首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The potential for both heat and power extraction from a PEM fuel cell is investigated experimentally and using computer simulation to improve the economics of a solar-hydrogen system supplying energy to a remote household. The overall average energy efficiency of the fuel cell was measured to be about 70% by utilizing the heat generated for domestic water heating, compared to only 35-50% for electricity generation alone. The corresponding round-trip energy efficiency of the hydrogen storage sub-system (electrolyzer, storage tank, and fuel cell) was raised from about 34% in a power-only application to about 50% in combined heat and power (CHP) mode. The economic benefit of using the fuel cell heat for boosting an LPG hot water system over a 30-year assessment period is estimated to be equivalent to about 15% of the total capital cost of the solar-hydrogen system. The stoichiometry of the input air, and the fuel cell operating temperature, were found to influence significantly the overall performance of the solar-hydrogen CHP system.  相似文献   

2.
《Energy》2005,30(10):1759-1779
When modelling the environmental and economic aspects of meeting a given heat and power demand with a combination of combined heat and power (CHP) and grid power, it is common to use a coarse temporal precision such as 1-h demand blocks in heat and power demand data. This may be appropriate for larger applications where demand is reasonably smooth, but becomes questionable for applications where demand exhibits substantial volatility such as for a single residential dwelling—an important potential market for the commercialisation of small-scale fuel cells and other micro-CHP. Choice of temporal precision is also influenced by the relative ease in obtaining coarse data, their compatibility with available energy price data, and avoidance of computational overheads when data sets expand. The thesis of this paper is that use of such coarse temporal precision leads to averaging effects that result in misleading environmental and economic outcomes for cost-optimal micro-CHP systems. Much finer temporal precision is required to capture adequately the specific characteristics of residential energy demand and the technical qualities of solid oxide fuel cell and stirling engine micro-CHP systems. This thesis is generally supported by the results of analysis, which shows that in some cases optimal design generation capacity of the CHP system is reduced by more than half between analyses using 1-h precision and 5-min precision energy demand data. When optimal dispatch of given generator and boiler capacities is considered, the quantities of energy delivered by the various components of the energy provision system (i.e. generation from CHP, heat from CHP, heat from an additional boiler, electricity from grid) varied by up to 40% between precisions analysed. Total CO2 emissions reduction is overestimated by up to 40% by the analyses completed using coarse demand data for a given micro-CHP generator capacity. The economic difference is also significant at up to 8% of lifetime costs for a given micro-CHP generator capacity.  相似文献   

3.
To meet the UK's decarbonization targets the introduction of novel integrated renewable energy generation, storage and demand management systems is required. In this paper the current role of fuel cells in the British domestic sector is discussed using simulation results of a solid oxide fuel cell (SOFC) system in a typical British single dwelling. 17% of carbon dioxide emissions are saved and 69% of the electricity generated by the SOFC system is exported to the grid for this single dwelling according to simulation results. Additionally, the same SOFC system is integrated with photovoltaic technology in a 7 home zero carbon community. The community approach adds a significant benefit given it increases the amount of electricity generated by the SOFC system which is used onsite by 128%, being the price of imported electricity 3 times higher than the export tariff. Then, a combination of short-term and long-term energy storage strategies is suggested by means of a lithium-ion battery and polymer electrolyte membrane (PEM) electrolyser which increased the self-consumption by 118%. According to simulation results, a 6 kW PEM electrolyser with an annual efficiency of 66% only generates 19% of the hydrogen which is consumed by the SOFC system which was used to meet the peak demand using PV generation.  相似文献   

4.
As the share of distributed renewable power generation increases, high electricity prices and low feed-in tariff rates encourage the generation of electricity for personal use. In the building sector, this has led to growing interest in energy self-sufficient buildings that feature battery and hydrogen storage capacities. In this study, we compare potential technology pathways for residential energy storage in terms of their economic performance by means of a temporal optimization model of the fully self-sufficient energy system of a single-family building, taking into account its residential occupancy patterns and thermal equipment. We show for the first time how heat integration with reversible solid oxide cells (rSOCs) and liquid organic hydrogen carriers (LOHCs) in high-efficiency, single-family buildings could, by 2030, enable the self-sufficient supply of electricity and heat at a yearly premium of 52% against electricity supplied by the grid. Compared to lithium-ion battery systems, the total annualized cost of a self-sufficient energy supply can be reduced by 80% through the thermal integration of LOHC reactors and rSOC systems.  相似文献   

5.
It is commonly assumed that dispatch of micro-combined heat and power (micro-CHP) should be heat driven, where the unit turns on when a heat load is present, and turns off or modulates when there is little or no heat demand. However, this heat led operating strategy—typical of large-scale CHP applications—may not be economically justified as scale decreases. This article investigates cost-effective operating strategies for three micro-CHP technologies; Stirling engine, gas engine, and solid oxide fuel cell (SOFC), under reasonable estimates of energy prices. The cost of meeting a typical UK residential energy demand is calculated for hypothetical heat led and electricity led operating strategies, and compared with that of an optimal strategy. Using central estimates of price parameters, and with some thermal energy storage present in the system, it is shown that the least cost operating strategy for the three technologies is to follow heat and electricity load during winter months, rather than using either heat demand or electricity demand as the only dispatch signal. Least cost operating strategy varies between technologies in summer months. In terms of environmental outcomes, the least cost operating strategy does not always result in the lowest carbon dioxide emissions. The results obtained are sensitive to electricity buy-back rate.  相似文献   

6.
The increasing demand for electrical power as well as energy for heating and cooling of residences and small commercial buildings is a growing worldwide concern. Micro-cooling, heating, and power (micro-CHP), typically designated as less than 30 kW electric, is decentralized electricity generation coupled with thermally activated components for residential and small commercial applications. The number of combinations of components and parameters in a micro-CHP system is too many to be designed through experimental work alone. Therefore, theoretical models for different micro-CHP components and complete micro-CHP systems are needed to facilitate the design of these systems and to study their performance. This paper presents a model for micro-CHP systems for residential and small commercial applications. Some of the results that can be obtained using the developed model include the cost per month of operation of using micro-CHP versus conventional technologies, the amount of fuel per month required to run micro-CHP systems, the overall efficiency of micro-CHP systems, etc. A case study is used to demonstrate differences in the system performances of micro-CHP systems driven by a natural gas internal combustion engine and a diesel engine. Some of the results show that both systems have similar performance and that system total efficiencies in cooler months of up to 80% could be obtained. Also, modeling results show that there is a limit in fuel price that economically prevents the use of CHP systems, which is $11 MBTU−1 for this specific case. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

7.
The effects of applying micro-CHP systems to a single dwelling, and to various dwellings within a group, are investigated by using gas and electricity consumption data recorded on a 1-min time base across a full year. Micro-CHP systems based on Stirling engines and fuel cells are predicted to supply 25–46% of the single dwelling's annual electricity demand. For all days of the year, the daily load factor of the resultant load placed on the electricity network is reduced, suggesting that the overall effect of micro-CHP systems will be to provide highly dispersed base-load generation. Consideration of various penetration levels of a 1 kW Stirling engine micro-CHP system of 15% electrical efficiency indicates that the maximum reduction in the aggregate peak load for a single distribution transformer will be about 44% on a winter's day, but only 3% on a summer's day. An alternative implementation of 3 kW fuel cell systems of 50% electrical efficiency would yield significant reductions (both in the peak load and the daily requirement for network electricity) at low penetration levels, with significant reverse flows occurring at the distribution transformer once the penetration level exceeds approximately 15% on a winter's day.  相似文献   

8.
This work investigates on the performance of a hybrid energy storage system made of a metal hydride tank for hydrogen storage and a lithium-ion battery pack, specifically conceived to replace the conventional battery pack in a plug-in fuel cell electric scooter. The concept behind this solution is to take advantage of the endothermic hydrogen desorption in metal hydrides to provide cooling to the battery pack during operation.The analysis is conducted numerically by means of a finite element model developed in order to assess the thermal management capabilities of the proposed solution under realistic operating conditions.The results show that the hybrid energy storage system is effectively capable of passively controlling the temperature of the battery pack, while enhancing at the same time the on-board storage energy density. The maximum temperature rise experienced by the battery pack is around 12 °C when the thermal management is provided by the hydrogen desorption in metal hydrides, against a value above 30 °C obtained for the same case without thermal management. Moreover, the hybrid energy storage system provides the 16% of the total mass of hydrogen requested by the fuel cell stack during operation, which corresponds to a significant enhancement of the hydrogen storage capability on-board of the vehicle.  相似文献   

9.
The use of commercially available components enables rapid prototyping and assembling of laboratory scale hybrid test-bed systems, which can be used to evaluate new hybrid configurations. The development of such a test-bed using an off-the-shelf PEM fuel cell, lithium-ion battery and DC/DC converter is presented here, and its application to a hybrid configuration appropriate for an unmanned underwater vehicle is explored. A control algorithm was implemented to regulate the power share between the fuel cell and the battery with a graphical interface to control, record and analyze the electrochemical and thermal parameters of the system. The results demonstrate the applicability of the test-bed and control algorithm for this application, and provide data on the dynamic electrical and thermal behaviour of the hybrid system.  相似文献   

10.
This article presents the concept and mathematical treatment for a techno-economic modelling framework designed to enable exploration of fuel cell micro combined heat and power (micro-CHP) system design and control. The aim is to provide a tool that can help to focus research and development attention on the system characteristics critical for commercial success of these technologies, present cost targets for developers, and to ensure policy makers provide appropriate instruments to support commercialisation. The model is distinctive in that it applies mixed integer unit commitment formulation to link design and control decisions for micro-CHP, and explicitly characterises stack degradation in a techno-economic framework. It is structured to provide depiction of the fuel cell stack and balance-of-plant, supplementary thermal-only system (e.g. tail gas burner), thermal energy storage, and electrical power storage. Technically, the fuel cell stack is characterised by steady-state thermal and electrical efficiencies for full and part-load operation, its nameplate capacity, minimum operating set-point, and stack degradation via performance loss rate proportional to power density and thermal cycling rate. The dynamics of operation are emulated via ramp limits, minimum up-time and minimum down-time constraints, and start-up and shutdown costs and energy consumptions. The primary performance evaluation metric adopted is the maximum additional capital cost a rational investor would pay for the fuel cell micro-CHP system over and above what they would pay for a competing conventional heating system. The companion article (Part 2) applies the developed model to consider the impact of stack degradation on economic and environmental performance.  相似文献   

11.
An experimental study on the transient power characteristics of a fuel cell generator has been conducted. The generator is hybridized by a proton exchange membrane (PEM) as the main power source and a lithium-ion battery as the secondary power source. power-conditioning module consisting of a main bidirectional converter and an auxiliary converter has been designed to manage the hybrid power of the generator that copes with fast dynamics of variable loads. Sensors embedded in the generator have measured the electrical properties dynamically. It was found that the present power-conditioning scheme has well controlled the power flow between the fuel cell stack and the battery by regulating the power flow from or to the battery. In addition, the thermal management system using pulse width modulation (PWM) schemes could limit the operation temperature of the fuel cell generator in a designed range. Furthermore, the dynamics of electrical efficiency of the generator are found to be parallel with those of the net system power. Finally, the stability and reliability of the fuel cell generator is proven by the rational dynamic behaviors of thermal and electrical properties for over 30-h demonstration.  相似文献   

12.
Biomass can be applied as the primary source for the production of hydrogen in the future. The biomass is converted in an atmospheric fluidized bed gasification process using steam as the gasifying agent. The producer gas needs further cleaning and processing before the hydrogen can be converted in a fuel cell; it is assumed that the gas cleaning processes are able to meet the requirements for a PEM-FC. The compressed hydrogen is supplied to a hydrogen grid and can be used in small-scale decentralized CHP units. In this study it is assumed that the CHP units are based on low temperature PEM fuel cells. For the evaluation of alternative technologies the whole chain of centralized hydrogen production from biomass up to and including decentralized electricity production in PEM fuel cells is considered.Two models for the production of hydrogen from biomass and three models for the combined production of electricity and heat with PEM fuel cells are built using the computer program Cycle-Tempo. Two different levels of hydrogen purity are considered in this evaluation: 60% and 99.99% pure hydrogen. The purity of the hydrogen affects both the efficiencies of the hydrogen production as well as the PEM-FC systems. The electrical exergy efficiency of the PEM-FC system without additional heat production is calculated to be 27.66% in the case of 60% hydrogen and 29.06% in the case of 99.99% pure hydrogen. The electrical exergy efficiencies of the whole conversion chain appear to be 21.68% and 18.74%, respectively. The high losses during purification of the hydrogen gas result in a higher efficiency for the case with low purity hydrogen. The removal of the last impurities strongly increases the overall exergy losses of the conversion chain.  相似文献   

13.
A proton exchange membrane fuel cell (PEMFC) cogeneration system that provides high-quality electricity and hot water has been developed. A specially designed thermal management system together with a microcontroller embedded with appropriate control algorithm is integrated into a PEM fuel cell system. The thermal management system does not only control the fuel cell operation temperature but also recover the heat dissipated by FC stack. The dynamic behaviors of thermal and electrical characteristics are presented to verify the stability of the fuel cell cogeneration system. In addition, the reliability of the fuel cell cogeneration system is proved by one-day demonstration that deals with the daily power demand in a typical family. Finally, the effects of external loads on the efficiencies of the fuel cell cogeneration system are examined. Results reveal that the maximum system efficiency was as high as 81% when combining heat and power.  相似文献   

14.
This paper investigates the performance of a high temperature Polymer Electrolyte Membrane (PEM) electrolyzer integrated with concentrating solar power (CSP) plant and thermal energy storage (TES) to produce hydrogen and electricity, concurrently. A finite-time-thermodynamic analysis is conducted to evaluate the performance of a PEM system integrated with a Rankine cycle based on the concept of exergy. The effects of solar intensity, electrolyzer current density and working temperature on the performance of the overall system are identified. A TES subsystem is utilized to facilitate continuous generation of hydrogen and electricity. The hydrogen and electricity generation efficiency and the exergy efficiency of the integrated system are 20.1% and 41.25%, respectively. When TES system supplies the required energy, the overall energy and exergy efficiencies decrease to 23.1% and 45%, respectively. The integration of PEM electrolyzer enhances the exergy efficiency of the Rankine cycle, considerably. However, it causes almost 5% exergy destruction in the integrated system due to conversion of electrical energy to hydrogen energy. Also, it is concluded that increase of working pressure and membrane thickness leads to higher cell voltage and lower electrolyzer efficiency. The results indicate that the integrated system is a promising technology to enhance the performance of concentrating solar power plants.  相似文献   

15.
Solid oxide fuel cell (SOFC) based micro combined heat and power (micro-CHP) systems exhibit fundamentally different characteristics from other common micro-CHP technologies. Of particular relevance to this article is that they have a low heat-to-power ratio and may benefit from avoidance of thermal cycling. Existing patterns of residential heat demand in the UK, often characterised by morning and evening heating periods, do not necessarily complement the characteristics of SOFC based micro-CHP in an economic and technical sense because of difficulties in responding to large rapid heat demands (low heat-to-power ratio) and preference for continuous operation (avoidance of thermal cycling). In order to investigate modes of heat delivery that complement SOFC based micro-CHP a number of different heat demand profiles for a typical UK residential dwelling are considered along with a detailed model of SOFC based micro-CHP technical characteristics. Economic and environmental outcomes are modelled for each heat demand profile. A thermal energy store is then added to the analysis and comment is made on changes in economic and environmental parameters, and on the constraints of this option. We find that SOFC-based micro-CHP is best suited to slow space heating demands, where the heating system is on constantly during virtually all of the winter period. Thermal energy storage is less useful where heat demands are slow, but is better suited to cases where decoupling of heat demand and heat supply can result in efficiencies.  相似文献   

16.
This paper presents the concept and the design of a hybrid renewable energy polygeneration microgrid along with its technical and economical evaluation. The energy of the sun and the wind is harvested by photovoltaics and a wind turbine. Besides that, the components of the microgrid include a battery bank, a Proton Exchange Membrane (PEM) fuel cell, a PEM electrolyzer, a metal hydride tank, a reverse osmosis desalination unit using energy recovery and a control system. The microgrid covers the electricity, transport and water needs and thus its products are power, hydrogen as transportation fuel and potable water through desalination. Hydrogen and the desalinated water also act as medium to long term seasonal storage. A design tool based on TRNSYS 16, GenOpt 2.0 and TRNOPT was developed using Particle Swarm Optimization method. The economic evaluation of the concept was based on the discounting cash flow approach. The Monte Carlo Simulation method was used in order to take uncertainty into account. A technically feasible polygeneration microgrid adapted to a small island is financially profitable with a probability of 90% for the present and 100% at the medium term.  相似文献   

17.
The primary purposes of this paper are to describe a practical model which can be used to assist economic evaluation of district heating proposals, with particular reference to potential micro combined heat and power (CHP) applications, and to discuss the results of applying this model to a proposal for a particular scheme. The problems of realistic simulation of demand patterns, and the sensitivity of micro-CHP project values to scale, fuel prices, differential purchase/selling tariffs for electricity, duty cycle and plant utilization factors are discussed. Of several options, two were shown to be economically viable, relative to existing methods of supply (gas-fired boilers); however, the margin of benefit is small relative to wisely chosen modern boiler installations. A brief discussion of alternative methods of finance is provided; ceteris paribus, the proposed scheme would not be likely to attract venture capital from would-be lease-hire agencies. There is scope however for pilot schemes, whose results could be used to define more closely the limits of uncertainty of, for example, annual availability and duty cycle influences on the cost economics of operations.  相似文献   

18.
A proposed residential energy system based on the PBI (Polybenzimidazole) fuel cell technology is analyzed in terms of operational performance. Conventional operational strategies, such as heat-led and electricity-led, are applied to the simulated system to investigate their performance characteristics. Based on these findings, an improved operational strategy is formulated and applied in an attempt to minimize the shortcomings of conventional strategies. System parameters, such as electrical and thermal efficiencies, heat dumping, and import/export of electricity, are analyzed. The applied load profile is based on average data for a single-family household in Denmark and includes consumption data for electricity and heat demands. The study analyzes the potential of the proposed system on market penetration in the area of residential heat-and-power generation and whether this deployment can be justified as compared to other micro-CHP system technologies. The most important findings of this research study indicate that in comparison to non-fuel cell-based micro-CHP systems, such as Stirling Engine-based systems, the proposed system has significantly higher efficiencies. Moreover, the lower heat-to-power ratios allow the system to avoid high thermal surpluses throughout the whole annual operational profile.  相似文献   

19.
The performance of residential micro combined heat and power (micro-CHP)—a technology to provide heat and some electricity to individual dwellings—is generally dependent on the magnitude of household thermal energy demand. Dwellings with larger and more consistent thermal consumption perform well economically and achieve greater greenhouse gas emissions savings. Consequently, the performance of micro-CHP is dependent on the level of thermal insulation in a dwelling. Therefore, emerging policy approaches regarding energy use in the residential sector, which generally support both energy efficiency measures such as thermal insulation and adoption of micro-CHP, may inadvertently incentivise micro-CHP installation where CO2 reductions are meagre or not cost-effective. This article examines this issue in terms of the changes in economic and environmental performance that occur for three micro-CHP technologies under changing patterns of residential thermal insulation in the United Kingdom. The results of this analysis are used to comment on the structure of policy instruments that support micro-CHP. It is found that simultaneous support for energy efficiency measures and micro-CHP can be justified, but care must be taken to ensure that the heat-to-power ratio and capacity of the micro-CHP system are appropriate for the expected thermal demand of the target dwelling.  相似文献   

20.
A portable proton exchange membrane (PEM) fuel cell-battery power system that uses hydrogen as fuel has a higher power density than conventional batteries, and it is one of the most promising environmentally friendly small-scale alternative energy sources. A general methodology of modeling, control and building of a proton exchange membrane fuel cell-battery system is introduced in this study. A set of fuel cell-battery power system models have been developed and implemented in the Simulink environment. This model is able to address the dynamic behaviors of a PEM fuel cell stack, a boost DC/DC converter and a lithium-ion battery. To control the power system and thus achieve proper performance, a set of system controllers, including a PEM fuel cell reactant supply controller and a power management controller, were developed based on the system model. A physical 100 W PEM fuel cell-battery power system with an embedded micro controller was built to validate the simulation results and to demonstrate this new environmentally friendly power source. Experimental results demonstrated that the 100 W PEM fuel cell-battery power system operated automatically with the varying load conditions as a stable power supply. The experimental results followed the basic trend of the simulation results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号