首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In this study, different hydrogen refueling station (HRS) architectures are analyzed energetically as well as economically for 2015 and 2050. For the energetic evaluation, the model published in Bauer et al. [1] is used and norm-fitting fuelings according to SAE J2601 [2] are applied. This model is extended to include an economic evaluation. The compressor (gaseous hydrogen) resp. pump (liquid hydrogen) throughput and maximum pressures and volumes of the cascaded high-pressure storage system vessels are dimensioned in a way to minimize lifecycle costs, including depreciation, capital commitment and electricity costs. Various station capacity sizes are derived and energy consumption is calculated for different ambient temperatures and different station utilizations. Investment costs and costs per fueling mass are calculated based on different station utilizations and an ambient temperature of +12 °C. In case of gaseous trucked-in hydrogen, a comparison between 5 MPa and 20 MPa low-pressure storage is conducted. For all station configurations and sizes, a medium-voltage grid connection is applied if the power load exceeds a certain limit. For stations with on-site production, the electric power load of the hydrogen production device (electrolyzer or gas reformer) is taken into account in terms of power load. Costs and energy consumption attributed to the production device are not considered in this study due to comparability to other station concepts. Therefore, grid connection costs are allocated to the fueling station part excluding the production device. The operational strategy of the production device is also considered as energy consumption of the subsequent compressor or pump and the required low-pressure storage are affected by it. All station concepts, liquid truck-supplied hydrogen as well as stations with gaseous truck-supplied or on-site produced hydrogen show a considerable cost reduction potential. Long-term specific hydrogen costs of large stations (6 dispensers) are 0.63 €/kg – 0.76 €/kg (dependent on configuration) for stations with gaseous stored hydrogen and 0.18 €/kg for stations with liquid stored hydrogen. The study focuses only on the refueling station and does not allow a statement about the overall cost-effectiveness of different pathways.  相似文献   

2.
Several countries are incentivizing the use of hydrogen (H2) fuel cell vehicles, thereby increasing the number of H2 refueling stations (HRSs), particularly in urban areas with high population density and heavy traffic. Therefore, it is necessary to assess the risks of gaseous H2 refueling stations (GHRSs) and liquefied H2 refueling stations (LHRSs). This study aimed to perform a quantitative risk assessment (QRA) of GHRSs and LHRSs. A comparative study is performed to enhance the decision-making of engineers in setting safety goals and defining design options. A systematic QRA approach is proposed to estimate the likelihood and consequences of hazardous events occurring at HRSs. Consequence analysis results indicate that catastrophic ruptures of tube trailer and liquid hydrogen storage tanks are the worst accidents, as they cause fires and explosions. An assessment of individual and societal risks indicates that LHRSs present a lower hazard risk than GHRSs. However, both station types require additional safety barrier devices for risk reduction, such as detachable couplings, hydrogen detection sensors, and automatic and manual emergency shutdown systems, which are required for risk acceptance.  相似文献   

3.
Dispenser allocation to hydrogen refueling stations aims at minimizing the number of dispensers while ensuring satisfactory performance of vehicle queues during the peak hour of a peak day. A queuing model is developed in this study to evaluate the queuing performance at such stations by incorporating the statistical and thermodynamic characteristics of refueling. An optimization framework is proposed to determine the minimal number of dispensers required to meet the upper limits imposed on two important performance measures: mean waiting time and mean queue length. Reasonable upper limits are provided for 70 MPa stations according to the effects of dispenser allocation and station capacity on queuing performance. Server (dispenser nozzle) utilization under the optimal dispenser allocation generally increases with an increase in station size and tends to exceed 50% for large stations. The proposed approach can offer significant performance improvements for small stations and considerable savings in the number of dispensers for large ones.  相似文献   

4.
The literature lacks a systematic analysis of HRS equipment and operating standards. Researchers, policymakers, and HRS operators could find this information relevant for planning the network's future expansion. This study is intended to address this information need by providing a comprehensive strategic overview of the regulations currently in place for the construction and maintenance of hydrogen fueling stations.A quick introduction to fundamental hydrogen precautions and hydrogen design is offered. The paper, therefore, provides a quick overview of hydrogen's safety to emphasize HRS standards, rules, and regulations. Both gaseous and liquid safety issues are detailed, including possible threats and installation and operating expertise.After the safety evaluation, layouts, equipment, and operating strategies for HRSs are presented, followed by a review of in-force regulations: internationally, by presenting ISO, IEC, and SAE standards, and Europeanly, by reviewing the CEN/CENELEC standards. A brief and concise analysis of Italy's HRS regulations is conducted, with the goal of identifying potential insights for strategic development and more convenient technology deployment.  相似文献   

5.
Piston ring sealing and valve design play an important role in high-pressure oil-free reciprocating compressors for hydrogen refueling stations. The severe non-uniformity of the pressure distribution was suggested to be the root cause of the premature failure of the sealing rings, and therefore a mathematical model was established to simulate the unsteady flow within the gaps of piston rings, based on which the pressure distribution was obtained and the mechanism of the non-uniform abrasion of the rings was disclosed. The method to equalize the pressure difference through each ring was proposed by re-distributing the cut size of each ring, and it was validated experimentally. Aiming at the problem that the self-acting valves in hydrogen compressors could be easily destroyed by severe impact, this paper investigated the motion and impact of valves theoretically and experimentally, based on which the methodology was explored to design the parameters of valves for hydrogen compressors.  相似文献   

6.
Hydrogen precooling is an effective method to realize safe, adequate, and fast filling for fuel cell vehicles. Estimating cooling demand is essential for the precooling unit configuration and energy analysis. Complex pipelines exist between the station's storage tanks and the vehicle cylinder. However, their impact on the cooling demand is often underestimated. In this paper, a thermodynamic model of the whole hydrogen refueling process was established to investigate the impact of pipelines in different positions. Accordingly, the influence of pipelines on the thermodynamic parameters was analyzed. Then the effects on the precooling performance were concluded. The results show that flow resistance before the breakaway increases total cooling demand by 9.9%. Meanwhile, heat dissipation through the pipe, located between the control valve and the heat exchanger, smoothens the cooling demand curve and reduces the total cooling demand by 5.7%. After the break-away, the flow resistance of pipelines significantly changes the mass flow rate curve and cooling demand. Heat absorption from the pipe wall slightly influences the cooling demand but jeopardizes refueling safety.  相似文献   

7.
Many countries in Europe are investing in fuel cell bus technology with the expected mobilization of more than 1200 buses across Europe in the following years. The scaling-up will make indispensable a more effective design and management of hydrogen refueling stations to improve the refueling phase in terms of refueling time and dispensed quantity while containing the investment and operation costs. In the present study, a previously developed dynamic lumped model of a hydrogen refueling process, developed in MATLAB, is used to analyze tank-to-tank fuel cell buses (30–40 kgH2 at 350 bar) refueling operations comparing a single-tank storage with a multi-tank cascade system. The new-built Aalborg (DK) hydrogen refueling station serves as a case study for the cascade design. In general, a cascading refueling approach from multiple storage tanks at different pressure levels provides the opportunity for a more optimized management of the station storage, reducing the pressure differential between the refueling and refueled tanks throughout the whole refueling process, thus reducing compression energy. This study demonstrates the validity of these aspects for heavy-duty applications through the technical evaluation of the refueling time, gas heating, compression energy consumption and hydrogen utilization, filling the literature gap on cascade versus single tank refueling comparison. Furthermore, a simplified calculation of the capital and operating expenditures is conducted, denoting the cost-effectiveness of the cascade configuration under study. Finally, the effect of different pressure switching points between the storage tanks is investigated, showing that a lower medium pressure usage reduces the compression energy consumption and increases the station flexibility.  相似文献   

8.
We have modeled an approach for dispensing pressurized hydrogen to 350 and/or 700 bar vehicle vessels. Instead of relying on compressors, this concept stores liquid hydrogen in cryogenic pressure vessels where pressurization occurs through heat transfer, reducing the station energy footprint from 12 kW h/kgH2 of energy from the US grid mix to 1.5–2 kW h/kgH2 of heating. This thermal compression station presents capital cost and reliability advantages by avoiding the expense and maintenance of high-pressure hydrogen compressors, at the detriment of some evaporative losses. The total installed capital cost for a 475 kg/day thermal compression hydrogen refueling station is estimated at about $611,500, an almost 60% cost reduction over today's refueling station cost. The cost for 700 bar dispensing is $5.23/kg H2 for a conventional station vs. $5.45/kg H2 for a thermal compression station. If there is a demand for 350 bar H2 in addition to 700 bar dispensing, the cost of dispensing from a thermal compression station drops to $4.81/kg H2, which is similar to the cost of a conventional station that dispenses 350 bar H2 only. Thermal compression also offers capacity flexibility (wide range of pressure, temperature, and station demand) that makes it appealing for early market applications.  相似文献   

9.
As hydrogen refueling stations become increasingly common, it is clear that a high level of economic efficiency and safety is crucial to promoting their use. One way to reduce costs is to use a simple orifice instead of an excess flow valve, which Japanese safety regulations have identified as a safety device. However, there is concern about its effect on refueling time and on risk due to hydrogen leakage. To clarify the effect, we did a study of model-based refueling time evaluation and quantitative risk assessment for a typical refueling station. This study showed that an orifice is an effective alternative safety device. The increase in refueling time was less than 10%, based on simulations using a dynamic physical model of the station. Neither was there a significant difference in the risk between a configuration with excess flow valves and one with an orifice.  相似文献   

10.
Fuel cell vehicles using green hydrogen as fuel can contribute to the mitigation of climate change. The increasing utilization of those vehicles creates the need for cost efficient hydrogen refueling stations. This study investigates how to build the most cost efficient refueling stations to fuel small fleet sizes of 2, 4, 8, 16 and 32 fuel cell busses. A detailed physical model of a hydrogen refueling station was built to determine the necessary hydrogen storage size as well as energy demand for compression and precooling of hydrogen. These results are used to determine the refueling costs for different station configurations that vary the number of storage banks, their volume and compressor capacity.It was found that increasing the number of storage banks will decrease the necessary total station storage volume as well as energy demand for compression and precooling. However, the benefit of adding storage banks decreases with each additional bank. Hence the cost for piping and instrumentation to add banks starts to outweigh the benefits when too many banks are used. Investigating the influence of the compressor mass flow found that when fueling fleets of 2 or 4 busses the lowest cost can be reached by using a compressor with the minimal mass flow necessary to refill all storage banks within 24 h. For fleets of 8, 16 and 32 busses, using the compressor with the maximum investigated mass flow of 54 kg/h leads to the lowest costs.  相似文献   

11.
Promoting fuel cells has been one of China's ambitious hydrogen policies in the past few years. Currently, several hydrogen fueling stations (HRSs) are under construction in China to fuel hydrogen-driven vehicles. In this regard, it is necessary to assess the risks of hydrogen leakage in HRSs. Aiming at conducting a comprehensive consequence assessment of liquid hydrogen (LH2) leakage on China's first liquid hydrogen refueling station (LHRS) in Pinghu, a pseudo-source model is established in the present study to simulate the LH2 leakage using a commercial CFD tool, FLACS. The effects of the layout of the LHRS, leakage parameters, and local meteorological conditions on the LH2 leakage consequence has been assessed from the perspectives of low-temperature hazards and explosion hazards. The obtained results reveal that considering the prevailing southeast wind in Pinghu city, the farthest low-temperature hazard distance and lower flammable limit (LFL) -distance occurs in the leakage scenario along the north direction. It is found that the trailer parking location in the current layout of the LHRS will worsen the explosion consequences of the LH2 leakage. Moreover, the explosion will completely destroy the control room and endanger people on the adjacent road when the leakage equivalent diameter is 25.4 mm. The performed analyses reveal that as the wind speed increases, the explosion hazard decreases.  相似文献   

12.
The layout of electric vehicles charging stations and hydrogen refueling stations (HRSs) is more and more necessary with the development of electric vehicles (EVs) and progress in hydrogen energy storage technology. Due to the high costs of HRSs and the low demand for hydrogen, it is difficult for independent HRSs to make a profit. This study focuses on the dynamic planning of energy supply stations on highways in the medium and long term, considering the growth of EV charging demand and the change in the proportion of hydrogen fuel cell vehicles (HFCVs). Based on the perspective of renewable energy generators (REGs), this study seeks the dynamic optimal configuration and comprehensive benefits of adding HRS and battery to existing EVCS considering the travel rules of new energy vehicles (NEVs). The results show that (1) It is profitable for REGs to invest in HRSs; (2) The economy of investment in batteries by REGs depends on the source-load matching. It is feasible only when the output of renewable energy is difficult to meet the demand. (3) The business model of REGs producing hydrogen on-site and supplying both electricity and hydrogen is feasible.  相似文献   

13.
The utilization of hydrogen energy is important for achieving a low-carbon society. Japan has set ambitious goals for hydrogen stations and fuel cell vehicles, focusing on the introduction and dissemination of self-refueling systems. This paper evaluates public trust in the fuel, equipment, and self-handling technology related to self-refueling hydrogen stations and compares it with that for widespread gasoline stations. To this end, the results of an online survey of 300 people with Japanese driver licenses are reported and analyzed. The results show that trust in the equipment and self-handling is more important for the user than trust in the fuel. In addition, to introduce and disseminate new technology such as hydrogen stations, users must be made aware of the risk of using the technology until it becomes as familiar as existing gasoline station technology.  相似文献   

14.
The low volumetric efficiency of the diaphragm compressor under hydrogen refueling process, which hereby results in poor energy efficiency and high cost of hydrogen applications, should be paid attention to. This paper presents theoretical analysis and experimental investigation of the factors affecting the volumetric efficiency of the diaphragm compressor for hydrogen refueling process, focusing on the influence of hydraulic oil compressibility. A mathematical model was established to estimate the volumetric efficiency of diaphragm compressors, in which the effects of clearance volume, superheating of suction gas and pressure loss were taken into account and the emphasis was focused on the compressibility of hydraulic oil. A test rig was built to validate the theoretical model and further experimental investigations were carried out to identify the factors influencing the oil compressibility and hereby the volumetric efficiency. The volumetric efficiency was measured and compared under varied oil compressibility conditions by varying elastic modulus, oil overflow pressure and oil volume. The results indicated that the measured volumetric efficiency agrees well with the calculated value. The compression and expansion of hydraulic oil have a dominant influence on the volumetric efficiency, resulting in a loss of 37% of volumetric efficiency as compared to 2.4%, 18% and 1%, respectively for losses associated with clearance volume, superheating of suction gas and pressure loss, for a diagram compressor under refueling conditions with suction pressure of 30 MPa and discharge pressure of 90 MPa. The volumetric efficiency reduced rapidly with the increased oil overflow pressure, at a rate of 5% decrease with every 10 MPa rise in oil overflow pressure. As the oil volume increased by 100% of the stroke volume, the volumetric efficiency droped by 5.5%.  相似文献   

15.
Fuel cell electric vehicles (FCEVs) have now entered the market as zero-emission vehicles. Original equipment manufacturers such as Toyota, Honda, and Hyundai have released commercial cars in parallel with efforts focusing on the development of hydrogen refueling infrastructure to support new FCEV fleets. Persistent challenges for FCEVs include high initial vehicle cost and the availability of hydrogen stations to support FCEV fleets. This study sheds light on the factors that drive manufacturing competitiveness of the principal systems in hydrogen refueling stations, including compressors, storage tanks, precoolers, and dispensers. To explore major cost drivers and investigate possible cost reduction areas, bottom-up manufacturing cost models were developed for these systems. Results from these manufacturing cost models show there is substantial room for cost reductions through economies of scale, as fixed costs can be spread over more units. Results also show that purchasing larger quantities of commodity and purchased parts can drive significant cost reductions. Intuitively, these cost reductions will be reflected in lower hydrogen fuel prices. A simple cost analysis shows there is some room for cost reduction in the manufacturing cost of the hydrogen refueling station systems, which could reach 35% or more when achieving production rates of more than 100 units per year. We estimated the potential cost reduction in hydrogen compression, storage and dispensing as a result of capital cost reduction to reach 5% or more when hydrogen refueling station systems are produced at scale.  相似文献   

16.
In recent decades, the consequences of climate changes due to greenhouse gas (GHG) emissions have become ever more impactful, forcing international authorities to find green solutions for sustainable economic development. In this regard, one of the global targets is the reduction of fossil fuels utilization in the transport sector to encourage the diffusion of more environmentally friendly alternatives. Among them, hydrogen is emerging as a viable candidate since it is a potentially emission-free fuel when produced by exploiting renewable energy sources (RES). Nevertheless, to allow widespread use of this gas in the transport sector, several technoeconomic barriers, including production cost, and lack of distribution and storage infrastructure, have to be overcome. Distributed hydrogen production via renewable energy-powered electrolysis could be an effective solution to reduce cost and lead to economies of scale. In this study a multi-hub configuration with on-site production from PV-powered electrolysis and centralized production from steam methane reforming (SMR) is proposed. In particular, an infrastructure network for a bus refueling station located in Lazio is considered as a case study. First, each hub, composed of PV panels, an electrolyzer, a compression system, high-pressure and low-pressure storages, and hydrogen dispensers with chiller, is modeled in a Matlab/Simulink environment. Then, a design perturbation analysis is carried out to determine the impact of the configuration on the refueling station performance in terms of carbon emissions levels and the Levelized Cost of hydrogen (LCOH). The results show a significant influence of the station size on the economic performance highlighting significant benefits (reduction up to 40% in the LCOH) for a 80 bus HUB with a saturating trend towards larger sizes. CO2 emissions per unit mass of hydrogen are kept limited for all the stations thanks to the synergistic effects of SMR and Electrolyzer. Interconnecting more than one station each other further benefits can be achieved from the environmental perspective (savings up to 5 tons of CO2 are demonstrated for a typical summer case study).  相似文献   

17.
The foreseen uptake of hydrogen mobility is a fundamental step towards the decarbonization of the transport sector. Under such premises, both refueling infrastructure and vehicles should be deployed together with improved refueling protocols. Several studies focus on refueling the light-duty vehicles with 10 kgH2 up to 700 bar, however less known effort is reported for refueling heavy-duty vehicles with 30–40 kgH2 at 350 bar. The present study illustrates the application of a lumped model to a fuel cell bus tank-to-tank refueling event, tailored upon the real data acquired in the 3Emotion Project. The evolution of the main refueling quantities, such as pressure, temperature, and mass flow, are predicted dynamically throughout the refueling process, as a function of the operating parameters, within the safety limits imposed by SAE J2601/2 technical standard. The results show to refuel the vehicle tank from half to full capacity with an Average Pressure Ramp Rate (APRR) equal to 0.03 MPa/s are needed about 10 min. Furthermore, it is found that the effect of varying the initial vehicle tank pressure is more significant than changing the ambient temperature on the refueling performances. In conclusion, the analysis of the effect of different APRR, from 0.03 to 0.1 MPa/s, indicate that is possible to safely reduce the duration of half-to-full refueling by 62% increasing the APRR value from 0.03 to 0.08 MPa/s.  相似文献   

18.
The consequences of hydrogen leaks and explosions are predicted for the sake of the safety in hydrogen refueling stations. In this paper, the effect of wind speed on hydrogen leak and diffusion is analyzed in different regions of a hydrogen refueling station, and the influence of delayed ignition time on hydrogen explosion after an accidental hydrogen leak is further studied by numerical simulation. Results show that the effect of wind speed on the probability of hydrogen fires is distinctive in different regions of hydrogen refueling station. The size of combustible clouds in the trailer front region and the outer region increases in the low wind speed case, and the front of combustible clouds is formed in a spherical shape in the outer region, which can greatly increase the probability of hydrogen explosion. However, the high wind speed may cause an increase of the risk of accidents in the near ground region. Moreover, a non-linear correlation is shown between the rate of combustible cloud dissipation and wind speed after the hydrogen stops leaking. In addition, it is found that an increase in delayed ignition time may lead to an increase in explosion intensity, which is related with the larger high temperature area and stronger explosion overpressure. Two flame fronts and the reverse propagation of the explosion overpressure can be observed, when the delayed ignition time is larger.  相似文献   

19.
Fuel cell vehicles (FCVs) are expected to be commercially available on the world market in 2015, therefore, introducing hydrogen-refueling stations is an urgent issue to be addressed. This paper proposes deployment plan of hydrogen infrastructure for the success of their market penetration in the Northeastern United States. The plan consists of three-timeline stages from 2013 to 2025 and divides the designated region into urban area, suburban area and area adjacent to expressway, so that easy to access to hydrogen stations can be realized. Station is chosen from four types of stations: off-site station, urban-type on-site station, suburban-type on-site station and portable station, associated with growing demand. In addition, on-site station is used as hydrogen production factory for off-site station to save total investment. This deployment plan shows that 83% of urban residents can reach station within 10 min in 2025, and that more than 90% people especially in four major cities: Boston, New York City, Philadelphia, and Washington, D.C. can get to station within 10 min by Geographic Information System (GIS) calculation.  相似文献   

20.
The monitoring of hydrogen refueling stations (HRSs) ensures the safety of their operations as well as optimal fueling performance. For a H70-T40 dispenser, a fueling process is required to control the temperature to be below 85 °C; the pressure to be under 70 MPa; and the final state-of-charge (SOC) to be between 95% and 100%. Table-based or MC (total heat capacity) formula-based fueling protocols are traditionally used to achieve such control. In this paper, we propose using a machine learning model to predict the key parameters of fueling processes: the final SOC, the final temperature, and the final pressure in the vehicle tank. To handle outliers and noise in real operation, we adopt a two-stage method. In the first stage, after clustering fueling processes using soft dynamic time warping, a small number of fueling processes are selected from a large amount of historical data. In the second stage, based on initial and current operating conditions, the final SOC, temperature, and pressure of fueling processes are predicted using three models: least absolute shrinkage and selection operator (LASSO), Gaussian process regression (GPR), and robust regression. The experiments on real operational data collected from four hydrogen refueling stations show that the robust regression model achieves better performance than LASSO and GPR for three out of the four stations, and that the robust regression model captures the normal states of regular operation. The computational time of the robust regression model is also scalable for real-time operation. Our study provides a feasible machine learning model for predicting the key fueling parameters, which facilitates the optimization of HRS operation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号