首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this study, different hydrogen refueling station (HRS) architectures are analyzed energetically as well as economically for 2015 and 2050. For the energetic evaluation, the model published in Bauer et al. [1] is used and norm-fitting fuelings according to SAE J2601 [2] are applied. This model is extended to include an economic evaluation. The compressor (gaseous hydrogen) resp. pump (liquid hydrogen) throughput and maximum pressures and volumes of the cascaded high-pressure storage system vessels are dimensioned in a way to minimize lifecycle costs, including depreciation, capital commitment and electricity costs. Various station capacity sizes are derived and energy consumption is calculated for different ambient temperatures and different station utilizations. Investment costs and costs per fueling mass are calculated based on different station utilizations and an ambient temperature of +12 °C. In case of gaseous trucked-in hydrogen, a comparison between 5 MPa and 20 MPa low-pressure storage is conducted. For all station configurations and sizes, a medium-voltage grid connection is applied if the power load exceeds a certain limit. For stations with on-site production, the electric power load of the hydrogen production device (electrolyzer or gas reformer) is taken into account in terms of power load. Costs and energy consumption attributed to the production device are not considered in this study due to comparability to other station concepts. Therefore, grid connection costs are allocated to the fueling station part excluding the production device. The operational strategy of the production device is also considered as energy consumption of the subsequent compressor or pump and the required low-pressure storage are affected by it. All station concepts, liquid truck-supplied hydrogen as well as stations with gaseous truck-supplied or on-site produced hydrogen show a considerable cost reduction potential. Long-term specific hydrogen costs of large stations (6 dispensers) are 0.63 €/kg – 0.76 €/kg (dependent on configuration) for stations with gaseous stored hydrogen and 0.18 €/kg for stations with liquid stored hydrogen. The study focuses only on the refueling station and does not allow a statement about the overall cost-effectiveness of different pathways.  相似文献   

2.
Development of efficient hydrogen refueling station (HRS) is highly desirable to reduce the hydrogen cost and hence the life cycle expense of fuel cell vehicles (FCVs), which is hindering the large scale application of hydrogen mobility. In this work, we demonstrate the optimization of gaseous HRS process and control method to perform fast and efficient refueling, with reduced energy consumption and increased daily fueling capacity. The HRS was modeled with thermodynamics using a numerical integration method and the accuracy for hydrogen refueling simulation was confirmed by experimental data, showing only 2 °C of temperature rise deviation. The refueling protocols for heavy duty FCVs were first optimized, demonstrating an average fueling rate of 2 kg/min and pre-cooling demand of less than 7 kW for 35 MPa type III tanks. Fast refueling of type IV tanks results in more significant temperature rise, and the required pre-cooling temperature is lowered by 20 K to achieve comparable fueling rate. The station process was also optimized to improve the daily fueling capacity. It is revealed that the hydrogen storage amount is cost-effective to be 25–30% that of the nominal daily refueling capacity, to enhance the refueling performance at peak time and minimize the start and stop cycles of compressor. A novel control method for cascade replenishment was developed by switching among the three banks in the order of decreased pressure, and results show that the daily refueling capacity of HRS is increased by 5%. Therefore, the refueling and station process optimization is effective to promote the efficiency of gaseous HRS.  相似文献   

3.
Reliable hydrogen fueling stations will be required for the successful commercialization of fuel cell vehicles. An evolving hydrogen fueling station has been in operation in Irvine, California since 2003, with nearly five years of operation in its current form. The usage of the station has increased from just 1000 kg dispensed in 2007 to over 8000 kg dispensed in 2011 due to greater numbers of fuel cell vehicles in the area. The station regularly operates beyond its design capacity of 25 kg/day and enables fuel cell vehicles to exceed future carbon reduction goals today. Current limitations include a cost of hydrogen of $15 per kg, net electrical consumption of 5 kWh per kg dispensed, and a need for faster back-to-back vehicle refueling.  相似文献   

4.
Hydrogen fueling stations are emerging around and in larger cities in Europe and United States together with a number of hydrogen vehicles. The most stations comply with the refueling protocol made by society of automotive engineers and they use a cascade fueling system on-site for filling the vehicles. The cascade system at the station has to be refueled as the tank sizes are limited by the high pressures. The process of filling a vehicle and afterward bringing the tanks in refueling station back to same pressures, are called a complete refueling cycle. This study analyzes power consumption of refueling stations as a function of number of tanks, volume of the tanks and the pressure in the tanks. This is done for a complete refueling cycle. It is found that the energy consumption decreases with the number of tanks approaching an exponential function. The compressor accounts for app. 50% of the energy consumption. Going from one tank to three tanks gives an energy saving of app. 30%. Adding more than four tanks the energy saving per extra added tank is less than 4%. The optimal numbers of tanks in the cascade system are three or four.  相似文献   

5.
In a hydrogen station that operates with direct fueling through the use of a 700 bar boost compressor, the outlet hydrogen temperature can significantly increase, stressing the chiller system. This paper evaluates improvements that can be made to the auxiliary cooling system integrated with the compressor. Both theoretical modeling and experiments were performed at Cal State LA Hydrogen Research and Fueling Facility. The findings suggest that adjusting the auxiliary closed-loop cooling system from 15 °C to 10 °C reduced the station energy consumption and decreased the demand on the station chiller that needed to provide ?20 °C hydrogen at the hose. The overall energy consumption for a single fueling reduced by between 2.86 and 9.43% for the set of experiments conducted. After the temperature of the closed-loop cooling system was reduced by 5 °C, the boost compressor outlet temperature dropped from 46-50 °C–40 °C and consequently at the hose the hydrogen temperature declined by 3 °C. Results were scaled up with a forecast on the number of daily refueling events. With a low number of daily fuelings, the proposed set-up showed a minor influence on the overall station energy consumption. However, the benefits were more pronounced for a connector station with sales at 180 kg/day, where the energy efficiency improved by between 1.4 and 5.5%, and even more so for a higher capacity station at 360 kg/day, where the improvement was between 2.9 and 8%.  相似文献   

6.
One of the main obstacles of the diffusion of fuel cell electric vehicles (FCEV) is the refueling system. The new stations follow the refueling protocol from the Society of Automotive Engineers where the way to reach the target pressure is not explained. This work analyzes the thermodynamics of a hydrogen fueling station in order to study the effects of the cascade storage system topology on the energy consumption for the cooling facility. It is found that the energy consumption for cooling increases, expanding the total volume of the cascade storage system. Comparing the optimal and the worst volume configurations of the cascade storage tanks at different ambient temperatures, the energy saving is approximately 12% when the average ambient temperature is 20 °C and around 20% when the average ambient temperature is 30 °C. The energy consumption for cooling is significantly influenced by the topology of the cascade storage system and it is particularly relevant in the case of low daily-dispensed amount of hydrogen.  相似文献   

7.
This study explains the fundamental mathematical equations used for the main component models that are implemented in freely available library for hydrogen fueling station. The paper provides a background to the model formulation and theory, useful for the further investigations of hydrogen fueling stations. The model was verified against a specific manufacturer model, and it was validated by using test data from an actual fueling station. The study works as documentation and validation of the model formulation. The simulation library is used to make a model for investigating how the pressure loss in the vehicle affects the fueling process. Keeping the temperature out of the station constant and fueling to 80 MPa in the compressed hydrogen storage system, the pressure loss in the compressed hydrogen storage system directly correlates to the final temperature. The final temperature increases with increasing pressure losses. It is also shown that with no pressure loss in the vehicle the fueling has no limit in fueling speed as the heat of compression depends on the mass filled and the enthalpy of the mass, and not the filling time.  相似文献   

8.
In the present study, the potential of integrating a Ranque-Hilsch vortex tube (RHVT) in the precooling process for refueling high-pressure hydrogen vehicles in hydrogen refueling stations is investigated. In this regard, two novel precooling processes integrating a vortex tube are proposed to significantly reduce the capital expenditure and operating costs in hydrogen fueling stations. Then a numerical study of the RHVT performance is carried out for a high-pressure hydrogen flow to validate the feasibility of the proposed processes. Obtained results from the numerical simulation show that the energy separation effect also exists in the RHVT with hydrogen flow at the pressure level of tens of megapascals. Moreover, it is found that the energy separation performance of the RHVT improves as the pressure ratio increases. In other words, the temperature drop of the cold exit of RHVT decreases as the pressure ratio decreases in the refueling process, which just matches the slowing-down temperature rise during the cylinder charge. Based on the obtained results, it is concluded that the integration of a RHVT into the precooling process has potential in the hydrogen fueling station.  相似文献   

9.
Fuel cell vehicles using green hydrogen as fuel can contribute to the mitigation of climate change. The increasing utilization of those vehicles creates the need for cost efficient hydrogen refueling stations. This study investigates how to build the most cost efficient refueling stations to fuel small fleet sizes of 2, 4, 8, 16 and 32 fuel cell busses. A detailed physical model of a hydrogen refueling station was built to determine the necessary hydrogen storage size as well as energy demand for compression and precooling of hydrogen. These results are used to determine the refueling costs for different station configurations that vary the number of storage banks, their volume and compressor capacity.It was found that increasing the number of storage banks will decrease the necessary total station storage volume as well as energy demand for compression and precooling. However, the benefit of adding storage banks decreases with each additional bank. Hence the cost for piping and instrumentation to add banks starts to outweigh the benefits when too many banks are used. Investigating the influence of the compressor mass flow found that when fueling fleets of 2 or 4 busses the lowest cost can be reached by using a compressor with the minimal mass flow necessary to refill all storage banks within 24 h. For fleets of 8, 16 and 32 busses, using the compressor with the maximum investigated mass flow of 54 kg/h leads to the lowest costs.  相似文献   

10.
Recent progress in submerged liquid hydrogen (LH2) cryopump technology development offers improved hydrogen fueling performance at a reduced cost in medium- and heavy-duty (MDV and HDV) fuel cell vehicle refueling applications at 35 MPa pressure, compared to fueling via gas compression. In this paper, we evaluate the fueling cost associated with cryopump-based refueling stations for different MDV and HDV hydrogen demand profiles. We adapt the Heavy Duty Refueling Station Analysis Model (HDRSAM) tool to analyze the submerged cryopump case, and compare the estimated fuel dispensing costs of stations supplied with LH2 for fueling Class 4 delivery van (MDV), public transit bus (HDV), and Class 8 truck (HDV) fleets using cryopumps relative to station designs. A sensitivity analysis around upstream costs illustrates the trade-offs associated with H2 production from onsite electrolysis versus central LH2 production and delivery. Our results indicate that LH2 cryopump-based stations become more economically attractive as the total station capacity (kg dispensed per day) and hourly demand (vehicles per hour) increase. Depending on the use case, savings relative to next best options range from about 5% up to 44% in dispensed costs, with more favorable economics at larger stations with high utilization.  相似文献   

11.
The monitoring of hydrogen refueling stations (HRSs) ensures the safety of their operations as well as optimal fueling performance. For a H70-T40 dispenser, a fueling process is required to control the temperature to be below 85 °C; the pressure to be under 70 MPa; and the final state-of-charge (SOC) to be between 95% and 100%. Table-based or MC (total heat capacity) formula-based fueling protocols are traditionally used to achieve such control. In this paper, we propose using a machine learning model to predict the key parameters of fueling processes: the final SOC, the final temperature, and the final pressure in the vehicle tank. To handle outliers and noise in real operation, we adopt a two-stage method. In the first stage, after clustering fueling processes using soft dynamic time warping, a small number of fueling processes are selected from a large amount of historical data. In the second stage, based on initial and current operating conditions, the final SOC, temperature, and pressure of fueling processes are predicted using three models: least absolute shrinkage and selection operator (LASSO), Gaussian process regression (GPR), and robust regression. The experiments on real operational data collected from four hydrogen refueling stations show that the robust regression model achieves better performance than LASSO and GPR for three out of the four stations, and that the robust regression model captures the normal states of regular operation. The computational time of the robust regression model is also scalable for real-time operation. Our study provides a feasible machine learning model for predicting the key fueling parameters, which facilitates the optimization of HRS operation.  相似文献   

12.
The dissemination of fuel-cell vehicles requires cost reduction of hydrogen refueling stations. The temperature of the supplied hydrogen has currently been cooled to approximately −40 °C. This has led to larger equipment and increased electric power consumption. This study achieves a relaxation of the precooling temperature to the −20 °C level while maintaining the refueling time. (1) Adoption of an MC formula that can flexibly change the refueling rate according to the precooling temperature. (2) Measurement of thermal capacity of refueling system parts and re-evaluation. Selection from multiple refueling control maps according to the dispenser design (Mathison, et al., 2015). (3) Calculation of the effective thermal capacity and reselection of the map in real time when the line is cooled from refueling of the previous vehicle (Mathison, and Handa, 2015). (4) Addition of maps in which the minimum assumed pressures are 10 and 15 MPa. The new method is named MC Multi Map.  相似文献   

13.
Constructing hydrogen refueling stations will be popular for hydrogen energy use in the future, and investigating the diffusion characteristics of hydrogen in a leakage incident is quite significant. The instantaneous evolution of flammable hydrogen clouds arising from liquid hydrogen leakage in a hydrogen refueling station is predicted using Ansys Fluent, and parametric analyses are conducted to reveal the effects of storage pressure, source height, and leakage direction on the distributions of the flammable regions. In addition, the feasibilities of heating the ceiling or the ground of the station after the leakage of liquid hydrogen to accelerate the hydrogen dilution are examined. The results show that the flammable region is stabilized at 90 s, the corresponding flammable hydrogen cloud volume is about 333 m3, and the extensions of downwind and vertical directions reach 10 m and 9.3 m. Storage pressure has a finite effect on the downwind diffusion distance of the flammable cloud. A lower source height tends to format the high-concentration hydrogen cloud near the ground while a higher source height helps separate the flammable clouds from the ground. The upward leakage direction leads to the maximum downwind diffusion distance of about 10.2 m while the downward leakage direction makes the high hydrogen concentration region confined below the ceiling. Just maintaining the ceiling at the initial temperature of 300 K is effective for accelerating the hydrogen dilution in the upward leakage. The maximum hydrogen concentration and the flammable volume can be reduced at rates of 0.35 vol % and 8% for every 50 K increase in heating temperature. For the downward leakage, keeping the ground at the initial temperature just works for the first 40 s in reducing the maximum hydrogen concentration, while increasing the heating temperature receives a gradually declined effect on reducing the flammable volume.  相似文献   

14.
Many countries in Europe are investing in fuel cell bus technology with the expected mobilization of more than 1200 buses across Europe in the following years. The scaling-up will make indispensable a more effective design and management of hydrogen refueling stations to improve the refueling phase in terms of refueling time and dispensed quantity while containing the investment and operation costs. In the present study, a previously developed dynamic lumped model of a hydrogen refueling process, developed in MATLAB, is used to analyze tank-to-tank fuel cell buses (30–40 kgH2 at 350 bar) refueling operations comparing a single-tank storage with a multi-tank cascade system. The new-built Aalborg (DK) hydrogen refueling station serves as a case study for the cascade design. In general, a cascading refueling approach from multiple storage tanks at different pressure levels provides the opportunity for a more optimized management of the station storage, reducing the pressure differential between the refueling and refueled tanks throughout the whole refueling process, thus reducing compression energy. This study demonstrates the validity of these aspects for heavy-duty applications through the technical evaluation of the refueling time, gas heating, compression energy consumption and hydrogen utilization, filling the literature gap on cascade versus single tank refueling comparison. Furthermore, a simplified calculation of the capital and operating expenditures is conducted, denoting the cost-effectiveness of the cascade configuration under study. Finally, the effect of different pressure switching points between the storage tanks is investigated, showing that a lower medium pressure usage reduces the compression energy consumption and increases the station flexibility.  相似文献   

15.
We have examined the technical feasibility and economics of developing a hydrogen vehicle refueling infrastructure for a specific area where zero emission vehicles are being considered, Southern California. Potential hydrogen demands for zero emission vehicles are estimated. We then assess in detail several near term possibilities for producing and delivering gaseous hydrogen transportation fuel including: (1) hydrogen produced from natural gas in a large, centralized steam reforming plant, and truck delivered as a liquid to refueling stations; (2) hydrogen produced in a large, centralized steam reforming plant, and delivered via small scale hydrogen gas pipeline to refueling stations; (3) by-product hydrogen from chemical industry sources; (4) hydrogen produced at the refueling station via small scale steam reforming of natural gas; and (5) hydrogen produced via small scale electrolysis at the refueling station. The capital cost of infrastructure and the delivered cost of hydrogen are estimated for each hydrogen supply option. Hydrogen is compared to other fuels for fuel cell vehicles (methanol, gasoline) in terms of vehicle cost, infrastructure cost and lifecycle cost of transportation. Finally, we discuss possible scenarios for introducing hydrogen as a fuel for fuel cell vehicles.  相似文献   

16.
The cost of hydrogen in early fuel cell electric vehicle (FCEV) markets is dominated by the cost of refueling stations, mainly due to the high cost of refueling equipment, small station capacities, lack of economies of scale, and low utilization of the installed refueling capacity. Using the hydrogen delivery scenario analysis model (HDSAM), this study estimates the impacts of these factors on the refueling cost for different refueling technologies and configurations, and quantifies the potential reduction in future hydrogen refueling cost compared to today's cost in the United States. The current hydrogen refueling station levelized cost, for a 200 kg/day dispensing capacity, is in the range of $6–$8/kg H2 when supplied with gaseous hydrogen, and $8–$9/kg H2 for stations supplied with liquid hydrogen. After adding the cost of hydrogen production, packaging, and transportation to the station's levelized cost, the current cost of hydrogen at dispensers for FCEVs in California is in the range of $13–$15/kg H2. The refueling station capacity utilization strongly influences the hydrogen refueling cost. The underutilization of station capacity in early FCEV markets, such as in California, results in a levelized station cost that is approximately 40% higher than it would be in a scenario where the station had been fully utilized since it began operating. In future mature hydrogen FCEV markets, with a large demand for hydrogen, the refueling station's levelized cost can be reduced to $2/kg H2 as a result of improved capacity utilization and reduced equipment cost via learning and economies of scale.  相似文献   

17.
We have modeled an approach for dispensing pressurized hydrogen to 350 and/or 700 bar vehicle vessels. Instead of relying on compressors, this concept stores liquid hydrogen in cryogenic pressure vessels where pressurization occurs through heat transfer, reducing the station energy footprint from 12 kW h/kgH2 of energy from the US grid mix to 1.5–2 kW h/kgH2 of heating. This thermal compression station presents capital cost and reliability advantages by avoiding the expense and maintenance of high-pressure hydrogen compressors, at the detriment of some evaporative losses. The total installed capital cost for a 475 kg/day thermal compression hydrogen refueling station is estimated at about $611,500, an almost 60% cost reduction over today's refueling station cost. The cost for 700 bar dispensing is $5.23/kg H2 for a conventional station vs. $5.45/kg H2 for a thermal compression station. If there is a demand for 350 bar H2 in addition to 700 bar dispensing, the cost of dispensing from a thermal compression station drops to $4.81/kg H2, which is similar to the cost of a conventional station that dispenses 350 bar H2 only. Thermal compression also offers capacity flexibility (wide range of pressure, temperature, and station demand) that makes it appealing for early market applications.  相似文献   

18.
Hydrogen has been used as chemicals and fuels in industries for last decades. Recently, it has become attractive as one of promising green energy candidates in the era of facing with two critical energy issues such as accelerating deterioration of global environment (e.g. carbon dioxide emissions) as well as concerns on the depletion of limited fossil sources. A number of hydrogen fueling stations are under construction to fuel hydrogen-driven vehicles. It would be indispensable to ensure the safety of hydrogen station equipment and operating procedure in order to prevent any leak and explosions of hydrogen: safe design of facilities at hydrogen fueling stations e.g. pressurized hydrogen leak from storage tanks. Several researches have centered on the behaviors of hydrogen ejecting out of a set of holes of pressurized storage tanks or pipes. This work focuses on the 3D simulation of hydrogen leak scenario cases at a hydrogen fueling station, given conditions of a set of pressures, 100, 200, 300, 400 bar and a set of hydrogen ejecting hole sizes, 0.5, 0.7, 1.0 mm, using a commercial computational fluid dynamics (CFD) tool, FLACS. The simulation is based on real 3D geometrical configuration of a hydrogen fueling station that is being commercially operated in Korea. The simulation results are validated with hydrogen jet experimental data to examine the diffusion behavior of leak hydrogen jet stream. Finally, a set of marginal safe configurations of fueling facility system are presented, together with an analysis of distribution characteristics of blast pressure, directionality of explosion. This work can contribute to marginal hydrogen safety design for hydrogen fueling stations and a foundation on establishing a safety distance standard required to protect from hydrogen explosion in Korea being in the absence of such an official requirement.  相似文献   

19.
Hydrogen fuel cell electric vehicles (HFCEVs) are zero-emission vehicles (ZEVs) that can provide drivers a similar experience to conventional internal combustion engine vehicles (ICEVs), in terms of fueling time and performance (i.e. power and driving range). The Society of Automotive Engineers (SAE) developed fueling protocol J2601 for light-duty HFCEVs to ensure safe vehicle fills while maximizing fueling performance. This study employs a physical model that simulates and compares the fueling performance of two fueling methods, known as the “lookup table” method and the “MC formula” method, within the SAE J2601 protocol. Both the fueling methods provide fast fueling of HFCEVs within minutes, but the MC formula method takes advantage of active measurement of precooling temperature to dynamically control the fueling process, and thereby provides faster vehicle fills. The MC formula method greatly reduces fueling time compared to the lookup table method at higher ambient temperatures, as well as when the precooling temperature falls on the colder side of the expected temperature window for all station types. Although the SAE J2601 lookup table method is the currently implemented standard for refueling hydrogen fuel cell vehicles, the MC formula method provides significant fueling time advantages in certain conditions; these warrant its implementation in future hydrogen refueling stations for better customer satisfaction with fueling experience of HFCEVs.  相似文献   

20.
Three aspects of producing hydrogen via renewable electricity sources are analyzed to determine the potential for solar and wind hydrogen production pathways: a renewable hydrogen resource assessment, a cost analysis of hydrogen production via electrolysis, and the annual energy requirements of producing hydrogen for refueling. The results indicate that ample resources exist to produce transportation fuel from wind and solar power. However, hydrogen prices are highly dependent on electricity prices. For renewables to produce hydrogen at $2 kg−1, using electrolyzers available in 2004, electricity prices would have to be less than $0.01 kWh−1. Additionally, energy requirements for hydrogen refueling stations are in excess of 20 GWh/year. It may be challenging for dedicated renewable systems at the filling station to meet such requirements. Therefore, while plentiful resources exist to provide clean electricity for the production of hydrogen for transportation fuel, challenges remain to identify optimum economic and technical configurations to provide renewable energy to distributed hydrogen refueling stations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号