首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
High temperature steam electrolysis (HTSE) is one of the most promising ways for hydrogen mass production. To make this technology suitable from an economical point of view, each component of the system has to be optimized, from the balance of plant to the single solid oxide electrolysis cell. At this level, the optimization of the oxygen electrode is of particular interest since it contributes to a large extent to the cell polarization resistance. The present paper is focused on alternative oxygen electrode materials with improved performances compared to the usual ones mainly based on perovskite structure. Two nickelates, with compositions La2NiO4+δ and Nd2NiO4+δ are investigated and evaluated in HTSE operation at the button cell level. The performances of the Ln2NiO4+δ - containing cells (Ln = La, Nd) is improved compared to a cell containing the classical Sr-doped LaMnO3 (LSM) perovskite oxygen electrode showing that nickelates are promising candidates for HTSE oxygen electrodes, especially for operation below 800 °C. Indeed, current densities determined at 1.3 V are 1.1 times larger for the La2NiO4+δ - containing cell and 1.6 times larger for the Nd2NiO4+δ one compared to the LSM - containing cell at 850 °C, whereas at 750 °C they are 1.8 and 4.4 times larger, respectively. Thanks to the use of a reference electrode, by coupling impedance spectroscopy and polarization measurements, the overpotential of each working electrode is deconvoluted from the complete cell voltage under HTSE operating conditions.  相似文献   

2.
Steam electrolysis in solid oxide electrolysis cells (SOECs) is considered as an effective method to achieve high-efficiency hydrogen production. In the present investigation, samples of 1-cell, 2-cell and 30-cell SOEC stacks were tested under electrolysis of steam to give a practical evaluation of the SOEC system efficiency of hydrogen production. The samples were tested at 800 °C under various operating conditions up to 500 h without significant degradation, and obtained steam conversion rates of 12.4%, 23% and 82.2% for the 1-cell, 2-cell and 30-cell stacks, respectively. System efficiencies of hydrogen production were calculated for the samples based on their real performance. A maximum efficiency value of 52.7% was achieved in the 30-cell stack.  相似文献   

3.
Electrolysis of steam and co-electrolysis of steam and carbon dioxide was studied in Solid Oxide Electrolysis Cell (SOEC) stacks composed of Ni/YSZ electrode supported SOECs. The results of this study show that long-term electrolysis is feasible without notable degradation in these SOEC stacks. The degradation of the electrolysis cells was found to be influenced by the adsorption of impurities from the applied inlet gases, whereas the application of chromium containing interconnect plates and glass sealings do not seem to influence the durability when operated at 850 °C. Cleaning the inlet gases to the Ni/YSZ electrode resulted in operation without long-term degradation, and may therefore be a solution for operating these Ni/YSZ based SOEC stacks without degradation.  相似文献   

4.
To support the current trend of testing bigger reversible Solid Oxide Cell (rSOC) modules, CEA has built the 120 kWDC Multistack platform. It was used to test SOLIDpower recently developed-Large Stack Module (LSM) in electrolysis mode.Results show high thermal performance of the LSM, with homogeneous temperature distribution and losses in the kilowatt range above 700 °C. A performance map was recorded between 712 and 744 °C over 22.4-to-29.6 kg h?1 steam flowrates using a fast control strategy to avoid endothermic operation. A peak power of 74 kWDC was converted into more than 50 kg day?1 of H2 (35.5 kWhDC kgH2?1). In addition, fuel utilization of more than 90% and steam conversion above 80% were demonstrated at the module level. In the end, the modular design of the LSM seems well suited for system scale up, paving the way for mutualization of auxiliaries and CAPEX reduction.  相似文献   

5.
Symmetrical solid oxide cells (s-SOC) present several advantages compared to typical configuration, as a reduction of sintering steps or a better thermomechanical compatibility between the electrodes and the electrolyte. Different mixed ionic-electronic conductors (MIEC) have been reported as suitable candidates for symmetrical configuration, allowing operations under steam electrolysis (SOEC) or co-electrolysis (co-SOEC) without the use of reducing safe gas (typically employed in SoA nickel based cells). In the present study, Sr2Fe1.5Mo0.5O6−δ (SFM) electrodes are deposited on both sides of YbScSZ tapes previously coated with a Ce1-xGdxO1.9 (GDC) barrier layer grown by PLD. Electrode sintering temperature is optimized and fixed at 1200 °C by means of electrochemical impedance spectroscopy (EIS) measurements in symmetrical atmosphere. The cell is then characterized at 900 °C in SOEC and co-SOEC modes without the use of any safe gas obtaining high current densities of 1.4 and 1.1 A cm−2 at 1.3 V respectively. Short-term reversibility is finally proven by switching the gas atmosphere between the cathode and anode sides while keeping the electrolysis conditions. Similar performances are obtained in both configurations.  相似文献   

6.
A utilized regenerative solid oxide fuel cell (URSOFC) provides the dual function of performing energy storage and power generation, all in one unit. When functioning as an energy storage device, the URSOFC acts like a solid oxide electrolyzer cell (SOEC) in water electrolysis mode; whereby the electric energy is stored as (electrolyzied) hydrogen and oxygen gases. While hydrogen is useful as a transportation fuel and in other industrial applications, the URSOFC also acts as a solid oxide fuel cell (SOFC) in power generation mode to produce electricity when needed. The URSOFC would be a competitive technology in the upcoming hydrogen economy on the basis of its low cost, simple structure, and high efficiency. This paper reports on the design and manufacturing of its anode support cell using commercially available materials. Also reported are the resulting performance, both in electrolysis and fuel cell modes, as a function of its operating parameters such as temperature and current density. We found that the URSOFC performance improved with increasing temperature and its fuel cell mode had a better performance than its electrolysis mode due to a limited humidity inlet causing concentration polarization. In addition, there were great improvements in performance for both the SOFC and SOEC modes after the first test and could be attributed to an increase in porosity within the oxygen electrode, which was beneficial for the oxygen reaction.  相似文献   

7.
8.
The conventional hydrogen production methods, primarily steam methane reforming and coal gasification, produce massive amounts of greenhouse gas emissions which significantly cause impacts on the environment. An alternative hydrogen production method is high-temperature electrolysis using Solid Oxide Electrolyzer that combines both high conversion efficiency and saleable high purity hydrogen production. The produced hydrogen can feed the various industrial processes at different scales in addition to offering an environmentally friendly storage option. The scope of this paper is to examine the economic feasibility of this technology through the utilization of the exergoeconomic concept, which traces the flow of exergy through the system and price both waste and products. Therefore, a standalone solid oxide electrolyzer of a 1MWe is considered for hydrogen production using renewably generated electricity. Having the detailed exergy analysis conducted in earlier studies, the focus of this article is on the costing of each exergy stream to determine the exergy cost and the potential changes outcomes as a result of the system operating or design parameters optimization. It is found that the cost of hydrogen production through the modular high-temperature electrolyzer varies between $3-$9/kg with an average of about $5.7/kg, respectively.  相似文献   

9.
Degradation of a solid oxide electrolysis cell (SOEC) during long-term operation remains to be the key obstacle to their massive production and commercialization. One of degradation processes within SOEC is anode delamination. The anode of SOEC splits at the interface with solid electrolyte due to elevated pressure of oxygen that is produced by electrochemical reactions. The main assumption that anode delamination starts at the fuel inlet is based on post-mortem analysis of SOEC. This paper addresses numerical modelling of a single, electrolyte supported, SOEC. The anode delamination is modelled by implementing the modifications of SOEC's geometry. A brief overview of the model is also given. Verification of the implemented model relies on the measurement data from literature. The simulation results show that increasing the area of delaminated anode (Adelaminated) increases the operating voltage of the SOEC if a constant electrolysis current is applied. This strongly influences the conversion efficiency (η) of the SOEC. Indeed, if linear growth of Adelaminated over time is assumed, the η of SOEC degrades very fast at the beginning of SOEC's operation. The presented model also helps analyze the hot spots of current density, where high pressure of oxygen appears.  相似文献   

10.
High-temperature steam electrolysis (HTSE), a reversible process of solid oxide fuel cell (SOFC) in principle, is a promising method for highly efficient large-scale hydrogen production. In our study, the overall efficiency of the HTSE system was calculated through electrochemical and thermodynamic analysis. A thermodynamic model in regards to the efficiency of the HTSE system was established and the quantitative effects of three key parameters, electrical efficiency (ηel), electrolysis efficiency (ηes), and thermal efficiency (ηth) on the overall efficiency (ηoverall) of the HTSE system were investigated. Results showed that the contribution of ηel, ηes, ηth to the overall efficiency were about 70%, 22%, and 8%, respectively. As temperatures increased from 500 °C to 1000 °C, the effect of ηel on ηoverall decreased gradually and the ηes effect remained almost constant, while the ηth effect increased gradually. The overall efficiency of the high-temperature gas-cooled reactor (HTGR) coupled with the HTSE system under different conditions was also calculated. With the increase of electrical, electrolysis, and thermal efficiency, the overall efficiencies were anticipated to increase from 33% to a maximum of 59% at 1000 °C, which is over two times higher than that of the conventional alkaline water electrolysis.  相似文献   

11.
High-temperature steam electrolysis (HTSE) is a promising method for highly efficient large-scale hydrogen production. The HTSE process not only reduces the amount of thermodynamic electrical energy requirement but also decreases the polarization losses, which improves the overall efficiency of hydrogen production.In this paper, a two-dimensional simulation method of the efficiency of the HTSE system integrated with high-temperature gas-cooled nuclear reactor (HTGR), which changes two parameters simultaneously in a reasonable range while keeping one parameter constant, was presented. Compared with one-dimensional analysis method, the effects of electrical efficiency (ηel), electrolysis efficiency (ηes,), and thermal efficiency (ηth) on overall efficiency (ηoverall) were investigated more objectively and accurately. Moreover, the critical concepts of ηes and ηth were put forward originally, which were very important to determine the optimum electrolysis voltages and operation temperatures in the actual HTSE processes. The calculated critical value of ηes was ΔG(T)/ΔH(T) and the actual ηes should be higher than the theoretically calculated one in order to maintain the high hydrogen production efficiency of HTSE system. Also, it was very interesting to find that the critical ηes was the theoretical maximum efficiency in SOFC mode. Furthermore, the critical value of ηth was equal to the value of ηel, which means the overall efficiency decreases with the ηes increasing if the ηth in the actual HTSE process is less than the critical value of ηth. Therefore, it is very important to control the ηth higher than the critical value in the actual HTSE process to get high overall system efficiency.  相似文献   

12.
Degradation of solid oxide electrolysis cells (SOECs) is probably the biggest concern in the field of high temperature steam electrolysis (HTSE). Anode supported, YSZ-based microtubular solid oxide fuel cells (SOFC) have been tested in fuel cell mode and also at high voltages (up to 2.8 V) under electrolysis mode. At high steam conversion rates the cell voltage tends to saturate. Our hypothesis is that this effect is caused by the electroreduction of the thin YSZ electrolyte which induces electronic conduction losses. YSZ reduction increases the cathode activity and reduces cathode overpotential. Operation of the cell in severe electrolyte reduction conditions induces irreversible damage at the YSZ electrolyte as observed in SEM experiments by the formation of voids at the grain boundaries of the dense YSZ electrolyte. Evidence of this damage was also given by the increase of the ohmic resistance measured by AC impedance. Signs of electrolyte degradation were also found by both EDX analysis and micro-Raman spectroscopy performed along a transverse-cross section of the cell. The observed oxygen electrode delamination is associated to the high oxygen partial pressures gradients that take place at the electrolyte/oxygen electrode interface.  相似文献   

13.
Hydrogen generation through high temperature steam electrolysis (HTSE) using solid oxide electrolysis cells (SOEC) has recently received increasingly international interest in the large-scale, highly efficient nuclear hydrogen production field. The research and development of HTSE technology was initiated in INET of Tsinghua University from 2005 as one of the approaches in National Key Special Projects for HTGR which aims at promoting highly efficient and sustainable application of nuclear process heat in the future. In the past three years, the research team mainly focused on preliminary investigation, feasibility study, equipment development and fundamental research. Currently, two bench-scale equipments for the study of HTSE process and SOEC components have been designed and constructed. In addition, the research group made rapid progress in the development of novel anode materials, effective microstructure control of cathodes and theoretically quantitative analysis of hydrogen production efficiency through HTSE coupled with HTGR.  相似文献   

14.
The current study develops a hydrogen map concept where renewable energy sources are considered for green hydrogen production and specifically investigates the solar energy-based hydrogen production potential in Turkey. For all cities in the country, the available onshore and offshore potentials for solar energy are considered for green hydrogen production. The vacant areas are calculated after deducting the occupied areas based on the available governmental data. Abundant solar energy as a key renewable energy source is exploited by photovoltaic cells. To obtain the hydrogen generation potential, monocrystalline and polycrystalline type solar cells are considered, and the generated renewable electricity is directed to electrolysers. For this purpose, alkaline, proton exchange membrane (PEM), and solid oxide electrolysers (SOEs) are considered to obtain the green hydrogen. The total hydrogen production potential for Turkey is estimated to be between 415.48 and 427.22 Million tons (Mt) depending on the type of electrolyser. The results show that Erzurum, Konya, Sivas, and Van are found to be the highest hydrogen production potentials. The main idea is to prepare hydrogen map in detail for each city in Turkey, based on the solar energy potential. This, in turn, can be considered in the context of the current policies of the local communities and policy-makers to supply the required energy of each country.  相似文献   

15.
Deficient, or non-linear hydrogen production is for the first time experimentally observed in large-scale planar Ni-YSZ/YSZ/LSM-YSZ steam electrolysis cells. The apparent coinciding of the concentration polarization and Faraday efficiency decrease at certain current density (?0.5Acm?2 or -0.6Acm?2 for selected steam content) indicates that steam starvation appears to affect the hydrogen production's linearity, which in essence the Ni/NiO redox process is believed to play a role in such normal SOEC operations. The SOEC survives 10h extreme polarization through electric conduction and oxygen vacancy transportation. Rational SOEC working mode is recommended accordingly. The present work is complementary for the general application of the Faraday's Law to estimate hydrogen production, and to further evaluate the SOEC's overall characteristics.  相似文献   

16.
High temperature co-electrolysis based on Solid Oxide Electrolysis Cell (SOEC) is a very promising method to produce sustainable fuels and reduce greenhouse emissions. In this paper, the electrolyte-supported LSCM-GDC/SSZ/LSCF-GDC (LSCM: La0.75Sr0.25Cr0.5Mn0.5O3+δ) single cells are prepared and evaluated for high temperature steam and carbon dioxide direct co-electrolysis. And the fabrication of electrolyte layer is used with aqueous tape casting technique, which contributes to form a flat electrolyte layer with lower ohmic resistance in an eco-friendly way. LSCM fuel electrode exhibits good properties of redox stability and catalytic performance. During the experiment, different temperatures and volume ratios of H2O/CO2 are introduced into the cell to evaluate the electrochemical performance. In order to further verify the long-term performance of the cell, durability constant current SOEC test is carried out and the cell showed a stable voltage of 1.5 V for more than 100 h and throughout the duration of co-electrolysis. The results show that the electrolyte-supported SOEC using aqueous tape casting technique has good electrochemical performance and stability.  相似文献   

17.
On-board hydrogen storage and production via ammonia electrolysis was evaluated to determine whether the process was feasible using galvanostatic studies between an ammonia electrolytic cell (AEC) and a breathable proton exchange membrane fuel cell (PEMFC). Hydrogen-dense liquid ammonia stored at ambient temperature and pressure is an excellent source for hydrogen storage. This hydrogen is released from ammonia through electrolysis, which theoretically consumes 95% less energy than water electrolysis; 1.55 Wh g−1 H2 is required for ammonia electrolysis and 33 Wh g−1 H2 for water electrolysis. An ammonia electrolytic cell (AEC), comprised of carbon fiber paper (CFP) electrodes supported by Ti foil and deposited with Pt-Ir, was designed and constructed for electrolyzing an alkaline ammonia solution. Hydrogen from the cathode compartment of the AEC was fed to a polymer exchange membrane fuel cell (PEMFC). In terms of electric energy, input to the AEC was less than the output from the PEMFC yielding net electrical energies as high as 9.7 ± 1.1 Wh g−1 H2 while maintaining H2 production equivalent to consumption.  相似文献   

18.
Hydrogen production via steam electrolysis may involve less electrical energy consumption than conventional low temperature water electrolysis, reflecting the favourable thermodynamics and kinetics at elevated temperatures. The present paper reports on the development of a one-dimensional dynamic model of a cathode-supported planar intermediate temperature solid oxide electrolysis cell (SOEC) stack with air flow introduced through the cells. The model, which consists of an electrochemical model, two mass balances, and four energy balances, is here employed to study the prospect of the stack temperature control through the variation of the air flow rate. The simulations found that the increase in the air flow rate provides enhanced cooling and heating during exothermic and endothermic operations, respectively. The stack behaviour has suggested that such a convective heat transfer between the cell components and air flow would allow the control of stack temperature. However, only a small dependence of the temperature on the air flow rate was observed for a stack driven at conditions near thermoneutral operation, indicating that this operating mode should be avoided from a control perspective.  相似文献   

19.
In this paper the influence of pressure on the performance of solid oxide electrolysis cells is theoretically analyzed in a pressure range between 0.05 and 2 MPa. A previously validated electrochemical model of a solid oxide fuel cell stack is used to predict electrolysis behavior. The effect of pressure on thermodynamics, kinetics and gas diffusion is discussed. It is shown that thermodynamics are negatively influenced by an increase in pressure whereas kinetics and gas transport are improved. Overall pressure effects are therefore only small. At low current density the electrolysis cell shows better performance at low pressure whereas performance improves with pressure at high current densities.  相似文献   

20.
A promising strontium and cobalt-free ferrite Pr1-xCaxFeO3-δ (PCF, x = 0, 0.1, 0.2, 0.3, 0.4, 0.5) has been synthesized successfully by glycine-nitrate combustion method and used as the air electrode of solid oxide electrolysis cell (SOEC) for steam electrolysis. The crystal structure and electricity conductivity of PCF are investigated in detail. According to the conductivity test, Pr0.6Ca0.4FeO3-δ (PCF64) with higher conductivity is selected as the air electrode to preparing the single cell with structure of PCF64|GDC|SSZ|YSZ-NiO. Under SOFC mode, the maximum power density of the single cell is 462.93 mW cm−2 at 800 °C with hydrogen as fuel. Under SOEC mode, the current density reaches 277.14 mA cm−2 and the corresponding hydrogen production rates is 115.84 mL cm−2 h−1 at 800 °C at 1.3 V. In the 10 h short-term stability test, the cell shows good electrolysis stability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号