首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Autothermal reforming (ATR) of iso-octane in the presence of Rh-based catalysts (0.5 wt% of Rh) supported onto γ-Al2O3, CeO2, and ZrO2 were initially carried out at 700 °C with a S/C ratio of 2.0, an O/C ratio of 0.84, and a gas hourly space velocity (GHSV) of 20,000 h−1. The activity of Rh/γ-Al2O3 was found to be higher than Rh/CeO2 and Rh/ZrO2, with H2 and (H2 + CO) yields of 1.98 and 2.48 mol/mol C, respectively, after 10 h. This Rh/γ-Al2O3 material, however, was potentially susceptible to carbon coking and produced 3.5 wt% of carbon deposits following the reforming reaction, as evidenced by C, H, N, and S elemental analysis. In contrast, Rh/CeO2 catalyst exhibited lower activity but higher stability than Rh/γ-Al2O3, with nearly no carbon being formed within 10 h. To combine the superior activity originated from Rh/γ-Al2O3 with high stability from Rh/CeO2, Rh/CeO2/γ-Al2O3 catalysts with different CeO2 contents were synthesized and examined for the ATR reactions of iso-octane. Compared to Rh/γ-Al2O3, the newly prepared Rh/CeO2/γ-Al2O3 catalysts (0.5 wt% of Rh and 20 wt% of CeO2) showed even enhanced activity during 10 h, and H2 and (H2 + CO) yields were calculated to be 2.08 and 2.62 mol/mol C, respectively. In addition, as observed with Rh/CeO2, the catalyst was further found to be stable with less than 0.3 wt% of carbon deposition after 10 h. The Rh/γ-Al2O3 and Rh/CeO2/γ-Al2O3 catalysts were eventually tested for ATR reactions using commercial gasoline that contained sulfur, aromatics, and other impurities. The Rh/γ-Al2O3 catalyst was significantly deactivated, showing decreased activity after 4 h, while the Rh/CeO2/γ-Al2O3 catalyst proved to be excellent in terms of stability against coke formation as well as activity towards the desired reforming reaction, maintaining its ability for H2 production for 100 h.  相似文献   

2.
CeO2–ZrO2–Al2O3 composite oxides supported palladium catalysts (Pd/CZA) are promising candidates for catalytic oxidation reactions. However, the efficient and stable oxidation of methane over Pd-based catalysts remains a longstanding challenge. Herein, we present a facile strategy to boost the catalytic performance of Pd/CZA through elaborately tuning the phase structure of supports. Calcining supports at relatively high temperatures (1200, 1300 °C) induced the phase transition of alumina (from γ-to α-) and the development of CeO2–ZrO2 solid solution (CZ). The weak interaction between α-Al2O3 and PdO resulted in an improved reducibility of catalysts. Meanwhile, the higher oxygen mobility originated from well-crystallized CZ phase contributed to the reoxidation of Pd to PdO, giving rise to abundant surface active Pd2+ species. Coupled with the hydrophobicity of α-Al2O3, the catalyst prepared with CZA supports calcined at 1300 °C demonstrated an excellent low-temperature activity, astounding stability and greatly enhanced water resistance towards methane combustion.  相似文献   

3.
This study is focused on investigating the dual performance of Rh/CeO2/γ-Al2O3 catalyst for steam reforming of ethanol (SRE) and thermochemical water splitting (TCWS) using a packed bed reactor. The catalyst is designed to be thermally stable containing an active phase of Rh and the redox component of CeO2 for oxygen exchange, supported on γ-Al2O3. The catalyst has been characterised by SEM, XRD, BET, TPR, TPD, XPS and TGA before testing in the reactor. The optimal temperature for SRE reaction over this catalyst is between 700 °C and 800 °C to produce high concentrations of hydrogen (~60%), and low CO and CH4. The selectivity towards CO and CH4 is higher at low temperatures and drops with rise in reaction temperature. Further, Rh/CeO2/γ-Al2O3 is found to be active for TCWS at relatively low temperatures (≤1200 °C). At temperatures as low as 800 °C, this catalyst is especially found suitable for multiple redox cycles, producing a total of 48.9 mmol/gcat in four redox cycles. The catalyst can be employed for large number of redox cycles when the reactor is operated at lower temperatures. Finally, the reaction pathways have been proposed for both SRE and TCWS on Rh/CeO2/γ-Al2O3 catalyst.  相似文献   

4.
Rh/Ce0.75Zr0.25O2-δ-ƞ-Al2O3/FeCrAl and Rh/Ni–MgO/Ce0.75Zr0.25O2-δ-ƞ-Al2O3/FeCrAl FeCrAlloy wire mesh supported catalysts were prepared via multistep procedure. They were characterized by XRD, SEM and TEM techniques. A comparative study of autothermal reforming (ATR) of isooctane and simulated gasoline (blends of isooctane, ortho-xylene and naphthalene) over Rh/Ce0.75Zr0.25O2-δ-ƞ-Al2O3/FeCrAl and Rh/Ni–MgO/Ce0.75Zr0.25O2-δ-ƞ-Al2O3/FeCrAl was performed. Both catalysts showed excellent performance in ATR of isooctane at molar ratios of O2:C = 0.51 and H2O:C = 2.59, T = 750°С and GHSV = 10000 h−1. In the ATR of isooctane – o-xylene blend in presence of Rh–Ni-containing catalyst carbon formation was observed. Rh-containing catalyst demonstrated rather good activity and stability even in the case of isooctane – o-xylene – naphthalene blend.  相似文献   

5.
In total 17 heterogeneous catalysts, with combinations of 4 transition metals (Ni, Ru, Cu and Co) and various promoters (e.g., Na, K, Mg, or Ru) supported on different materials (γ-Al2O3, ZrO2, and activated carbon (AC)), were investigated with respect to their catalytic activity and stability for H2 production from glucose via supercritical water gasification (SCWG). The experiments were carried out at 600 °C and 24 MPa in a bench-scale continuous-flow tubular reactor. Ni (in metallic form) and Ru (in both metallic and oxidized forms) supported on γ-Al2O3 exhibited very high activity and H2 selectivity among all of the catalysts investigated for a time-on-stream of 5-10 h. With Ni20/γ-Al2O3 (i.e., γ-Al2O3 with 20 wt% Ni), a H2 yield of 38.4 mol/kg glucose was achieved, approximately 20 times higher than that obtained during the blank test without catalyst (1.8 mol/kg glucose). In contrast, Cu and Co catalysts were much less effective for glucose SCWG reactions. As for the effects of catalyst support materials on activity, the following order of sequence was observed: γ-Al2O3 > ZrO2 > AC. In addition, Mg and Ru were found to be effective promoters for the Ni/γ-Al2O3 catalyst, suppressing coke and tar formation.  相似文献   

6.
Hydrogen production from steam reforming of liquefied petroleum gas (SR-LPG) process was studied over nickel, platinum, rhodium, and ruthenium-based catalysts supported on CeO2–SiO2 (CS). BET surface area, X-ray diffraction (XRD), temperature programmed reduction (TPR) and X-ray absorption near edge spectroscopy (XANES) techniques were used to characterize the samples. The catalytic activity and stability of the samples during SR-LPG were measured at 400 °C and 600 °C, respectively. XRD data were used to estimate the average crystallite size of ceria, which was small in all samples. For Pt and Rh containing samples, no diffraction peaks related to the metals were identified, which suggests high dispersion of these metals on the support. TPR and XANES experimental results showed that the addition of metals promoted the reduction of ceria. The order of catalyst activity for during SR-LPG at 400 °C was: Rh/CS » Pt/CS > Ru/CS » Ni/CS. Pt/CS and Rh/CS samples exhibited lower deactivation than nickel and ruthenium catalysts for SR-LPG at 600 °C during 24 h. Catalysts deactivation was mainly due to carbon deposition. In situ XRD data collected during SR-LPG at 600 °C revealed small increases in the mean particle sizes of Ni(0) and Ru (0), which could be pointed out as an additional cause for faster deactivation of the Ru/CS and Ni/CS catalysts.  相似文献   

7.
Reactive Flash Volatilization (RFV) is an emerging thermochemical method to produce tar free hydrogen rich syngas from waste biomass at relatively lower temperature (<900 °C) in a single stage catalytic reactor within a millisecond residence time. Here, we show catalytic RFV of bagasse using Ru, Rh, Pd, or Re promoted Ni/Al2O3 catalysts under steam rich and oxygen deficient environment. The optimum reaction conditions were found to be 800 °C, steam to carbon ratio = 1.7 and carbon to oxygen ratio = 0.6. Rh–Ni/Al2O3 performed the best, resulting in highest hydrogen concentration in the synthesis gas at 54.8%, with a corresponding yield of 106.4 g-H2/kg bagasse. A carbon conversion efficiency of 99.96% was achieved using Rh–Ni, followed by Ru–Ni, Pd–Ni, Re–Ni and mono metallic Ni catalyst in that order. Alkali and Alkaline Earth Metal species present in the bagasse ash and char, that deposited on the catalyst, was found to enhance its activity and stability. The hydrogen yield from bagasse was higher than previously reported woody biomass and comparable to the microalgae.  相似文献   

8.
Fir wood wastes were used to produce crude bio-ethanol by two methods: simultaneous saccharification and fermentation (SSF) and acid hydrolysis followed by the fermentation of the acid hydrolyzate. The main components of crude bio-ethanol are ethanol and acetic acid. In addition, low concentrations of a wide range of alcohols, acids, esters, ethers and aldehydes are also present. Ethanol concentration is higher in the SSF process than in the acid hydrolysis: 43.69 g/L compared to 37.53 g/L, respectively. Opposite to ethanol concentration, the acetic acid concentration is higher in the acid hydrolysis process: 16.36 g/L compared to 10.24 g/L, respectively. The crude bio-ethanol was used to produce hydrogen by catalytic steam reforming. The tested catalysts were the common Ni/Al2O3 and two rare earth oxides promoted Ni catalysts: Ni/La2O3–Al2O3 and Ni/CeO2–Al2O3 prepared by successive wet impregnation. The characterization techniques revealed that the addition of rare earth oxides improves the Ni dispersion and the reducibility of the promoted catalysts. The best feed rate which assures the optimal ratio between conversion and catalyst deactivation is 0.8 mL/min bio-ethanol. The addition of extra oxide (La2O3 and CeO2) to the support improves the ethanol conversion especially at 250 °C, but no significant effect on the acetic acid conversion was observed. At 250 °C the ethanol conversion is almost 90% for Ni/La2O3–Al2O3 and Ni/CeO2–Al2O3, but the acetic acid conversion is below 30% for all catalysts. At 350 °C both ethanol and acetic acid present maximum conversion. At this temperature the best hydrogen production is obtained for Ni/La2O3–Al2O3 due to better ethanol conversion and better selectivity for hydrogen formation. At 350 °C the promoted catalysts are stable for 4 h time on stream, different degrees of deactivation being obtained at lower temperatures.  相似文献   

9.
Running dry reforming of methane (DRM) reaction at low-temperature is highly regarded to increase thermal efficiency. However, the process requires a robust catalyst that has a strong ability to activate both CH4 and CO2 as well as strong resistance against deactivation at the reaction conditions. Thus, this paper examines the prospect of DRM reaction at low temperature (400–600 °C) over CeO2–MgO supported Nickel (Ni/CeO2–MgO) catalysts. The catalysts were synthesized and characterized by XRD, N2 adsorption/desorption, FE-SEM, H2-TPR, and TPD-CO2 methods. The results revealed that Ni/CeO2–MgO catalysts possess suitable BET specific surface, pore volume, reducibility and basic sites, typical of heterogeneous catalysts required for DRM reaction. Remarkably, the activity of the catalysts at lower temperature reaction indicates the workability of the catalysts to activate both CH4 and CO2 at 400 °C. Increasing Ni loading and reaction temperature has gradually increased CH4 conversion. 20 wt% Ni/CeO2–MgO catalyst, CH4 conversion reached 17% at 400 °C while at 900 °C it was 97.6% with considerable stability during the time on stream. Whereas, CO2 conversions were 18.4% and 98.9% at 400 °C and 900 °C, respectively. Additionally, a higher CO2 conversion was obtained over the catalysts with 15 wt% Ni content when the temperature was higher than 600 °C. This is because of the balance between a high number of Ni active sites and high basicity. The characterization of the used catalyst by TGA, FE-SEM and Raman Spectroscopy confirmed the presence of amorphous carbon at lower temperature reaction and carbon nanotubes at higher temperature.  相似文献   

10.
Catalysts that can maintain the activity for a long time are indispensable for the distributed power generation consisting of biomass gasifier and Solid Oxide Fuel Cell (SOFC). This study aims to reveal and develop the regenerative function of composite catalysts containing NiAl2O4 that can be regenerated by reduction and oxidation (Red-Ox) for converting tar from biomass. Regenerative function of composite oxide catalyst containing NiAl2O4 spinel (NAO) and Ru added to NAO (RNAO) by Red-Ox cycles and their activity of autothermal reforming of toluene were examined. Regenerating function of NAO and RNAO were investigated by temperature programmed reduction (TPR) and oxidation at 850 °C repeatedly. After 7th times Red-Ox cycles at 850 °C, though the regenerated amount of Ni in NAO decreased by 70%, that in RNAO was maintained. By Red-Ox of NAO and RNAO, Ni was oxidized to NiO at 350–650 °C and dissolved into γ-Al2O3 to form the NiAl2O4 spinel at above 750 °C. In RNAO, RuO2 particles were more dispersed, decreasing its particle size than the initial, with the Red-Ox cycles, since Ru was dissolved into the Ni particles exsoluted from NiAl2O4. By evaluating the activity of autothermal reforming of toluene, NAO and RNAO showed 1.5–3.0 times higher activity than Pt/γ-Al2O3, due to the highly dispersive active sites unoccupied by CO. Since the active metals can be redispersed by oxidation and reduction at the range from 750 °C to 850 °C, NAO and RNAO would contribute the maintenance free system for reforming tar from biomass gasification.  相似文献   

11.
Electrocatalysts of Rh, Ru, Pt, Au, Ag, Pd, Ni, and Cu supported on multiwalled carbon nanotubes for direct borohydride–hydrogen peroxide fuel cells are investigated. Metal/γ-Al2O3 catalysts for NaBH4 and H2O2 decomposition tests are manufactured and their catalytic activities upon decomposition are compared. Also, the effects of XC-72 and multiwalled carbon nanotube (MWCNT) carbon supports on fuel cell performance are determined. The performance of the catalyst with MWCNTs is better than that of the catalyst with XC-72 owing to a large amount of reduced Pd and the good electrical conductivity of MWCNTs. Finally, the effect of electrodes with various catalysts on fuel cell performance is investigated. Based on test results, Pd (anode) and Au (cathode) are selected as catalysts for the electrodes. When Pd and Au are used together for electrodes, the maximum power density obtained is 170.9 mW/cm2 (25 °C).  相似文献   

12.
Steam reforming of acetic acid on Ni/γ-Al2O3 with different nickel loading for hydrogen production was investigated in a tubular reactor at 600 °C, 1 atm, H2O/HAc = 4, and WHSV = 5.01 g-acetic acid/g-cata.h?1. The catalysts were characterized by temperature programmed oxidation (TPO) and differential thermal analysis (DTA), X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM). The results showed that the amount of deposited carbidic-like carbon decreased and graphitic-like carbon increased with Ni loading increasing from 9 to 15 wt%. The Ni/γ-Al2O3 catalyst with 12 wt% Ni loading had higher catalytic activity and lower coke deposited rate.  相似文献   

13.
Carbon dioxide methanation is an interesting way to reduce greenhouse effect gases emission and, simultaneously, provide a renewable energy source of methane. Ceria and 15 at.% Zr-doped ceria supported nickel catalysts were characterized by means of various techniques (BET, XRD, Raman, H2-TPR, CO2-TPD, O2-TPO, OSC and H2-chemisorption) and evaluated in carbon dioxide methanation. Zr incorporation into catalyst formulation reduced catalyst's basicity but favored its reducibility, nickel availability and oxygen storage capacity. These characteristics gave rise to an improved catalytic performance both in terms of activity and stability: temperature required to achieve 50% conversion was reduced in 20 °C and low temperature (250 °C) stability was improved in around 8%. Initial rates approach was employed to determine reaction rates and apparent activation energies for CO2 methanation, which resulted in 113 and 121 kJ mol−1for Ni/CeO2 and Ni/Ce0.85Zr0.15O2, respectively.  相似文献   

14.
Nano-clusters of noble metals Ru, Rh, Pd, Pt and Au have been supported on γ-Al2O3, C and SiO2, of which the catalytic activities have been investigated for hydrolysis of NH3BH3. Among these catalysts, the Ru, Rh and Pt catalysts exhibit high activities to generate stoichiometric amount of hydrogen with fast kinetics, whereas the Pd and Au catalysts are less active. Support effect has been studied by testing the hydrogen generation reaction in the presence of Pt supported on γ-Al2O3, VULCAN® carbon and SiO2, and it is found that Pt on γ-Al2O3, which has the smallest particle size, is the most active. Concentration dependence of the hydrogen generation from aqueous NH3BH3 solutions has been investigated in the presence of Pt/γ-Al2O3 by keeping the amount of Pt/γ-Al2O3 catalyst unchanged, which exhibits that the hydrogen release versus time (ml H2 min−1) does not significantly change with increasing the NH3BH3 concentration, indicating that the hydrogen release rate is not dependent on the NH3BH3 concentration and the high activity of the Pt catalyst can be kept at high NH3BH3 concentrations. Activation energies have been measured to be 23, 21 and 21 kJ mol−1 for Ru/γ-Al2O3, Rh/γ-Al2O3 and Pt/γ-Al2O3 catalysts, respectively, which may correspond to the step of B–N bond breaking on the metal surfaces. The particle sizes, surface morphology and surface areas of the catalysts have been obtained by TEM and BET experiments.  相似文献   

15.
The data on the performance in water gas shift reaction of a powder 5 wt% Pt/Ce0.75Zr0.25O2 and a structured 0.33 wt% Pt/Ce0.75Zr0.25O2/θ-Al2O3/FeCrAl catalysts are reported in this work. For the powder one the lowest outlet CO concentrations were shown to be 0.5, 0.9 and 1.5 vol% corresponding to the initial ones of 5, 10 and 15 vol%, respectively; the temperature required to reach these values did not exceed 310 °C. The quasi in situ XPS data have shown that doping CeO2 with Zr enhances the reducibility of the oxide allowing Ce3+ formation without any treatment. Additionally, it was found that there are 20–30% of nonmetallic Pt atoms on the surface even after a treatment in CO at 300 °C. For the structured catalyst the downward temperature gradient along the monolith was observed with a dispersion of 50–60 °C. The lowest CO concentrations were observed at the temperatures at the catalyst's back point of 280 °C–3.9 and 4.3 vol% CO in the dry gas for 15,700 and 31,400 cm3·gcat−1·h−1, respectively, for 10 vol% CO in the feed gas.  相似文献   

16.
The complex mixture of gasified tar model (phenol, toluene, naphthalene, and pyrene) was steam reformed for hydrogen production over 10 wt% nickel based catalysts. The catalysts were prepared by co-impregnation method with dolomite promoter and various oxide supports (Al2O3, La2O3, CeO2, and ZrO2). Steam reforming was carried out at 700 °C at atmospheric pressure with steam to carbon molar ratio of 1 and gas hourly space velocity of 20 L/h·gcat. The catalysts were characterised for reducibility, basicity, crystalline, and total surface area properties. Dolomite promoter strengthened the metal-support interaction and basicity of catalyst. The Ni/dolomite/La2O3 (NiDLa) catalyst with mesoporous structure (26.42mn), high reducibility (104.42%), and strong basicity (5.56 mmol/g) showed superior catalytic performance in terms of carbon conversion to gas (77.7%), H2 yield (66.2%) and H2/CO molar ratio (1.6). In addition, the lowest amount of filamentous coke was deposited on the spent NiDLa after 5 h.  相似文献   

17.
Heteronuclear coordination compounds of d-metals are suitable single-source precursors for bimetallic nanoalloys, which often show extraordinary catalytic properties due to synergetic effect. In particular, Ni- and Rh-based catalysts are highly effective in low temperature steam reforming processes. Double oxalates of Rh with Ni and Co of the formula {[Rh(H2O)2(C2O4)μ-(C2O4)]2M(H2O)2}·6H2O (M = Ni, Co) were synthesized and structurally characterized. According to thermogravimetric analysis, the complexes decompose completely in He and H2 atmospheres to form corresponding nanoalloys at ∼300 °C. The calcination in O2 atmosphere leads to formation of spinel type mixed oxide. The supported Co–Rh/Al2O3 and Ni–Rh/Al2O3 catalysts were prepared by impregnation of double oxalate complexes in porous support with subsequent calcination and tested in propane low temperature steam reforming in CH4 excess. The Co-containing catalyst showed comparable activity regarding to pure Rh/Al2O3 sample, while bimetallic Ni–Rh/Al2O3 catalyst revealed to be appreciably more active, than monometallic catalysts with higher active component loadings. Rh–Ni catalyst allowed for complete propane conversion at T ≈ 350 °C, whereas for Rh catalyst the temperature was T ≈ 410 °C, and Rh–Co did not reach complete C3H8 conversion at all.  相似文献   

18.
The catalytic effects of CO preferential oxidation and methanation catalysts for deep CO removal under different operating conditions (temperature, space velocity, water content, etc.) are systematically studied from the aspects of CO content, CO selectivity, and hydrogen loss index. Results indicate that the 3 wt% Ru/Al2O3 preferential oxidation catalysts reduce CO content to below 10 ppm with a high hydrogen consumption of 11.6–15.7%. And methanation catalysts with 0.7 wt% Ru/Al2O3 also exhibit excellent CO removal performance at 220–240 °C without hydrogen loss. Besides, NiClx/CeO2 methanation catalysts possess the characteristics of high space velocity, high activity, and high water-gas resistance, and can maintain the CO content at close to 20 ppm. Based on these experimental results, the coupling scheme of combining NiClx/CeO2 methanation catalysts (low cost and high reaction space velocity) with 0.7 wt% Ru/Al2O3 methanation catalysts (high activity) to reduce CO content to below10 ppm is proposed.  相似文献   

19.
This paper describes catalytic hydrogenation liquefaction of rice straw over metal (Ni, Co, and Cu)-modified CeO2 catalysts for bio-oil production. The results show that the highest rice straw conversion (89.08%) and bio-oil yield (66.7%) were obtained over Ni/CeO2 catalyst. The bio-oil contains mainly phenols, high-value-added, and widely used chemicals. Furthermore, metal-modified CeO2 catalysts can significantly influence the components of bio-oil with the highest percentage of C7-C10 compounds. This work thus demonstrates that metal/CeO2 catalysts can be effective in improving the bio-oil yield and selectivity in hydro-liquefaction of rice straw into bio-oil.  相似文献   

20.
This paper reports on the steam reforming, in continuous regime, of the aqueous fraction of bio-oil obtained by flash pyrolysis of lignocellulosic biomass (sawdust). The reaction system is provided with two steps in series: i) thermal step at 200 °C, for the pyrolytic lignin retention, and ii) reforming in-line of the treated bio-oil in a fluidized bed reactor, in the range 600–800 °C, with space-time between 0.10 and 0.45 gcatalyst h (gbio-oil)−1. The benefits of incorporating La2O3 to the Ni/α-Al2O3 catalyst on the kinetic behavior (bio-oil conversion, yield and selectivity of hydrogen) and deactivation were determined. The significant role of temperature in gasifying coke precursors was also analyzed. Complete conversion of bio-oil is achieved with the Ni/La2O3-αAl2O3 catalyst, at 700 °C and space-time of 0.22 gcatalyst h (gbio-oil)−1. The catalyst deactivation is low and the hydrogen yield and selectivity achieved are 96% and 70%, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号