesized through a simple one-step chemical reduction using bacterial cellulose (BC) derived carbon as a support for the active Co–B alloy. The morphology and microstructure of the BC/Co–B nanocomposite are characterized by SEM, TEM, XRD, and BET adsorption analysis. The BC/Co–B possesses high surface area (125.31 m2 g?1) high stability and excellent catalytic activity for the hydrolysis of NaBH4. Compared with unsupported Co–B nanocomposite or commercial carbon supported Co–B, the BC/Co–B nanocomposite shows greatly improved catalytic activity for the hydrolysis of NaBH4 with a high hydrogen generation rate of 3887.1 mL min?1 g?1 at 30 °C. An activation energy of 56.37 kJ mol?1 was achieved for the hydrolysis reaction. Furthermore, the BC/Co–B demonstrated excellent stability. These results indicate that the BC/Co–B nanocomposite is a promising candidate for the hydrolysis of borohydrides.  相似文献   

17.
Ni-based catalysts were synthesized in water, methanol and ethanol solvents by chemical reduction with sodium borohydride (NaBH4). The obtained catalyst for the first time was used to catalyze the NaBH4 hydrolysis reaction with phosphoric acid and acetic acid including different concentrations. The maximum hydrogen production rates obtained in the hydrolysis reaction including 0.5 M phosphoric acid and 0.1 M acetic acid of the Ni-based catalyst prepared in ethanol solvent were 5214 and 3650 ml g?1 min?1, respectively.  相似文献   

18.
In the present study, a cobalt-doped catalyst was prepared from chicken eggshell powder (CEP) biowaste to be used in the hydrolysis of sodium borohydride (NaBH4). In the presence of the prepared catalyst (CEPcat), possible effects of the parameters of NaOH concentration (%), catalyst amount (g), NaBH4 concentration (%), process temperature (oC) and reusability affecting the hydrolysis of sodium borohydride were examined. The CEPcat obtained was characterized with FT-IR, TGA, XRD, SEM and EDX analyses. The hydrogen generation rate (HGR) was determined as 432 mL gCo−1 min−1 in the presence of 1 g CEPcat, a CoO/CaO ratio of 10/90 and 1% NaBH4 concentration. The activation energy of the NaBH4 hydrolysis reaction was calculated as 16.78 kJ mol−1. After 16 reuses of the CEPcat there was no significant decrease in the hydrogen volume. Compared to the first use while there was an increase in the HGR. These results showed that the CEPcat prepared has a significant advantage over other catalysts for use in NaBH4 hydrolysis.  相似文献   

19.
Metal ion-imprinted (IIH) poly(2-acrylamido-2-methyl-1-propansulfonic acid) p(AMPS) hydrogels were prepared by using a free-radical polymerization technique in the presence of metal ions (M = Co (II) or Ni (II)). Using metal ion-imprinted hydrogels (IIHs), and non-metal ion-imprinted (NIH) hydrogels as template for the preparation of Co and Ni catalyst systems, the hydrolysis kinetics of NaBH4 and NH3BH3 were investigated. The catalytic performances of IIHs and NIHs were compared in terms of effect on hydrolysis kinetics of NaBH4 and NH3BH3. To increase the amounts of Co nanoparticles within p(AMPS) hydrogel for better catalytic activity, several reloading and reduction cycles of Co (II) ions were carried out, and the prepared p(AMPS)-Co composite catalyst systems were tested for hydrogen generation from the hydrolysis of NaBH4. As the number of Co (II) loading and reduction cycles increased, the amount of metal catalysts and the catalytic performance of composites increased. Kinetics studies were carried out on three times Co (II) ion loaded and reduced p(AMPS)-Co catalyst systems (containing 36.80 mg/g Co). Three time Co (II)-loaded catalyst systems provided very fast hydrolysis kinetics for NaBH4, and provided magnetic field responsive behavior. The hydrolysis reaction of NaBH4 was completed within 50 s, under the described conditions at 60 °C. It was demonstrated that the synthesized catalyst systems can be used ten times repetitively without significant loss of catalytic activity (86.5%).  相似文献   

20.
The poly(2-aminoethyl methacrylate) (p(AEM)) microgels were synthesized by microemulsion polymerization technique and used for in situ metal nanoparticle preparation to render as p(AEM)-M (M: Co or Ni) microgel composites and were used in p(AEM) based poly ionic liquid (PIL) microgels. Next, these p(AEM)) based microgel materials were used as catalysts for hydrogen (H2) production from both hydrolysis and methanolysis reactions of sodium borohydride (NaBH4). It was found that the catalytic hydrolysis of the NaBH4 reaction, catalyzed by p(AEM)-Co microgel composite was completed in 140 min, whereas the methanolysis of NaBH4 methanolysis catalyzed by the PIL of p(AEM)+Cl microgels was completed in 5 min both with 250 ± 2 mL H2 production. Furthermore, p(AEM)-Co microgel composite catalysts maintained 80% catalytic activity after 5 consecutive uses in NaBH4 hydrolysis. On the other hand, p(AEM)+Cl microgels were found to afford more than 50% catalytic activity even after 20 repetitive use in NaBH4 methanolysis due to superior regeneration ability. Moreover, activation energy values for p(AEM)-Co microgel composites catalyzed NaBH4 hydrolysis reaction were calculated as 38.9 kJ/mol in comparison to 37.3 kJ/mol activation energy of p(AEM)+Cl microgel catalyzed methanolysis reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号