首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It is the first study to synthesize Co(II)-Schiff Base complex and to use it like a catalyst for potassium borohydride hydrolysis reaction to hydrogen production. Co(II)-complex is synthesized with CoCl2·6H2O and 5-Amino-2,4-dichlorophenol-3,5-di-tert-butylsalisylaldimine ligand. KBH4 hydrolysis reaction is studied according as percentage of KBH4, percentage of KOH, amount of Co-Schiff Base complex catalyst and temperature effects. Co-Schiff Base complex is highly effective catalyst and initial rates (Ro) of KBH4 hydrolysis reaction were 61220.00 and 99746.67 mL H2. g−1 cat. min−1 at 30 °C and 50 °C. Furthermore this study includes the kinetic calculations and for this reaction calculated activation energy is 17.56 kJ mol−1.  相似文献   

2.
Cerium oxide supported 5-Amino-2,4-dichlorophenol-3,5-ditertbutylsalisylaldimine-Nickel complex for the first time was used to produce H2 from hydrolysis of sodium borohydride. Cerium oxide supported Nickel complex catalyzed hydrolysis system was studied depend on temperature, concentration of sodium hydroxide, amount of Cerium oxide supported Ni complex catalyst, concentration of Ni complex and concentration of sodium borohydride. Cerium oxide supported Ni(II) complex display highly effective catalytic activity in sodium borohydride hydrolysis reaction. The obtained Cerium oxide supported Ni(II) complex catalyst was characterized by using Fourier Transform Infrared Spectroscopy, Scanning Electron Microscope, Transmission Electron Microscope, Brunauer-Emmett-Teller Surface Area Analysis, X-Ray Diffraction Analysis techniques. The catalyst stability was tested, even the fifth recycle the catalytic activity was maintained at 100%. Additionally the proposed Cerium oxide supported-Ni (II) complex catalyzed sodium borohydride hydrolysis mechanism was determined carefully. The experimental results showed that Cerium oxide supported Ni (II) complex catalyst accelerate sodium borohydride hydrolysis with 43,392 and 19,630 mL H2 gcat?1 min?1 hydrogen production rates at 50 °C and 30 °C respectively and 20,587 kJ mol?1 activation energy.  相似文献   

3.
This paper reports the experimental results on using TiO2 based Cu(II)-Schiff Base complex catalyst for hydrolysis of NaBH4. In the presence of Cu-Schiff Base complex which we reported in advance [1] and with titanium dioxide supports a novel catalyst named TiO2 supported 4-4′-Methylenbis (2,6-diethyl)aniline-3,5-di-tert-buthylsalisylaldimine-Cu complex is prepared, successfully. The synthesized catalyst was characterized by means of X-Ray Diffraction (XRD), Scanning Electron Microscope (SEM), Brunauer-Emmett-Teller Surface Area Analysis (BET) and Fourier Transform Infrared Spectroscopy (FT-IR). The as prepared catalyst was employed to generate hydrogen through hydrolysis reaction of NaBH4. Effects of different parameters (e.g. amount of Cu-Schiff Base complex in all catalyst, percentage of NaBH4, percentage of NaOH, amount of TiO2 supported Cu-Schiff Base complex catalyst and different temperatures) are also investigated. A high apparent activation energy (Ea), 25,196 kJ.mol-1 is calculated for hydrolysis of NaBH4 at 20–50 °C. Hydrogen generation rate was 14,020 mL H2/gcat.min and 22,071 mL H2/gcat.min in order of 30 °C and 50 °C.  相似文献   

4.
This study presents 4,4′-methylenebis(2,6-diethyl)aniline-3,5-ditertbutylsalisilaldimine-Zn complex synthesis and its using as a catalyst in sodium borohydride hydrolysis to H2 generation. Surface morphology and structural properties of Zn-complex were investigated with XRD, FTIR, SEM, and BET analysis. The effects of different substrate concentration, effects of solution temperature, and effects of catalyst amount were studied for the hydrogen generation rate. Additionally kinetic parameters were studied. The activation energy was 22.978 kJ/mol and H2 generation rates were calculated as 952.5 mmol H2/gcat.min and 614.4 mmol H2/gcat.min at 50 °C and 30 °C respectively for sodium borohydride hydrolysis reaction.  相似文献   

5.
The present study focused on the increasing of hydrogen evolution through hydrolysis of potassium borohydride in the presence of Ruthenium complex catalyst. It is the first time to use the Ru-Imine complex catalyst in KBH4 hydrolysis reaction to hydrogen evolution. The new Ru complex was synthesized from the tetradentate Imine ligand namely 4,4′-methylenebis (2,6-diethyl)aniline-3,5-di-tert-butylsalisylaldimine and Ru salt under the inert atmosphere. Ru-Imine complex was fully characterized by Elemental Analysis, Infrared Spectroscopy, Scanning Electron Microscope, X-Ray Diffraction Analysis, Brunauer-Emmett-Teller Surface Area Analysis and Transmission Electron Microscopy. By the synthesized Ru-Imine complex catalyst, the potassium borohydride hydrolysis reaction resulted in a lower energy barrier with 20,826 kJ/mol activation energy (Ea) for nth order kinetic model and 18,045 kJ/mol for Langmuir-Hinshelwood (L-H) kinetic model. According to the results Ru-complex was highly active and stable catalyst in KBH4 hydrolysis reaction to hydrogen evolution with 45,466 mL H2/gcat.min and 76,815 mL H2/gcat.min hydrogen generation rates at 30 °C and 50 °C respectively. Moreover Ru-Imine complex catalyst displayed 100% stability even at fifth recycle.  相似文献   

6.
Herein, we report an efficient, environmentally friendly and stable catalyst development to hydrogen evolution from sodium borohydride hydrolysis. For this purpose, Ruthenium complex catalyst successfully fabricated via 5-Amino-2,4-dichlorophenol-3,5-ditertbutylsalisylaldimine ligand and RuCl3·H2O salt. Ru complex catalyst was identified with X-Ray Diffraction Analysis, Infrared Spectroscopy, Elemental Analysis, Transmission electron microscopy, Scanning Electron Microscope and Brunauer-Emmett-Teller Surface Area Analysis. According to the analysis results, it was confirmed that Ru complex catalyst was successfully synthesized. Ru complex was used as a catalyst in NaBH4 hydrolysis. The kinetic performance of Ru complex catalyst was evaluated at various reaction temperatures, various sodium borohydride concentration, catalyst concentration and sodium hydroxide concentration in hydrogen evolution. The apparent activation energy for the hydrolysis of sodium borohydride was determined as 25.8 kJ mol?1. With fully conversion, the promised well durability of Ru complex was achieved by the five consecutive cycles for hydrogen evolution in sodium borohydride hydrolysis The hydrogen evolution rates were 299,220 and 160,832 mL H2 gcat?1 min?1 in order of at 50 °C and 30 °C. Furthermore, the proposed mechanism of Ru complex catalyzed sodium borohydride hydrolysis was defined step by step. This study provides different insight into the rational design and utilization and catalytic effects of ruthenium complex in hydrogen evolution performance.  相似文献   

7.
In present paper, the preparation and catalytic activity of Eupergit C polymer (EC) modified Co complex was reported. Scanning Electron Microscope (SEM), X-Ray Diffraction (XRD), Brunauer-Emmett-Teller Surface Area Analysis (BET), Fourier Transform Infrared Spectroscopy (FT-IR), Transmission Electron Microscopy (TEM) coupled with energy dispersive X-ray (EDX) and X-ray photoelectron spectroscopy (XPS) were used to characterization of catalyst. EC modified-Co complex was the first time examined as a catalyst in NaBH4 hydrolysis to H2 evolution. The kinetic calculations were determined by using two different kinetic methods. The low activation energy barriers were achieved as 21.673 kJ mol?1 for nth order model and as 21.061kJmol?1 for Langmuir-Hinshelwood (L-H) model at low temperatures. EC modified-Co complex catalyst exhibited high performance with H2 evolution rates of 3914 mL H2gcat?1min?1 and 9183 mLH2gcat?1min?1 at 30 °C–50 °C. Additionally, Langmuir–Hinshelwood mechanism was explained for EC modified Co complex catalyzed sodium borohydride hydrolysis reaction. The reusability experiments showed that EC modified-Co complex catalyst maintained excellent stability with 100% conversion and without significant lost after the 6th run.  相似文献   

8.
Influence of using as catalysis, Ni-Schiff Base complex which we previously synthesized [1] used to support with amberzyme oxirane resin (A.O.R.) polymer for increasing the catalytic activity in NaBH4 hydrolysis reaction, to hydrogen generation was studied. The prepared catalyst was characterized by using SEM, XRD, BET, FT-IR analyze technique. Polymer supported Ni-Schiff Base complex catalyzed NaBH4 hydrolysis reaction was investigated depending on concentration of NaBH4, concentration of NaOH, temperature, percentage of Ni complex in total polymer supported Ni-Schiff Base complex and amount of catalyst factors. The maximum hydrogen production rate from hydrolysis of sodium borohydride with nickel-based complex catalyst compared to the pure nickel catalyst is increased from 772 mL H2·g?1 cat.·min?1 to 2240 mL H2 g?1 cat.·min?1 [1], and with supported amberzyme oxirane resin polymer this nickel based complex catalyst was increased to 13000 mL H2·g?1 cat.·min?1 at 30 °C. The activation energy of complex catalyzed NaBH4 hydrolysis reaction was found as 25.377 kJ/mol. This work also includes kinetic information for the hydrolysis of NaBH4.  相似文献   

9.
In the present study, a cobalt-doped catalyst was prepared from chicken eggshell powder (CEP) biowaste to be used in the hydrolysis of sodium borohydride (NaBH4). In the presence of the prepared catalyst (CEPcat), possible effects of the parameters of NaOH concentration (%), catalyst amount (g), NaBH4 concentration (%), process temperature (oC) and reusability affecting the hydrolysis of sodium borohydride were examined. The CEPcat obtained was characterized with FT-IR, TGA, XRD, SEM and EDX analyses. The hydrogen generation rate (HGR) was determined as 432 mL gCo−1 min−1 in the presence of 1 g CEPcat, a CoO/CaO ratio of 10/90 and 1% NaBH4 concentration. The activation energy of the NaBH4 hydrolysis reaction was calculated as 16.78 kJ mol−1. After 16 reuses of the CEPcat there was no significant decrease in the hydrogen volume. Compared to the first use while there was an increase in the HGR. These results showed that the CEPcat prepared has a significant advantage over other catalysts for use in NaBH4 hydrolysis.  相似文献   

10.
In this study, 5-amino-2, 4-dichlorophenol-3, 5-ditertbutylsalisylaldimine-Ni complex catalyst is synthesised and used as an alternative to previous studies to produce hydrogen from hydrolysis of sodium borohydride. The resulting complex catalyst is characterised by XRD, XPS, SEM, FT-IR and BET surface area analyses. Experimental works are carried out at 30 °C with 2% NaBH4, 7% NaOH and 5 mg of catalyst. The maximum hydrogen production rate from hydrolysis of sodium borohydride with nickel-based complex catalyst compared to the pure nickel catalyst is increased from 772 ml min?1g?1 to 2240 ml min?1g?1 by an increase of 190%. At the same time, the hydrolysis reaction with pure nickel catalyst is completed in 145 min while the hydrolysis reaction with nickel-based complex catalyst is completed in 50 min. The activation energy of this hydrolysis reaction was calculated as 18.16 kJ mol?1. This work also includes kinetic information for the hydrolysis of NaBH4.The reusability of the nickel-based complex catalyst used in this study has also been studied. The nickel-based complex catalyst is maintained the activity of 72% after the sixth use, compared to the first catalytic use.  相似文献   

11.
In this study, grinded apricot kernel shell (GAKS) biobased waste was used for the first time as a cost-effective, efficient, green and metal-free catalyst for hydrogen generation from the hydrolysis reaction of sodium borohydride (NaBH4). For the hydrogen production by NaBH4 hydrolysis reaction, GAKS was treated with various acids (HCl, HNO3, CH3COOH, H3PO4), salt (ZnCl2) and base (KOH). As a result, the phosphoric acid (H3PO4) demonstrated better catalytic activity than other chemical agents. The hydrolysis of NaBH4 with the GAKS-catalyst (GAKScat) was studied depending on different parameters such as acid concentration, furnace burning temperature and time, catalyst amount, NaBH4 concentration and hydrolysis reaction temperature. The obtained GAKScat was characterized by ICP-MS, elemental analysis, TGA, XRD, FT-IR, Boehm, TEM and SEM analyses and was evaluated for its catalytic activity in the hydrogen production from the hydrolysis reaction of NaBH4. According to the results, the optimal H3PO4 percentage was found as 15%. The maximum hydrogen generation rate from the hydrolysis of NaBH4 with the GAKScat was calculated as 20,199 mL min−1 gcat−1. As a result, it can be said that GAKS treated with 15% H3PO4 as a catalyst for hydrogen production is an effective alternative due to its high hydrogen production rate.  相似文献   

12.
The fast release of hydrogen from borohydride is highly desired for a fuel cell system. However, the generation of hydrogen from borohydride is limited by the low activity and low stability of the catalyst. Herein, a highly active catalyst is synthesized through a simple one-step chemical reduction using bacterial cellulose (BC) derived carbon as a support for the active Co–B alloy. The morphology and microstructure of the BC/Co–B nanocomposite are characterized by SEM, TEM, XRD, and BET adsorption analysis. The BC/Co–B possesses high surface area (125.31 m2 g?1) high stability and excellent catalytic activity for the hydrolysis of NaBH4. Compared with unsupported Co–B nanocomposite or commercial carbon supported Co–B, the BC/Co–B nanocomposite shows greatly improved catalytic activity for the hydrolysis of NaBH4 with a high hydrogen generation rate of 3887.1 mL min?1 g?1 at 30 °C. An activation energy of 56.37 kJ mol?1 was achieved for the hydrolysis reaction. Furthermore, the BC/Co–B demonstrated excellent stability. These results indicate that the BC/Co–B nanocomposite is a promising candidate for the hydrolysis of borohydrides.  相似文献   

13.
In this study, activated carbon is produced from defatted hazelnut bagasse at different activation conditions. The catalytic activities of activated carbons are evaluated for NaBH4 methanolysis and electrooxidation. These materials are characterized by N2 adsorption-desorption, FTIR, SEM-EDS and XPS and results show that these materials are prepared successfully. N2 adsorption-desorption results reveal that activated carbon (FH3-500) has the highest BET surface area as 548 m2/g, total pore volume as 0.367 cm3/g and micropore volume as 0.205 cm3/g. On the orher hand, as a result of hydrogen production studies, FH3-500 activated carbon catalyst has the highest initial hydrogen production rate compared to other materials. At 50 °C, this metal-free activated carbon catalyst has a high initial hydrogen production rate of 13591.20 mL/min.gcat, which is higher than literature values. Sodium borohydride electrooxidation measurements reveal that FH2-500 also has the highest electrocatalytic activity and stability. Hazelnut pulp-based activated carbons are firstly used as a metal-free catalyst in the methanolysis and electrooxidation of sodium borohydride, and its catalytic activity is good as a metal-free catalyst. The results show that the hazelnut pulp-based activated carbon catalyst is promising as a metal-free catalyst for the methanolysis and electrooxidation of sodium borohydride.  相似文献   

14.
Due to the high volumetric density and environmentally friendly hydrolysis products, sodium borohydride as a promising candidate for chemical hydrogen storage has been intensively employed, but it needed expensive noble metals or complicated materials or processes. In this work, a new type of catalyst with very simple synthetic route form available and low-cost precursors has been introduced for hydrolysis of sodium borohydride with high efficiency. Fe2O3 nanosheets were synthesized with a straightforward route using glucose, urea and ferric nitrate and then the core sheets were coated by nitrogen doped carbon material using citric acid and urea as carbon and nitrogen sources. The core-shell nanosheets have been well confirmed by TEM images. Moreover, the elemental compositions were fully addressed by XPS analysis. Because of the acidic and basic groups on the presented material, the catalyst showed excellent catalytic activity with hydrogen production rate of 637 mL (H2) min−1·gcat −1. It is notable that the rate was calculated based on the whole amount of the catalyst, while in other reports the metal active sites have been employed for calculations. To find the most promising nanostructure of α-Fe2O3, influence of Fe2O3 morphology on the catalytic activity was also investigated.  相似文献   

15.
Hydrogen is expected to play an important role as an energy carrier in the world's future energy systems, as it is environmentally friendly and flexible in use. Hydrolysis of NaBH4 is a promising and effective method, especially for fuel cells and other portable devices, thanks to hydrogen release. Therefore, catalyst research is of great importance in the development of this technology. In this study, Ni/Dolomite catalyst was synthesized by wet impregnation method and used in hydrolysis process. Additionally, the effects of reaction temperature (30–60 °C), nickel content (10–40 wt%), catalyst amount (25–125 mg), NaOH concentration (0.10–0.75 M), and an initial amount of NaBH4 (25–125 mg) on hydrogen yield were investigated. Eventually, the catalyst with 40 wt% Ni content was assigned as the most suitable catalyst, attaining H2 production of 100% with a rate of 88.16 mL H2/gcat.min at 60 °C with 5 mL of 0.25 M NaOH, NaBH4, and Ni/Dolomite catalyst (100 mg).  相似文献   

16.
Hydrogen is a sustainable, renewable and clean energy carrier that meets the increasing energy demand. Pure hydrogen is produced by the hydrolysis of sodium borohydride (NaBH4) using a catalyst. In this study, Ni/TiO2 catalysts were synthesized by the sol-gel technique and characterized by X-ray diffraction (XRD), X-ray fluorescence spectroscopy (XRF), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM) and Brunauer-Emmett-Teller (BET) methods. The effects of Ni loading ratio (20–40%), catalyst amount (75–200 mg), the concentration of sodium hydroxide (NaOH, 0.25–1 M), initial amount of NaBH4 (75–125 mg) and the reaction temperature (20–60 °C) on hydrogen production performance were examined. The hydrogen yield (100%) and hydrogen production rate (110.87 mL/gcat.min) were determined at the reaction conditions of 5 mL of 0.25 M NaOH, 100 mg NaBH4, 100 mg Ni/TiO2, 60 °C. Reaction order and activation energy were calculated as 0.08 and 25.11 kJ/mol, respectively.  相似文献   

17.
Higher alcohols synthesis (HAS) from syngas (CO/H2) has attracted widespread attention, while the low selectivity and poor stability of the catalysts mainly stumbled its industrial application. In the work, Ni–Co alloy nanoparticles (NPs) derived from Co1-xNixAl2O4 loaded on the SiO2 with large specific surface area were prepared; and during reaction, the highly dispersed Ni–Co alloys were self-optimized to Ni–Co alloy@Co–Co2C. Importantly, Ni–Co alloy@Co–Co2C can be regenerated through oxidation - reduction - self-optimization process. Characteristic results indicated that the structural liberalization during the reaction process inhibited the loss of Ni, regulated and balanced the dual active sites of the catalyst and the Ni–Co alloys were regenerated after the re-oxidation and re-reduction process. The optimized catalyst exhibited excellent catalytic performance, including a high total selectivity to alcohols of 39.3% and an excellent catalytic stability at 250 °C, 3.5 MPa (H2/CO = 2) and a space velocity of 6000 mL (gcat h)?1. In addition, the Ni–Co alloy@Co–Co2C catalyst after stability test could recover its original catalytic performance after re-oxidation and re-reduction. The renewable characteristics and superior catalytic performance of Ni–Co alloy@Co–Co2C made the catalyst to be one of the potential industrial catalysts for HAS.  相似文献   

18.
In this study, the metallurgic sludge which contained oil and was obtained as waste of grinding, sharpening and milling parts was used in the production of hydrogen (H2) from sodium borohydride (NaBH4). The hydrolysis of NaBH4 with the metallurgic sludge catalyst was investigated depending on several parameters such as sodium hydroxide (NaOH) concentration, catalyst amount, NaBH4 concentration and temperature. The obtained metallurgic sludge catalyst was characterized by the XRD, FT-IR and SEM techniques and was evaluated for its activity in the H2 generation from NaBH4 hydrolysis. The maximum H2 production rate from the hydrolysis of NaBH4 with the metallurgic sludge catalyst was calculated as 9366 ml min−1.gcat−1. The value of activation energy was found as 48.05 kJ mol−1.  相似文献   

19.
In this work, a sol-gel Ni–Mo2C–Al2O3 catalyst is employed for the first time in the glycerol steam reforming for syngas production. Catalyst stability and activity are investigated in the temperature range of 550 °C–700 °C and time on stream up to 30 h. As reaction temperature increases, from 550 °C to 700 °C, H2 yield boosts from 22% to 60%. The stability test, carried out at milder conditions (600 °C and Gas-Hourly Space-Velocity (GHSV) of 50,000 mL h−1.gcat−1), shows high catalyst stability, up to 30 h, with final conversion, H2 yield, and H2/CO ratio of 95%, 53% and 1.95, respectively. Both virgin and spent catalysts have been characterized by a multitude of techniques, e.g., Atomic-Absorption spectroscopy, Raman spectroscopy, N2-adsorption-desorption, and Transmission Electron Microscopy (TEM), among others. Regarding the spent catalysts, carbon deposits’ morphology becomes more graphitic as the reaction temperature increases, and the total coke formation is mitigated by increasing reaction temperature and lowering GHSV.  相似文献   

20.
The aim of this work is to prepare CoB catalysts supported on raw bentonite (CoB/bentonite) and Na-exchanged bentonite (CoB/Na-bentonite) by the impregnation and chemical reduction method. The prepared catalysts were characterized using X-ray diffractometry (XRD), X-ray fluorescence spectroscopy (XRF), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS) and Fourier transform infrared spectroscopy (FTIR) techniques. The activities of the catalysts were tested in the hydrolysis reaction of sodium borohydride (NaBH4) in a semi-batch system. The volume of the evolved hydrogen gas was determined by a water displacement method. The effects of catalyst amount, NaOH (a base stabilizer) concentration, NaBH4 concentration and solution temperature on the hydrogen generation rate were investigated. The maximum hydrogen generation rates were determined as 921.94 mL/min.gcat for CoB/bentonite and 1601.45 mL/min.gcat for CoB/Na-bentonite when the 5 wt % NaBH4 and 10 wt % NaOH solutions were used at 50 °C. The activation energies (Ea) of the hydrolysis reaction over CoB/bentonite and CoB/Na-bentonite were determined as 55.76 and 56.61 kJ/mol, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号