首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Proton exchange membrane (PEM) water electrolysis systems offers several advantages over traditional technologies including greater energy efficiency, higher production rates, and more compact design. Normally in these systems, the anode has the largest overpotential at typical operating current densities. By development of the electrocatalytic material used for the oxygen evolving electrode, great improvements in efficiency can be made. We find that using cyclic voltammetry and steady state polarisation analysis, enables us to separate the effects of true specific electrocatalytic activity and active surface area. Understanding these two factors is critical in developing better electrocatalytic materials in order to further improve the performance of PEM water electrolysis cells. The high current performance of a PEM water electrolysis cell using these oxides as the anode electrocatalyst has also been examined by steady state polarisation measurements and electrochemical impedance spectroscopy. Overall the best cell voltage obtained is 1.567 V at 1 A cm−2 and 80 °C was achieved when using Nafion 115 as the electrolyte membrane.  相似文献   

2.
This paper presents the development of key components, specifications, configuration and operation characteristics of an 80 l/h Proton Exchange Membrane (PEM) water electrolyzer system for portable application. The developed PEM water electrolyzer can produce 80 l/h hydrogen (purity > 99.99%) with moderate pressure range up to 500 kPa (73 psi) at an operating current of 100 A with energy efficiency of 77.48%. The reliability in operation of developed PEM water electrolyzer system is tested for running the stack about 3000 h with 100 A current. The results indicate the reasonable stability of MEA fabrication and cell design method.  相似文献   

3.
    
This work presents simulation results from a system where offshore wind power is used to produce hydrogen via electrolysis. Real-world data from a 2.3 MW floating offshore wind turbine and electricity price data from Nord Pool were used as input to a novel electrolyzer model. Data from five 31-day periods were combined with six system designs, and hydrogen production, system efficiency, and production cost were estimated. A comparison of the overall system performance shows that the hydrogen production and cost can vary by up to a factor of three between the cases. This illustrates the uncertainty related to the hydrogen production and profitability of these systems. The highest hydrogen production achieved in a 31-day period was 17 242 kg using a 1.852 MW electrolyzer (i.e., utilization factor of approximately 68%), the lowest hydrogen production cost was 4.53 $/kg H2, and the system efficiency was in the range 56.1–56.9% in all cases.  相似文献   

4.
    
A comprehensive literature review of current water electrolyzer modelling research was conducted and presented models critically evaluated. Based on the literature review this paper presents an open-source MATLAB toolbox for water electrolyzer polarisation curve parametrization and modelling. The modelling capabilities of the tooling were verified using measured PEM and alkaline water electrolyzer polarisation data. As real-world measurement data is rarely ideal, tests were also conducted using suboptimal data, first with data sets that have a low number of measurement points and secondly with data sets that have low or high current densities missing. The tooling is shown to work with a wide variety of use cases and provides an automated method for modelling and parametrization of electrolyzer polarisation curves.  相似文献   

5.
    
In the present paper, a new energy generation system is suggested for multiple outputs, including a hydrogen generation unit. The plant is powered by a solar tower and involves six different subsystems; supercritical carbon dioxide (sCO2) re-compression Brayton cycle, ammonia-water absorption refrigeration cycle, hydrogen generation, steam generation, drying process, and thermoelectric generator. The thermodynamic assessment of the multi-generation system is carried out for three different cities from Turkey, Iran, and Qatar. The energy and exergy efficiencies are calculated for base conditions to compare the different locations. The operating output parameters for the suggested system and simple re-compression Brayton system are compared. A parametric analysis is also done for investigating the influences of different system variables on plant performance. According to the results, Doha city is found to be more effective due to its geographical conditions. Moreover, based on the comparative study, the proposed cycles produce more power than the basic re-compression cycle with 64.59 kW, 47.33 kW, and 52.25 kW for Doha, Isparta, and Tehran, respectively. Additionally, the analyses revealed that in the term of energy efficiency, the suggested system has 32.29%, 32.28%, and 32.29% better performance than the simple cycle, and in terms of exergy efficiency, it has 4%, 4.8%, and 5% better performance than the simple cycle in Doha, Isparta, and Tehran, respectively.  相似文献   

6.
An alternative method for producing hydrogen from renewable resources is proposed. Electrochemical reforming of glycerol solution in a proton exchange membrane (PEM) electrolysis cell is reported. The anode catalyst was composed of Pt on Ru–Ir oxide with a catalyst loading of 3 mg cm−2 on Nafion. Part of the energy carried by the produced hydrogen is supplied by the glycerol (82%) and the remaining part of the energy originates from the electrical energy (18%) with an energy efficiency of conversion of glycerol to hydrogen of around 44%. The electrical energy consumption of this process is 1.1 kW h m−3 H2. Compared to water electrolysis in the same cell, this is an electrical energy saving of 2.1 kW h N m−3 H2 (a 66% reduction). Production rates are high compared with comparable sized microbial cells but low compared with conventional PEM water electrolysis cells.  相似文献   

7.
    
Models based on too many parameters are complex and burdensome, difficult to be adopted as a tool for sizing these technologies, especially when the goal is not the improvement of electrochemical technology, but the study of the overall energy flows.The novelty of this work is to model an electrolysis hydrogen production process, with analysis and prevision of its electrical and thermal energy expenditure, focusing on the energy flows of the whole system. The paper additionally includes investigation on auxiliary power consumption and on thermal capacity and resistance as functions of the stack power. The electrolysis production phase is modeled, with a zero-dimensional, multi-physics and dynamic approach, both with alkaline and polymer membrane electrolyzers.Models are validated with experimental data, showing a good match with a root-mean-square percentage error under 0.10. Results are scaled-up for 180 kg/day of hydrogen, performing a comparison with both technologies.  相似文献   

8.
The continuous improvement of the anode materials constitutes a major challenge for the future commercial use of polymer electrolyte membranes (PEM) electrolyzers for hydrogen production. In accordance to this direction, iridium/titanium films deposited directly on carbon substrates via magnetron sputtering are operated as electrodes for the oxygen evolution reaction interfaced with Nafion 115 electrolyte in a laboratory single cell PEM hydrogen generator. The anode with 0.2 mg cm−2 Ir catalyst loading was electrochemically activated by cycling its potential value between 0 and 1.2 V (vs. RHE). The water electrolysis cell was operated at 90 °C with current density 1 A cm−2 at 1.51 V without the ohmic contribution. The corresponding current density per mgr of Ir catalyst is 5 A mg−1. The achieved high efficiency is combined with sufficient electrode stability since the oxidation of the carbon substrate during the anodic polarization is almost negligible.  相似文献   

9.
The electrochemical properties of a proton exchange membrane (PEM) stack electrolyzer (9 cells of 100 cm2 geometrical area) were investigated at different temperatures. An amount of H2 of ∼270 l h−1 was produced at 60 A (600 mA cm−2) and 70 °C under 876 W of applied electrical power. The corresponding specific energy consumed in the process was 3.24 Wh·l−1H2. The Faradic and electrical efficiencies were determined. Overall stack efficiencies of 73% and 85%, at 60 A and 70 °C, with respect to the low and high heating value of hydrogen, respectively, were obtained. These results confirmed the successful scale-up of a previous lab-scale device.  相似文献   

10.
11.
In this study the influence of cathodic and anodic pressures during polymer electrolyte membrane water electrolysis on the gas crossover is simulated and compared to in-situ measurements of the anodic hydrogen content at differential and balanced pressure operation. The efficiency losses due to the reduced Faraday efficiency caused by crossover, ohmic loss of the membrane and pressurized hydrogen and oxygen evolution are estimated. Therefore, the correlated dependencies on the current density, membrane thickness, anodic and cathodic pressures, membrane conductivity and permeabilities are quantified. In addition, pressurized electrolysis is compared to adiabatic and isothermal subsequent compression in focus of efficiency. The outcome of this study can be utilized as a powerful computational tool to optimize the membrane thickness with respect to the operating pressures.  相似文献   

12.
PEM electrolysis for production of hydrogen from renewable energy sources   总被引:4,自引:0,他引:4  
Frano Barbir   《Solar Energy》2005,78(5):661-669
PEM electrolysis is a viable alternative for generation of hydrogen from renewable energy sources. Several possible applications are discussed, including grid independent and grid assisted hydrogen generation, use of an electrolyzer for peak shaving, and integrated systems both grid connected and grid independent where electrolytically generated hydrogen is stored and then via fuel cell converted back to electricity when needed. Specific issues regarding the use of PEM electrolyzer in the renewable energy systems are addressed, such as sizing of electrolyzer, intermittent operation, output pressure, oxygen generation, water consumption and efficiency.  相似文献   

13.
    
This paper presents a bottom-up approach to the assessment of model performance and costs of a proton-exchange-membrane electrolysis considering cell, stack and process levels. The cell voltage is modelled dependent on current density and detailed models for stack, investment and hydrogen costs are developed. Taking into account current research on PEM electrolysis, such as the use of thinner membranes or low precious metal loading on the electrodes, allows the prediction of next generation's efficiency and costs. By comparison of a current and next-generation PEM electrolysis, the effectiveness of individual development steps was assessed and remaining space for efficiency and cost improvement was identified. This can help to prioritize and to focus on development steps which are most effective.In the next generation, efficiency will be increased even at higher current density operation. Thus, specific stack costs will drop to less than half of present day costs which is decisive to achieve lower hydrogen production costs in the next generation. Specific installed costs and hydrogen production costs of the current and next generation are calculated for plant sizes up to 100 MWDC and reveal significant cost decrease for plant capacities up to 25 MWDC while only changing slightly for capacities larger than this.Costs are always subject to uncertainties due to model assumptions and boundary conditions that need to be defined. Uncertainties and the sensitivities of the model are estimated and assessed to provide an indication of the actual cost range. Main cost model uncertainties are identified to arise from membrane electrode and stack assembly costs, civil engineering and construction surcharge as well as the electrical system. Hydrogen costs are dominated by operating costs and therefore are highly sensitive to the annual operating hours and the electricity price, which have a greater impact on the hydrogen costs than the model assumptions for capital costs.  相似文献   

14.
    
Gas permeation through a membrane electrode assembly (MEA) is an important issue in the development of polymer electrolyte membrane (PEM) water electrolyzers, because it can cause explosions and efficiency losses. The influence of operating pressure, temperature and MEA modifications on the permeation was already investigated. However, most of the studies pay no attention to the compression of the porous transport layer (PTL) of the MEA when assembling it in a test cell to carry out the experiments.This paper deals with the impact of the PTL compression on hydrogen permeation and cell voltage. Polarization, impedance and permeation measurements are used to demonstrate that the compression significantly affects the MEA's properties. Measurements show either a linear or nonlinear correlation between current density and hydrogen permeation, depending on the compression.The results indicate that the compression of the PTL must be taken into account for developing MEAs and comparing different permeation measurements.  相似文献   

15.
PEM water electrolysis offers an efficient and flexible way to produce “green-hydrogen” from renewable (intermittent) energy sources. Most research papers published in the open literature on the subject are addressing performances issues and to date, very few information is available concerning the mechanisms of performance degradation and the associated consequences. Results reported in this communication have been used to analyze the failure mechanisms of PEM water electrolysis cells which can ultimately lead to the destruction of the electrolyzer. A two-step process involving firstly the local perforation of the solid polymer electrolyte followed secondly by the catalytic recombination of hydrogen and oxygen stored in the electrolysis compartments has been evidenced. The conditions leading to the onset of such mechanism are discussed and some preventive measures are proposed to avoid accidents.  相似文献   

16.
In this paper a new approach for H2 production by PEM electrolysis, assisted by effluent treatment in the anolyte is proposed. H2 is produced, in the catholyte, by proton reduction at a Fe-cathode, in an acid medium (1 M H2SO4). While in the anolyte, a mixture of Fe2+/Fe3+ is produced from the oxidation of an iron anode. The overall energy required (≤1.00 V) is less than that required by conventional water electrolysis, and is delivered by solar panels. In the anolyte, iron ions can be used in favor of a Fenton-type process, in the presence of H2O2. This approach is used in effluent treatment. The oxidation efficiency of dyes reactive black 5 (RB 5) and acid green 25 (AG 25) was investigated, in mild conditions, during H2 production. The main experimental results show that it is possible to oxidize 0.00024 M RB 5 or 0.0002 M AG 25 in the anolyte, in 20 min.  相似文献   

17.
This paper deals with the potential of power generation resources for hydrogen production and electric grid load balancing in large scale management scenarios like the Spanish power system; much of which is currently underutilized and could deliver substantial amounts of energy, with great advantages for the reliability of the system at the same time. In this context, the production of hydrogen by electrolysis using the power grid mix is a promising option as an alternative to other operational procedures or exporting the electricity.  相似文献   

18.
    
Since it has the potential to significantly reduce gaseous emissions in the near future, electrolytic hydrogen production using electricity generated from renewable energy sources, such as solar radiation, is key. Water splitting processes occurring in electrolyzer cells are complex phenomena. Therefore, to fully realize such processes, different technologies have been accounted for. The focus of this work is on the mathematical modeling of three different electrolyzer cells related technologies, (i) alkaline, (ii) proton exchange membrane (PEM), and (iii) decoupled water splitting. Accordingly, several existing mathematical models for alkaline and PEM electrolyzers are initially revised. Next, a comprehensive mathematical model capable of properly predicting the performance of the three electrolyzer technologies accounted for here is proposed. The developed mathematical models are then used to predict the behavior of electrolyzer cells under different operation conditions. The obtained results are finally compared in terms of cell voltages, cell efficiencies, and hydrogen production rates. When compared to other results available in the literature, the cell voltage ones obtained using the new proposed model are in relatively good agreement. Specifically, for a current density range of 0–200 mA/cm2, cell pressures between 10 and 40 bar, and a cell temperature of 60 °C, cell voltage requirements are between 1.25 and 1.75 V, with the E-TAC technology performing better than the other two ones accounted for. In addition, for current densities of more than 100 mA/cm2 and cell pressures below 5 bar, Faraday's efficiencies are almost the same for all three technologies, i.e., about 95%. However, for higher cell pressures, significant differences in Faraday's efficiency appear. Based on the work carried out, it is concluded that developing a sound mathematical model is crucial both for the comprehension of coupled and decoupled water electrolysis-related processes and for their use in the simplest and most reliable way.  相似文献   

19.
A systematic method for obtaining a novel electrode structure based on PtCoMn ternary alloy catalyst supported on graphitic carbon nanofibers (CNF) for hydrogen evolution reaction (HER) in acidic media is proposed. Ternary alloy nanoparticles (Co0.6Mn0.4 Pt), with a mean crystallite diameter under 10 nm, were electrodeposited onto a graphitic support material using a two-step pulsed deposition technique. Initially, a surface functionalisation of the carbon nanofibers is performed with the aid of oxygen plasma. Subsequently, a short galvanostatic pulse electrodeposition technique is applied. It has been demonstrated that, if pulsing current is employed, compositionally controlled PtCoMn catalysts can be achieved. Variations of metal concentration ratios in the electrolyte and main deposition parameters, such as current density and pulse shape, led to electrodes with relevant catalytic activity towards HER. The samples were further characterised using several physico-chemical methods to reveal their morphology, structure, chemical and electrochemical properties. X-ray diffraction confirms the PtCoMn alloy formation on the graphitic support and energy dispersive X-ray spectroscopy highlights the presence of the three metallic components from the alloy structure. The preliminary tests regarding the electrocatalytic activity of the developed electrodes display promising results compared to commercial Pt/C catalysts. The PtCoMn/CNF electrode exhibits a decrease in hydrogen evolution overpotential of about 250 mV at 40 mA cm−2 in acidic solution (0.5 M H2SO4) when compared to similar platinum based electrodes (Pt/CNF) and a Tafel slope of around 120 mV dec−1, indicating that HER takes place under the Volmer-Heyrovsky mechanism.  相似文献   

20.
In liberalized power markets, there are significant power price fluctuations due to independently varying changes in demand and supply, the latter being substantial in systems with high wind power penetration. In such systems, hydrogen production by grid connected electrolysis can be cost optimized by operating an electrolyzer part time. This paper presents a study on the minimization of the hydrogen production price and its dependence on estimated power price fluctuations. The calculation of power price fluctuations is based on a parameterization of existing data on wind power production, power consumption and power price evolution in the West Danish power market area. The price for hydrogen is derived as a function of the optimal electrolyzer operation hours per year for four different wind penetration scenarios. It is found to amount to 0.41–0.45 €/Nm3. The study further discusses the hydrogen price sensitivity towards investment costs and the contribution from non-wind power sources.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号