首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hydrogen has the highest gravimetric energy density of all fuels; however, it has a low volumetric energy density, unfavorable for storage and transportation. Hydrogen is usually liquefied to meet the bulk transportation needs. The exothermic interconversion of its spin isomers is an additional activity to an already energy-intensive process. The most significant temperature drop occurs in the precooling cycle (between ?150 °C and up to ?180 °C) and consumes more than 50% of the required energy. To reduce the energy consumption and improve the exergy efficiency of the hydrogen liquefaction process, a new high-boiling component, Hydrofluoroolefin (HFO-1234yf), is added to the precooled mixed refrigerant. As a result, the specific energy consumption of precooling cycle reduces by 41.8%, from 10.15 kWh/kgLH2 to 5.90 kWh/kgLH2, for the overall process. The exergy efficiency of the proposed case increases by 43.7%; however, the total equipment cost is also the highest. The inflated cost is primarily due to the added ortho-to-para hydrogen conversion reactor, boosting the para-hydrogen concentration. From the perspective of bulk storage and transportation of liquid hydrogen, the simplicity of design and low energy consumption build a convincing case for considering the commercialization of the process.  相似文献   

2.
For this study, a spatially and temporally resolved optimization model was used to investigate and economically evaluate pathways for using surplus electricity to cover positive residual loads by means of different technologies to reconvert hydrogen into electricity. The associated technology pathways consist of electrolyzers, salt caverns, hydrogen pipelines, power cables, and various technologies for reconversion into electricity. The investigations were conducted based on an energy scenario for 2050 in which surplus electricity from northern Germany is available to cover the electricity grid load in the federal state of North Rhine-Westphalia (NRW).A key finding of the pathway analysis is that NRW's electricity demand can be covered entirely by renewable energy sources in this scenario, which involves CO2 savings of 44.4 million tons of CO2/a in comparison to the positive residual load being covered from a conventional power plant fleet. The pathway involving CCGT (combined cycle gas turbines) as hydrogen reconversion option was identified as being the most cost effective (total investment: € 43.1 billion, electricity generation costs of reconversion: € 176/MWh).Large-scale hydrogen storage and reconversion as well as the use of the hydrogen infrastructure built for this purpose can make a meaningful contribution to the expansion of the electricity grid. However, for reasons of efficiency, substituting the electricity grid expansion entirely with hydrogen reconversion systems does not make sense from an economic standpoint. Furthermore, the hydrogen reconversion pathways evaluated, including large-scale storage, significantly contribute to the security of the energy supply and to secured power generation capacities.  相似文献   

3.
This article broadly reviews the state-of-the-art technologies for hydrogen production routes, and methods of renewable integration. It outlines the main techno-economic enabler factors for Australia to transform and lead the regional energy market. Two main categories for competitive and commercial-scale hydrogen production routes in Australia are identified: 1) electrolysis powered by renewable, and 2) fossil fuel cracking via steam methane reforming (SMR) or coal gasification which must be coupled with carbon capture and sequestration (CCS). It is reported that Australia is able to competitively lower the levelized cost of hydrogen (LCOH) to a record $(1.88–2.30)/kgH2 for SMR technologies, and $(2.02–2.47)/kgH2 for black-coal gasification technologies. Comparatively, the LCOH via electrolysis technologies is in the range of $(4.78–5.84)/kgH2 for the alkaline electrolysis (AE) and $(6.08–7.43)/kgH2 for the proton exchange membrane (PEM) counterparts. Nevertheless, hydrogen production must be linked to the right infrastructure in transport-storage-conversion to demonstrate appealing business models.  相似文献   

4.
Energy systems are increasingly exposed to variable surplus electricity from renewable sources, particularly photovoltaics. This study estimates the potential to use surplus electricity for power-to-gas with geo-methanation for Switzerland by integrated energy system and power-to-gas modelling. Various CO2 point sources are assessed concerning exploitable emissions for power-to-gas, which were found to be abundantly available such that 60 TWh surplus electricity could be converted to methane, which is the equivalent of the current annual Swiss natural gas demand. However, the maximum available surplus electricity is only 19 TWh even in a scenario with high photovoltaic expansion. Moreover, making this surplus electricity available for power-to-gas requires an ideal load shifting capacity of up to 10 times the currently installed pumped-hydro capacity. Considering also geological and economic boundary conditions for geo-methanation at run-of-river and municipal waste incinerator sites with nearby CO2 sources reduces the exploitable surplus electricity from 19 to 2 TWh.  相似文献   

5.
Heavy fossil fuels consumption has raised concerns over the energy security and climate change while hydrogen is regarded as the fuel of future to decarbonize global energy use. Hydrogen is commonly used as feedstocks in chemical industries and has a wide range of energy applications such as vehicle fuel, boiler fuel, and energy storage. However, the development of hydrogen energy in Malaysia is sluggish despite the predefined targets in hydrogen roadmap. This paper aims to study the future directions of hydrogen economy in Malaysia considering a variety of hydrogen applications. The potential approaches for hydrogen production, storage, distribution and application in Malaysia have been reviewed and the challenges of hydrogen economy are discussed. A conceptual framework for the accomplishment of hydrogen economy has been proposed where renewable hydrogen could penetrate Malaysia market in three phases. In the first phase, the market should aim to utilize the hydrogen as feedstock for chemical industries. Once the hydrogen production side is matured in the second phase, hydrogen should be used as fuel in internal combustion engines or burners. In the final phase hydrogen should be used as fuel for automobiles (using fuel cell), fuel-cell combined heat and power (CHP) and as energy storage.  相似文献   

6.
Hydrogen Sulphide Methane Reformation (HSMR) represents a valid alternative for the simultaneous H2S valorisation and hydrogen production at the industrial scale, without direct CO2 emissions. The major concerns about the process commercialization are the possible coke formation in the reaction zone and the lack of active and selective catalysts. The study of the thermodynamics is the essential preliminary step for the reaction phenomena understanding. In this work, a deep thermodynamic analysis is performed to explore the system behaviour as a function of temperature, pressure, and inlet feed composition, using the Aspen Plus RGibbs module. In this way, the optimal process operating conditions to avoid carbon lay down can be identified.Assessed the system's thermodynamics, a preliminary process scheme is developed and simulated in Aspen Plus V11.0®, considering hydrogen production and its distribution in pipeline with methane. The process performances are discussed in terms of products' purity and process energy consumptions.  相似文献   

7.
Hydrogen is an energy vector and is produced just like electricity. In order to overcome the shortcomings associated with its low molecular weight and energy density per unit volume, hydrogen is liquefied for storage and transportation purposes. The liquefaction of hydrogen differs from that of other substances as it involves the reactive transformation of its isomeric states. At 25 °C, molecular hydrogen consists of 75% orthohydrogen and 25% of parahydrogen. As the normal boiling point, hydrogen essentially exists in the para-state, which is preferred because of its lower boil-off gas rate. However, the conversion of ortho-to-para hydrogen is an exothermic reaction, and this enthalpy of conversion enhances the total reversible work by about 15%. Little work has been done regarding ortho-to-para hydrogen conversion from the process systems point of view. Therefore, parametric analysis of this vital conversion reaction was studied with potential impact on the performance of cryogenic heat exchangers, reactors configuration and mode of operation, and probable impact on the energy efficiency of the liquefaction process. An alternate approach to simulate the reaction is also proposed. The results show that the current approaches to process design need to be changed. The study opens avenues for more in-depth analysis and optimization approaches to present a holistic framework for future integrated energy systems.  相似文献   

8.
Considering the high calorific value and low-carbon characteristics of hydrogen energy, it will play an important role in replacing fossil energy sources. The production of hydrogen from renewable energy sources for electricity generation and electrolysis of water is an important process to obtain green hydrogen compared with classic low-carbon hydrogen production methods. However, the challenges in this process include the high cost of liquefied hydrogen and the difficulty of storing hydrogen on a large scale. In this paper, we propose a new route for hydrogen storage in metals, namely, electricity generation from renewable energy sources, electrolysis to obtain metals, and subsequent hydrogen production from metals and water. Metal monomers facilitate large-scale and long-term storage and transportation, and metals can be used as large-scale hydrogen storage carriers in the future. In this technical route, the reaction between metal and water for hydrogen production is an important link. In this paper, we systematically summarize the research progress, development trend, and challenges in the field of metal to hydrogen production. This study aim to aid in the development of this field.  相似文献   

9.
The high flammability of hydrogen gas gives it a steady flow without throttling in engines while operating. Such engines also include different induction/injection methods. Hydrogen fuels are encouraging fuel for applications of diesel engines in dual fuel mode operation. Engines operating with dual fuel can replace pilot injection of liquid fuel with gaseous fuels, significantly being eco-friendly. Lower particulate matter (PM) and nitrogen oxides (NOx) emissions are the significant advantages of operating with dual fuel.Consequently, fuels used in the present work are renewable and can generate power for different applications. Hydrogen being gaseous fuel acts as an alternative and shows fascinating use along with diesel to operate the engines with lower emissions. Such engines can also be operated either by injection or induction on compression of gaseous fuels for combustion by initiating with the pilot amount of biodiesel. Present work highlights the experimental investigation conducted on dual fuel mode operation of diesel engine using Neem Oil Methyl Ester (NeOME) and producer gas with enriched hydrogen gas combination. Experiments were performed at four different manifold hydrogen gas injection timings of TDC, 5°aTDC, 10°aTDC and 15°aTDC and three injection durations of 30°CA, 60°CA, and 90°CA. Compared to baseline operation, improvement in engine performance was evaluated in combustion and its emission characteristics. Current experimental investigations revealed that the 10°aTDC hydrogen manifold injection with 60°CA injection duration showed better performance. The BTE of diesel + PG and NeOME + PG operation was found to be 28% and 23%, respectively, and the emissions level were reduced to 25.4%, 14.6%, 54.6%, and 26.8% for CO, HC, smoke, and NOx, respectively.  相似文献   

10.
The South Korean government promotes hydrogen-powered vehicles to reduce greenhouse gas (GHG) emissions but these vehicles use gray hydrogen while charging, which causes GHG emissions. Therefore, converting this fuel into green hydrogen is necessary to help reduce GHG emissions, which will incur investment costs of approximately USD 20 billion over a decade. In this study, a contingent valuation method is applied in an analysis to examine the extent to which consumers are willing to pay for green hydrogen charging compared to gray hydrogen charging. The results indicate that the monthly mean of willingness to pay per driver is 51,674 KRW (USD 45.85), equivalent to 4302 KRW per kg (USD 3.82). Additionally, consumers accept a 28.5% increase in the monthly average fuel expenses when converting to green hydrogen. These findings can be used in the development of pricing and energy use plans to finance the expansion of green hydrogen infrastructure.  相似文献   

11.
There are a number of shortcomings for currently-available technologies for ammonia production, such as carbon dioxide emissions and water consumption. We simulate a novel model for ammonia production from hydrogen sulfide through membrane technologies. The proposed production process decreases the need for external water and reduces the physical footprint of the plant. The required hydrogen comes from the separation of hydrogen sulfide by electrochemical membrane separation, while the required nitrogen is obtained from separating oxygen from air through an ion transport membrane. 10% of the hydrogen from the electrochemical membrane separation along with the separated oxygen from the ion transport membrane is sent to the solid oxide fuel cell for heat and power generation. This production process operates with a minimal number of processing units and in physical, kinetic, and thermal conditions in which a separation factor of ~99.99% can be attained.  相似文献   

12.
In recent years, there has been considerable interest in the development of zero-emissions, sustainable energy systems utilising the potential of hydrogen energy technologies. However, the improper long-term economic assessment of costs and consequences of such hydrogen-based renewable energy systems has hindered the transition to the so-called hydrogen economy in many cases. One of the main reasons for this is the inefficiency of the optimization techniques employed to estimate the whole-life costs of such systems. Owing to the highly nonlinear and non-convex nature of the life-cycle cost optimization problems of sustainable energy systems using hydrogen as an energy carrier, meta-heuristic optimization techniques must be utilised to solve them. To this end, using a specifically developed artificial intelligence-based micro-grid capacity planning method, this paper examines the performances of twenty meta-heuristics in solving the optimal design problems of three conceptualised hydrogen-based micro-grids, as test-case systems. Accordingly, the obtained numeric simulation results using MATLAB indicate that some of the newly introduced meta-heuristics can play a key role in facilitating the successful, cost-effective development and implementation of hydrogen supply chain models. Notably, the moth-flame optimization algorithm is found capable of reducing the life-cycle costs of micro-grids by up to 6.5% as compared to the dragonfly algorithm.  相似文献   

13.
The objective of this study was to evaluate the effects of hydraulic retention time (HRT) (8–1 h) on H2 production from sugarcane juice (5000 mg COD L−1) in mesophilic (30 °C, AFBR-30) and thermophilic (55 °C, AFBR-55) anaerobic fluidized bed reactors (AFBRs). At HRTs of 8 and 1 h in AFBR-30, the H2 production rates were 60 and 116 mL H2 h−1 L−1, the hydrogen yields were 0.60 and 0.10 mol H2 mol−1 hexose, and the highest bacterial diversities were 2.47 and 2.34, respectively. In AFBR-55, the decrease in the HRT from 8 to 1 h increased the hydrogen production rate to 501 mL H2 h−1 L−1 at the HRT of 1 h. The maximum hydrogen yield of 1.52 mol H2 mol−1 hexose was observed at the HRT of 2 h and was associated with the lowest bacterial diversity (0.92) and highest bacterial dominance (0.52).  相似文献   

14.
This paper deals with the emission reduction in synthesis-gas production by better integration and increasing the energy efficiency of a high-temperature co-electrolysis unit combined with the Fischer-Tropsch process. The investigated process utilises the by-product of Fischer-Tropsch, as an energy source and carbon dioxide as a feedstock for synthesis gas production. The proposed approach is based on adjusting process streams temperatures with the further synthesis of a new heat exchangers network and optimisation of the utility system. The potential of secondary energy resources was determined using plus/minus principles and simulation of a high-temperature co-electrolysis unit. The proposed technique maximises the economic and environmental benefits of inter-unit integration. Two scenarios were considered for sharing the high-temperature co-electrolysis and the Fischer-Tropsch process. In the first scenario, by-products from the Fischer-Tropsch process were used as fuel for a high-temperature co-electrolysis. Optimisation of secondary energy sources and the synthesis of a new heat exchanger network reduce fuel consumption by 47% and electricity by 11%. An additional environmental benefit is reflected in emission reduction by 25,145 tCO2/y. The second scenario uses fossil fuel as a primary energy source. The new exchanger network for the high-temperature co-electrolysis was built for different energy sources. The use of natural gas resulted in total annual costs of the heat exchanger network to 1,388,034 USD/y, which is 1%, 14%, 116% less than for coal, fuel oil and LPG, respectively. The use of natural gas as a fuel has the lowest carbon footprint of 7288 tCO2/y. On the other hand, coal as an energy source has commensurable economic indicators that produce 2 times more CO2, which can be used as a feedstock for a high-temperature co-electrolysis. This work shows how in-depth preliminary analysis can optimise the use of primary and secondary energy resources during inter-plant integration.  相似文献   

15.
Transitioning German road transport partially to hydrogen energy is among the possibilities being discussed to help meet national climate targets. This study investigates impacts of a hypothetical, complete transition from conventionally-fueled to hydrogen-powered German transport through representative scenarios. Our results show that German emissions change between ?179 and +95 MtCO2eq annually, depending on the scenario, with renewable-powered electrolysis leading to the greatest emissions reduction, while electrolysis using the fossil-intense current electricity mix leads to the greatest increase. German energy emissions of regulated pollutants decrease significantly, indicating the potential for simultaneous air quality improvements. Vehicular hydrogen demand is 1000 PJ annually, requiring 446–525 TWh for electrolysis, hydrogen transport and storage, which could be supplied by future German renewable generation, supporting the potential for CO2-free hydrogen traffic and increased energy security. Thus hydrogen-powered transport could contribute significantly to climate and air quality goals, warranting further research and political discussion about this possibility.  相似文献   

16.
The performance analysis of a novel multi-generation (MG) system that is developed for electricity, cooling, hot water and hydrogen production is presented in this study. MG systems in literature are predominantly built on a gas cycle, integrated with other thermodynamic cycles. The aim of this study is to achieve better thermodynamic (energy and exergy) performance using a MG system (without a gas cycle) that produces hydrogen. A proton exchange membrane (PEM) utilizes some of the electricity generated by the MG system to produce hydrogen. Two Rankine cycles with regeneration and reheat principles are used in the MG configuration. Double effect and single effect absorption cycles are also used to produce cooling. The electricity, hot water, cooling effect, and hydrogen production from the multi-generation are 1027 kW, 188.5 kW, 11.23 kg/s and 0.9785 kg/h respectively. An overall energy and exergy efficiency of 71.6% and 24.5% respectively is achieved considering the solar parabolic trough collector (PTC) input and this can increase to 93.3% and 31.9% if the input source is 100% efficient. The greenhouse gas emission reduction of this MG system is also analyzed.  相似文献   

17.
Fluorene (H0-F) and perhydrofluorene (H12-F) represent process-related byproducts formed by a dehydrocyclization step in the liquid organic hydrogen carrier (LOHC) system based on diphenylmethane (H0-DPM) and dicyclohexylmethane (H12-DPM). The influence of these byproducts on the liquid viscosity, surface tension, and liquid density of the DPM-based system was experimentally determined by studying three dehydrogenated binary mixtures with H0-F mole fractions of 0.05, 0.10, and 0.20 as well as one hydrogenated binary mixture with an H12-F mole fraction of 0.10 close to 0.1 MPa from (283–573) K. The densities increase with increasing share of H0-F or H12-F by around 1% per added byproduct mole fraction of 0.1. For the surface tension, an increase relative to the values of H0-DPM or H12-DPM by up to 6% is found. The addition of H0-F to H0-DPM or H12-F to H12-DPM yields a relative increase in viscosity by up to 9% at the lowest temperature studied.  相似文献   

18.
Hydrogen (H2) is a renewable, abundant, and nonpolluting source of energy. Photosynthetic organisms capture sunlight very efficiently and convert it into organic molecules. Cyanobacteria produce H2 by breaking down organic compounds and water. In this study, biological H2 was produced from various strains of cyanobacteria. Moreover, H2 accumulation by Synechocystis sp. PCC 6803 was as high as 0.037 μmol/mg Chl/h within 120 h in the dark. The wild-type, filamentous, non-heterocystous cyanobacterium Desertifilum sp. IPPAS B-1220 was found to produce a maximum of 0.229 μmol/mg Chl/h in the gas phase within 166 h in the light, which was on par with the maximum yield reported in the literature. DCMU at 10 μM increased H2 production by Desertifilum sp. IPPAS B-1220 by 1.5-fold to 0.348 μmol H2/mg Chl/h. This is the first report on the capability of Desertifilum cyanobacterium to produce H2.  相似文献   

19.
Refueling costs account for much of the fuel cost for light-duty hydrogen fuel-cell electric vehicles. We estimate cost savings for hydrogen dispensing if metal hydride (MH) storage tanks are used on board instead of 700-bar tanks. We consider a low-temperature, low-enthalpy scenario and a high-temperature, high-enthalpy scenario to bracket the design space. The refueling costs are insensitive to most uncertainties. Uncertainties associated with the cooling duty, coolant pump pressure, heat exchanger (HX) fan, and HX operating time have little effect on cost. The largest sensitivities are to tank pressure and station labor. The cost of a full-service attendant, if the refueling interconnect were to prevent self-service, is the single largest cost uncertainty. MH scenarios achieve $0.71–$0.75/kg-H2 savings by reducing compressor costs without incurring the cryogenics costs associated with cold-storage alternatives. Practical refueling station considerations are likely to affect the choice of the MH and tank design.  相似文献   

20.
In this study, highly active and stable CeO2, ZrO2, and Zr(1-x)Ce(x)O2-supported Co catalysts were prepared using the co-precipitation method for the high-temperature water gas shift reaction to produce hydrogen from waste-derived synthesis gas. The physicochemical properties of the catalysts were investigated by carrying out Brunauer-Emmet-Teller, X-ray diffraction, CO-chemisorption, Raman spectroscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, and H2-temperature-programmed reduction measurements. With an increase in the ZrO2 content, the surface area and reducibility of the catalysts increased, while the interaction between Co and the support and the dispersion of Co deteriorated. The Co–Zr0.4Ce0·6O2 and Co–Zr0.6Ce0·4O2 catalysts showed higher oxygen storage capacity than that of the others because of the distortion of the CeO2 structure due to the substitution of Ce4+ by Zr4+. The Co–Zr0.6Ce0·4O2 catalyst with high reducibility and oxygen storage capacity exhibited the best catalytic performance and stability among all the catalysts investigated in this study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号