首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Fermentative hydrogen production from fruit and vegetable wastes (FVWs) through Dry Fermentation Technology (DFT) was studied through three independent experiments in order to find out the effect of particle size and autoclaving pretreatment on bio-hydrogen production from FVWs and as follows: (1) autoclaved FVWs with sizes < 5 cm (experiment I); (2) raw FVWs with sizes < 5 cm (experiment II) and (3) autoclaved FVWs with sizes > 5 cm (experiment III). The assay with autoclaved waste yielded a higher percentage of hydrogen in the headspace of the dry fermenter reaching a maximum value of 44% in experiment I. However, the maximum hydrogen production was obtained in experiment III with 14573 NmL at a yield of 23.53 NmL H2/gVS. Profiling of the microbial communities by denaturing gradient gel electrophoresis (DGGE) indicated that the most prominent species were the genera Clostridium, Bifidobacterium, and Lactobacillus.  相似文献   

2.
Dark fermentative hydrogen production from organic waste is an attractive technique that simultaneously treats waste along with generation of renewable fuel. In this study, a relative new technology named dark dry fermentation was tested in a 55-L reactor to treat fruit and vegetable waste (FVW) along with simultaneous generation of biohydrogen. To understand the effect of autoclaving as a pretreatment method on FVW for subsequent biohydrogen production, two independent experiments were performed; one with autoclaved waste (experiment I) and another by using non autoclaved waste (experiment II). From the analyses, it was found that maximum hydrogen % obtained for experiment I was 41% (v/v%) whereas, for experiment II was 21%. In terms of total hydrogen produced, around 30% higher production was observed with experiment I compared to experiment II. The hydrogen yields for experiment I and experiment II were respectively, 27.19 and 20.81 NmL H2/gVS (VS = volatile solid added), and the metabolites (VFAs) preferentially produced were acetic acid and iso-butyric acid.  相似文献   

3.
Trace elements are one of the important parameters for dark fermentative H2 production because they work as co-factors in H2 formation biochemistry. Lack or excess of trace element and its concentrations could be an important reason for the low yield of H2 production. In this study, the effects of 11 different trace elements (Fe, Ni, Zn, Co, Cu, Mn, Al, B, Se, Mo and W) were tested at two levels in terms of biohydrogen production from Fruit and Vegetable Wastes (FVW) with Biochemical Hydrogen Potential (BHP) Tests using Plackett-Burman statistical design. 1.1–2.8 times enhancement of biohydrogen production was determined with its addition. The most effective trace elements were found as Zn and Ni. In order to reveal the resident microbial flora, Denaturing Gradient Gel Electrophoresis (DGGE) analysis was carried out on all BHP effluent samples. Results of DGGE analysis, four microbial sequences evaluated as Clostridium sp., Clostridium baratii, Uncultured bacterium, Uncultured Streptococcus sp., and their similarity rates were 99%, 100%, 89%, 98%, respectively.  相似文献   

4.
Among the basic components of organic materials, such as carbohydrate, protein, and lipid, the hydrogen yield of carbohydrate fermentation has been reported to be significantly higher than that of lipid. This study used lard as a model organic matter for lipid and investigated its H2 production potential in batch anaerobic fermentation experiments under various combinations of stirring and CO2-scavenging conditions. A significant increase in the hydrogen yield was observed in both CO2-scavenging and stirring conditions; the CO2-scavenging condition yield was 2.9 times higher than the stirring condition (116.7 and 40.3 mL H2/g volatile solid [VS], respectively), which was much greater than reported previously. A maximal hydrogen yield of 185.8 mL H2/g VS was obtained in the presence of both CO2-scavenging and stirring, and the H2 content of the total biogas was as high as 99% (v/v). In addition, there was less H2 and more CH4 production in the absence of CO2-scavenging and/or stirring, which suggests that the consumption of H2 and CO2 for methanogenesis was the major mechanism of the poor hydrogen yield from lipid. The volatile fatty acids in all the tests consisted primarily of valeric (47.2–54.9%) and propionic acids (26.6–30.3%), and higher concentrations of these acids remained in the fermentation liquid without CO2 removal. These results suggest that lipid-rich food waste is a potential source for H2 production if the fermentation process is optimized to minimize the partial pressure of CO2 and H2 and restrain the activities of H2-consuming bacteria.  相似文献   

5.
Biohydrogen production from biomass waste, not only addresses the energy demand in a renewable manner but also resolves the safe disposal issues associated with these biowastes. Also, scalable and low-cost techniques to enhance biohydrogen production have gained more attraction and are highly explored. In this research work, date-palm fruit wastes have been studied for their biohydrogen production potential using Enterobacter aerogenes by dark fermentation. Hydrogen yield and productivity were improved through the addition of iron oxide nanoparticles (Fe3O4 NPs) and its date seed activated carbon nanocomposites (Fe3O4/DSAC) to the fermentation media. Studies on discrete inclusions of these NPs showed that the appropriate dosage of NPs promoted, while higher dosages repressed the hydrogen production performance. Optimal dosage and fermentation time was observed as 150 mg/L and 24 h for both the additives. Fe3O4/DSAC nanocomposites showed better hydrogen production enhancement than Fe3O4 NPs. Maximum hydrogen yield of 238.7 mL/g was obtained for the 150 mg/L nanocomposites, which was 65.7% higher than that of the standalone Fe3O4 NPs and three folds higher than the yield of the control run without any NPs inclusion (78.4 mL/g). Metabolites analysis showed that the hydrogen evolution followed the ethanol-acetate pathway. Formation levels of longer chain propionate and butyrate co-metabolites were significantly low in the presence of Fe3O4/DSAC than Fe3O4. The carbon support in the nanocomposites acted as an adsorbent-buffer, which favored the medium pH in-addition to the stimulatory effects of Fe3O4 NPs. Cell growth and specific hydrogenase activity analysis were also performed to supplement the hydrogen production results. Gompertz and modified Logistic kinetic models were employed for kinetic modeling of experimental hydrogen production values. The Fe3O4/DSAC nanocomposites exhibited significant application potential for the production of biohydrogen from date fruit wastes.  相似文献   

6.
The effect of different additive ammonia (0–10 g/l as nitrogen) on hydrogen production from the anaerobic batch mesophilic fermentation of food waste was studied at two feed-to-microorganism ratios (F/M), 3.9 and 8.0. Anaerobic sludge taken from an anaerobic digester was used as inoculum. The hydrogen yield at F/M 3.9 and 8.0 without additive ammonia was 77.2 and 51.0 ml-H2/gVS, respectively. At F/M 3.9, the hydrogen production was enhanced by adding additive ammonia in the system when the total ammonia nitrogen (TAN) concentration was no higher than 6.0 g/l. A maximum hydrogen yield of 121.4 ml-H2/gVS was obtained at a TAN concentration of 3.5 g/l. At F/M 8.0, the enhancement of hydrogen production was found in a narrower range of additive TAN concentrations, with a highest yield of 60.9 ml-H2/gVS at the TAN of 1.5 g/l. Hydrogen production was inhibited at higher additive TAN concentrations for both F/M ratios. This study provides a novel strategy for controlling ammonia for production of hydrogen from food waste via anaerobic fermentation.  相似文献   

7.
Biohydrogen production has been coupled in some cases to other energy production technologies in order to overcome its modest energy gains. Anaerobic digestion, when used for methane recovery, has long been regarded as an energy recovery technology. We determined the energy potential from the coupling of either semi-continuous or batch hydrogen lab-scale bioreactors to a methanogenic stage. All processes were performed in solid substrate fermentation mode using the organic fraction of municipal solid wastes as first fed.  相似文献   

8.
An anaerobic fermentation process to produce hydrogen from cornstalk wastes was systematically investigated in this work. Batch experiments numbered series I, II and III were designed to investigate the effects of acid pretreatment, enzymatic hydrolysis (enzymatic temperature, enzymatic time and enzymatic pH) on hydrogen production by using the natural sludge as inoculant. A maximum cumulative H2 yield of 126.22 ml g−1-CS (Cornstalk, or 146.94 ml g−1-TS, Total Solid) and an average H2 production rate of 9.58 ml g−1-CS h−1 were obtained from fermentation cornstalk with a concentration of 20 g/L and an initial pH of 7.0 at 36 °C through an optimal pretreatment process. The optimal process was that the substrate was soaked with an HCl concentration of 0.6 wt% at 90 °C for 2 h, and subsequently enzymatic hydrolysis for 72 h at 50 °C and pH 4.8 before fermentation. The biogas consisted of only H2 and CO2. In addition, the fermentation system was the typical ethanol-type fermentation according to ethanol and acetate as the main liquid by-products.  相似文献   

9.
This study evaluated the feasibility of improving net energy gain from solid organic wastes by dark fermentation (DF) and its aqueous end products. Batch experiments were conducted with dairy cattle manure as a typical solid waste blended with sucrose at different sucrose:manure ratios. This study differs from previous DF studies in two aspects; these experiments were conducted at ambient temperature without any external nutrient supplements or pH control measures while previous studies had resorted to mesophilic conditions, nutrient supplements, and external pH control; this study evaluated the feasibility of DF in terms of net energy yield rather than in terms of hydrogen yield as in previous studies. Hydrogen yields (2.9–5.3 M H2/M sucrose) and net energy gains (2.0–3.7 kJ/g COD) demonstrated in this study are higher than in previous reports. Based on this study, sucrose:manure ratio of 4.5% is suggested as the optimal ratio.  相似文献   

10.
The effect of different food to microorganism ratios (F/M) (1–10) on the hydrogen production from the anaerobic batch fermentation of mixed food waste was studied at two temperatures, 35 ± 2 °C and 50 ± 2 °C. Anaerobic sludge taken from anaerobic reactors was used as inoculum. It was found that hydrogen was produced mainly during the first 44 h of fermentation. The F/M between 7 and 10 was found to be appropriate for hydrogen production via thermophilic fermentation with the highest yield of 57 ml-H2/g VS at an F/M of 7. Under mesophilic conditions, hydrogen was produced at a lower level and in a narrower range of F/Ms, with the highest yield of 39 ml-H2/g VS at the F/M of 6. A modified Gompertz equation adequately (R2 > 0.946) described the cumulative hydrogen production yields. This study provides a novel strategy for controlling the conditions for production of hydrogen from food waste via anaerobic fermentation.  相似文献   

11.
This study investigated the effect of pre-treatment and hydraulic retention time (HRT) on biohydrogen production from organic wastes. Various pre-treatments including thermal, base, acid, ultrasonication, and hydrogen peroxide were applied alone or in combination to enhance biohydrogen production from potato and bean wastewater in batch tests. All the pre-treated samples showed higher hydrogen production than the control tests. Hydrogen peroxide pre-treatment achieved the best results of 939.7 and 470 mL for potato and bean wastewater, respectively. Continuous biohydrogen production from sucrose, potato and bean wastewater was significantly influenced by reducing the HRT as 24, 18 and 12 h. Sucrose and potato showed similar behavior, where the hydrogen production rate (HPR) increased with decreasing the HRT. Optimum hydrogen yield results of 320 mL-H2/g-VS (sucrose) and 150 mL-H2/g-VS (potato) were achieved at HRT of 18 h. Bean wastewater showed optimum HPR of 0.65 L/L.d with hydrogen yield of 80 mL-H2/g-VS at 24 h HRT.  相似文献   

12.
This work focused on the hydrogen production from the organic fraction of municipal solid waste (OFMSW) in solid substrate fermentation (SSF) with a double purpose: (i) to evaluate the effect of the total solids content (20.9 and 35% TS), temperature (35 and 55 °C) and mass retention time (MRT, 21 and 14 d) on semi-continuous fermentation, and (ii) to test the supplementation of OFMSW with nutrient nitrogen in the form of waste activated sludge in batch mini-reactors.  相似文献   

13.
Anaerobic digestion of a simulated organic fraction of the waste of a central market selling fruit and vegetables was carried out in two-phase digesters in the mesophilic range of temperatures. Batch digestion was prolonged until no biogas was produced (33 days). With digested pig manure as inoculum, maximum biogas production was obtained around day 10, and within 3 weeks the digestion was almost complete. A kinetic analysis was carried out using first-order, Monod and Chen-Hashimoto models. The Chen-Hashimoto model represents the best fit, whereas a first-order model was not consistent with the experimental results.  相似文献   

14.
The dark fermentation process was evaluated for biohydrogen production from food waste through fungal solid-state fermentation (SSF). Three fungal cultures (one strain of Aspergillus tubingensis and two strains of Meyerozyma caribbica) were compared, being A. tubingensis the best hydrolyser culture for releasing soluble carbohydrates. The biochemical hydrogen potential of food waste hydrolysate (FWH) at different substrate-inoculum ratios obtained a lower hydrogen yield than untreated food waste (RFW). The highest hydrogen yield value corresponded to treatments RFW-20 and RFW-30 with 77.0 ± 2.6 and 76.9 ± 1.4 mL H2 normalized by per gram volatile solid added (NmL H2/gVSadded), respectively. The microbial community of food waste was analysed, being detected lactic-acid bacteria genera as Latilactobacillus and Leuconostoc. The presence of actively growing bacteria during the SSF could explain the lowest hydrogen yield (20.1–36.0 NmL H2/gVSadded) in the FWH treatment due to the substrate competition between lactic-acid bacteria and hydrogen-producing bacteria, where the lactic-acid bacteria were favoured by their faster growth rate.  相似文献   

15.
Biohydrogen production via dark fermentation has shown immense potential for simultaneous energy generation and waste remediation. However, the low substrate conversion rates limit its practical feasibility. Therefore, the present work attempts to develop a single chamber microbial electrolysis cell (MEC) as an additional means for biohydrogen production. Different organic substrates including simple sugars and volatile fatty acids were demonstrated as potential substrates for H2 production in MEC. The use of water hyacinth as sole substrate for H2 production was examined. Furthermore, the feasibility of using MEC for second stage energy recovery after dark fermentation was explored. The two-stage process exhibited improved performance as compared to single stage MEC process with overall hydrogen yield of 67.69 L H2/kg CODconsumed, COD removal of 70.33% and energy recovery of 46%. These results suggest that coupled dark fermentation-MEC process can be a promising means for obtaining high yield biohydrogen from water hyacinth.  相似文献   

16.
Hydrogen production by dark fermentation (DF) from wastewater, food waste, and agro-industrial waste combines the advantages to be renewable, sustainable and environmentally friendly. But this attractive process involves a three-phase gas-liquid-solid system highly sensitive to mixing conditions. However, mixing is usually disregarded in the conventional strategies for enhancing biohydrogen productivity, even though H2 production can be doubled, e.g. versus of reactor design (0.6–1.5 mol H2/mol hexose). The objective of this review paper is, therefore, to highlight the key effects of mixing on biohydrogen production among the abiotic parameters of DF. First, the pros and cons of the different modes of mixing in anaerobic digesters are described. Then, the influence of mixing on DF is discussed using recent data from the literature and theoretical analysis, focusing on the multiphase and multiscale aspects of DF. The methods and tools available to quantify experimentally the role of mixing both at the local and global scales are summarized. The 0-D to 3-D strategies able to implement mixing in fermentation modeling and scale-up procedures are examined. Finally, the perspectives in terms of process intensification and scale-up tools using mixing optimization are discussed with the issues that are still to be solved.  相似文献   

17.
Dark fermentation (DF) is a promising technology for biohydrogen production. Low efficiency of biohydrogen production is a bottleneck of the scale-up prospects for DF. Additives have been extensively studied to improve the biohydrogen production efficiency. Among of them, iron-based additives present a promising application potential due to their demonstrated significant enhancement of DF efficiency and among the low-cost bioactive agents. However, current reviews mainly examined the effects of nano-materials on DF and an in-depth analysis of enhancing mechanisms with addition of iron-based additives in DF is still lacking. To this end, this article comprehensively reviewed and evaluated the effects of iron-based additives on DF. Further, the potential mechanisms, including altering metabolic pathways, improving activities of microbes and enzymes, promoting electron delivery, and enriching hydrogen-producing bacteria, were discussed. Lastly, prospects and challenges of iron-based additives for subsequent research and large-scale application for DF were summarized.  相似文献   

18.
As a renewable energy source bio-hydrogen production from lignocellulosic wastes is a promising approach which can produce clean fuel with no CO2 emissions. Utilization of agro-industrial residues in solid state fermentation (SSF) is offering a solution to solid wastes disposal and providing an economical process of value-added products such as hydrogen.In this study three different particle size of rice husk (<2000 μm, <300 μm, <74 μm) was subjected to batch SSF with a Clostridium termitidis: Clostridium intestinale ratio of 5:1. C. termitidis is a cellulolytic microorganism that has the ability to hydrolyze cellulosic substances and C. intestinale is able to grow on glucose having a potential of enhancing hydrogen production when used in the co-culture. 5 g dw rice husk with 75% humidity was used as substrate in SSF under mesophilic conditions. The highest HF Volume (29.26 mL) and the highest yield (5.9 mL H2 g−1 substrate) were obtained with the smallest particle size (<74 μm). The main metabolites obtained from the fermentation media were acetic, butyric, propionic and lactic acids. The second best production yield (3.99 mL H2 g−1 substrate) was obtained with the middle particle size (<300 μm) rice husk with a HF of 19.71 mL.  相似文献   

19.
Lignocellulosic biomass contains approximately 70-80% carbohydrates. If properly hydrolyzed, these carbohydrates can serve as an ideal feedstock for fermentative hydrogen production. In this research, batch tests of biohydrogen production from acid-pretreated wheat straw were conducted to analyze the effects of various associated bioprocesses. The objective of the pretreatment phase was to investigate the effects of various sulfuric acid pretreatments on the conversion of wheat straw to biohydrogen. When sulfuric acid-pretreated solids at a concentration of 2% (w/v) were placed in an oven for 90 min at 120 °C, they degraded substantially to fermentative gas. Therefore, wheat straw that is pre-treated under the evaluated conditions is suitable for hydrolysis and fermentation in a batch test apparatus. Five different conditions were evaluated in the tests, which were conducted in accordance with standard batch test procedures (DIN 38414 S8): fresh straw, pre-treated straw, supernatants derived from acid hydrolyzation, Separate Hydrolysis and Fermentation (SHF) and Simultaneous Saccharification and Fermentation (SSF). The SSF method proved to be the most effective and economical way to convert wheat straw to biohydrogen. The hydrogen yield by this method was 1 mol H2/mol glucose, which resulted from 5% carbon degradation (ηC, gas) or the equivalent of 64% of the hydrogen volume that was produced in the reference test (glucose equivalent test). This method also proved to have the shortest lag phase for gas production. The supernatants derived from acid hydrolysis were very promising substances for continuous tests and presented excellent characteristics for the mass production of biohydrogen. For example, a 1.19 mol H2/mol glucose (76% glucose equivalent) yield was achieved along with a 52% carbon degradation.  相似文献   

20.
Fermentation is an important innovation by mankind and this process is used for converting organic substrate into useful products. Using natural conditions, specifically, light and dark conditions, photo-fermentation and dark fermentation techniques can be developed and operated under controlled conditions. Generally, products such as biofuels, bioactive compounds and enzymes have been produced using the dark fermentation method. However, the major requirement for today's industralized world is biofuels in its clean and pure forms. Biohydrogen is the most efficient and cleanest form of energy produced using dark fermentation of organic substrates. Nevertheless, the quantity of biohydrogen produced via dark fermentation is low. In order to increase the product quantity and quality, several internal and external stress or alterations are made to conventional fermentation conditions. In recent times, nanotechnology has been introduced to enhance the rate of dark fermentation. Nanoparticles (NPs), specifically, inorganic NPs such as silver, iron, titanium oxide and nickel have increased the production rate of biohydrogen. Therefore, the present review focuses on exploring the potential of nanotechnology in the dark fermentation of biohydrogen production, the mechanisms involved, substrates used and changes to be made to increase the production efficiency of dark fermentation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号