共查询到20条相似文献,搜索用时 15 毫秒
1.
《International Journal of Hydrogen Energy》2019,44(19):9577-9593
Power-to-gas (P2G) is a promising enabling technology for more cross-sector integration but its high cost has so far been a key barrier to implementation. Electricity supply is the greatest contributor to the levelised cost therefore it is important to understand which technologies and strategies can minimise the cost and accelerate the deployment. In this study, a method is devised to evaluate the cost and value of combined systems comprising P2G and renewable energy technologies such as solar photovoltaics, wind and hydro as well as comparing to traditional electricity supply via the wholesale market. The proposed models are based on a temporal resolution of 1 h and include partial operation and ageing throughout the system's lifespan. Our analysis covers both distributed and centralised P2G systems producing hydrogen or methane as well as various value-adding services across different geographies. It is found that the capacity factor of a P2G system drives the economic case and therefore the electricity supply from hydropower plants is economically more attractive than electricity from wind and solar photovoltaic plants in this order. Under today's market conditions, it is highly advisable to combine local renewable supply with wholesale-based supply but interestingly, a 20% capital cost reduction in wind technology or a P2G system efficiency of 80% are break-even points for P2G systems producing hydrogen and connected to wind plants. 相似文献
2.
《International Journal of Hydrogen Energy》2019,44(59):31646-31669
Renewable energy sources are being increasingly adopted, however their efficiency is limited by their intermittent nature leading to a mismatch with peak energy grid loading hours and dumping of excess produced energy. To date, much of the focus in renewable vehicles has been on automobiles. This largely overlooks the contribution from recreational boating to greenhouse gas emissions. We demonstrate that a power-to-gas model utilizing excess renewable energy can support boating activities in Ontario, Canada. As a proof-of-concept, we designed the refueling infrastructure, the fHuel+™ refueling station, and the onboard hydrogen utilization system for a high-speed luxury boat, the Hydronautic+™. The concept is built around a localized hydrogen economy. The present report focuses on the design and implementation of a technology specific to the demonstration site, but the overarching goal is to use this project as a proof of concept applicable to other sites across Canada and the United States. 相似文献
3.
The North African countries Morocco, Algeria, Tunisia, Libya and Egypt have been and are currently experiencing rapid growth in energy demand. This development confronts their political leaders with the question of how to expand or diversify their countries’ generation capacities. In this context, renewable energies and nuclear power constitute options that have rarely been exploited so far in the region. This article analyzes the drawbacks and benefits of both alternatives, with a special focus on import and export dynamics. When attempting to make the strategic decision between renewables and atomic power, North African regional specifics and circumstances have to be taken into account. Hence, in a first step, the article characterizes the energy systems of the North African countries and presents scenarios for their future development. In a second step, it scrutinizes the energy challenges these states face in terms of domestic concerns and foreign affairs. Finally, a case study of Algeria is used to demonstrate how renewable energies, but not nuclear power, are able to respond to North African energy challenges. 相似文献
4.
S. Weidner M. Faltenbacher I. François D. Thomas J.B. Skùlason C. Maggi 《International Journal of Hydrogen Energy》2018,43(33):15625-15638
The use of hydrogen to store electricity is no longer utopian nor merely theoretical. Hydrogen applications such as Power-to-Gas systems are entering the market and some of them are ready to compete with other options in the near future. This means they have indeed a potential for profitability, especially if seen as large-scale storage solutions for the electricity surplus produced by variable renewable energy sources.In this study Power-to-Industry, Power-to-Mobility and Power-to-Power applications are chosen to be investigated and compared through levelized cost of hydrogen to identify the main cost drivers and consequently understand the possible solutions to reduce costs. The feasibility of the applications is discussed and analyzed in Germany, Belgium and Iceland, with mid and long-term perspectives, focusing the analysis on the advantage of scaling up. 相似文献
5.
I. García–García V.L. Barrio J.F. Cambra 《International Journal of Hydrogen Energy》2018,43(37):17737-17747
Energy storage is needed in order to sustain the energy system on renewable energies like wind and solar power. Power-to-Gas (PtG) is a technology that enables the storage of the renewable electricity in a chemical carrier such as hydrogen, via water electrolysis, or methane, via carbon dioxide methanation. In this work a series of catalysts based on nickel and alumina, the catalyst commonly employed for carbon dioxide methanation, have been synthesised employing different calcination temperatures to study the influence of this parameter in the activity of the catalysts. As a result of this study 673 K was determined as the most suitable Moreover, the catalysts have also been tested at different pressures to determine the most suitable operating pressure. Although due to Le Chatelier's Principle a higher pressure results in an increasing yield, the study carried out proved that 10 bar is the most suitable pressure as the difference in the yield when increasing the pressure it is not high enough taking into account the costs and risks associated with higher pressures. 相似文献
6.
The Power-to-Gas (PtG) process chain could play a significant role in the future energy system. Renewable electric energy can be transformed into storable methane via electrolysis and subsequent methanation.This article compares the available electrolysis and methanation technologies with respect to the stringent requirements of the PtG chain such as low CAPEX, high efficiency, and high flexibility.Three water electrolysis technologies are considered: alkaline electrolysis, PEM electrolysis, and solid oxide electrolysis. Alkaline electrolysis is currently the cheapest technology; however, in the future PEM electrolysis could be better suited for the PtG process chain. Solid oxide electrolysis could also be an option in future, especially if heat sources are available.Several different reactor concepts can be used for the methanation reaction. For catalytic methanation, typically fixed-bed reactors are used; however, novel reactor concepts such as three-phase methanation and micro reactors are currently under development. Another approach is the biochemical conversion. The bioprocess takes place in aqueous solutions and close to ambient temperatures.Finally, the whole process chain is discussed. Critical aspects of the PtG process are the availability of CO2 sources, the dynamic behaviour of the individual process steps, and especially the economics as well as the efficiency. 相似文献
7.
B. Gillessen H.U. Heinrichs P. Stenzel J. Linssen 《International Journal of Hydrogen Energy》2017,42(19):13554-13567
In this paper, the hybrid concept to use renewable electricity to produce hydrogen with an electrolyser in combination with a battery is introduced and analysed. This hybrid system opens the possibility to optimise operation and to increase operation times of the system and thus to improve the techno-economic performance. To analyse the performance, a model has been developed, which designs and operates a single or hybrid power-to-gas system in a cost optimal manner. The underlying method is a mixed integer linear programming (MILP) approach, which minimises total system costs. The cost optimisation modelling is performed by a case study for a hybrid electrolyser/battery system directly coupled with a large PV power plant without grid connection. The results show, that batteries can support electrolyser operation in a reasonable way. This is however associated with higher hydrogen production costs and not competitive compared to the installation of additional electrolyser capacity or curtailment of electricity. 相似文献
8.
《International Journal of Hydrogen Energy》2020,45(23):12911-12920
This paper presents high-performance Ni-YSZ tubular catalysts for CO2 methanation prepared by the extrusion molding. We fabricated tubular-shaped Ni-YSZ catalysts with various Ni contents (25–100 wt% NiO) and investigated the effect of Ni content on CO2 methanation performance under various temperatures and gas flow rates. Catalysts with Ni contents >75 wt% showed CH4 yields >91% above 270 °C with high CH4 selectivities (>99%). High CH4 yields were also observed under high GHSVs at 300 °C: 93% and 92% at 8700 and 17,500 h−1, respectively. Investigation of methanation with the catalysts revealed that CO2 methanation was accelerated by a localized hotspot at the reactor inlet arising from the interaction between reaction kinetics and heat generation. Using a numerical simulation, we considered the optimum arrangement of catalytic activity in the reactor to avoid hotspot generation and realize a stable high CO2 methanation performance. We can simultaneously achieve high CH4 production and prevent hotspot formation by properly arranging catalysts with different activities. 相似文献
9.
《Energy Policy》2014
The Fukushima accident has influenced public attitudes toward energy sources and technologies, including not only nuclear energy, but also other energy sources. Therefore, it is worth investigating how the accident influenced public perceptions of renewable energy and its technologies, between the time before the accident and after the accident. This study aims to explore the effects of the Fukushima accident on the public perceptions of renewable energy technologies in South Korea, the closest nation to Japan. This study found that there were notable differences of public perceptions, including public attitudes, perceived benefits, trust, intention to use, knowledge and risks between before and after the earthquake. In addition, the perceived cost of renewable energy technologies was the primary determinant of the intention to use the technologies before the accident, whereas public attitudes toward the technologies became the main antecedents of the intention after the accident. After the accident, we found that there is a multi-dimensional matrix of perceived trust-benefits (with risks)-attitude-intention to use, in explaining the public acceptance of renewable energy technologies. Moreover, we found significant roles of the perceived trust, benefits and risks in the research model. Based on the empirical findings, both implications and suggestions are presented. 相似文献
10.
《International Journal of Hydrogen Energy》2019,44(51):27637-27655
Transforming the energy system towards more sustainability can only be achieved through a combination of low-carbon energy, energy efficiency, and the coupling of energy sectors. In this context, the application of Power-to-Hydrogen concepts for managing demand, providing seasonal storage, and linking elements between different sectors has attracted significant interest during the last decade.Demonstration is a key first step towards large-scale market introduction. This paper presents the results of a review of 192 Power-to-X demo projects in 32 countries. Results show that the features of demonstrations have evolved significantly over the years: electrolysis capacity has increased, both for PEM and alkaline systems, and the potential for balancing and ancillary services is increasingly investigated via grid-connected demos. The scope of Hydrogen-to-X pathways has also evolved over the years, mainly to include industry applications. This work was carried out under the umbrella of Task 38 of the IEA Hydrogen Technology Collaboration Programme. 相似文献
11.
《International Journal of Hydrogen Energy》2020,45(7):4223-4243
Traditional fossil fuel overuse could lead to global warming and environmental pollution. As a renewable energy, biomass energy is a sustainable and low pollution carbon energy, which has a wide range of sources. Syngas production from biomass thermochemical conversion is a promising technology to realize effective utilization of the renewable energy. Syngas produced from gasification could be further converted into value-added chemicals via the method of Fischer-Tropsch synthesis. Syngas and CO2 methanation could transform renewable energy into feasible transport and high-density energy. However, tar formation and catalyst deactivation are the main problem during the biomass gasification and methanation. This review sheds light on the development of biomass gasification and syngas methanation. Firstly, we presented the common reactors and some other factors during gasification. Secondly, we provide a comprehensive introduction of the advanced active catalyst for gasification and syngas methanation. Finally, some representative large-scale and commercial plants and companies for biomass gasification were compared and discussed in details. Then the prospective developments in combination of gasification and methanation were concluded to give an outlook for biomass gasification and its downstream development. 相似文献
12.
If renewable power systems deliver such impressive benefits, why do they still provide only 3 percent of national electricity generation in the United States? As an answer, this article demonstrates that the impediments to renewable power are socio-technical, a term that encompasses the technological, social, political, regulatory, and cultural aspects of electricity supply and use. Extensive interviews of public utility commissioners, utility managers, system operators, manufacturers, researchers, business owners, and ordinary consumers reveal that it is these socio-technical barriers that often explain why wind, solar, biomass, geothermal, and hydroelectric power sources are not embraced. Utility operators reject renewable resources because they are trained to think only in terms of big, conventional power plants. Consumers practically ignore renewable power systems because they are not given accurate price signals about electricity consumption. Intentional market distortions (such as subsidies), and unintentional market distortions (such as split incentives) prevent consumers from becoming fully invested in their electricity choices. As a result, newer and cleaner technologies that may offer social and environmental benefits but are not consistent with the dominant paradigm of the electricity industry continue to face comparative rejection. 相似文献
13.
Nuclear power and renewable energy are the main options to bring down the carbon intensity of commercial energy supply. What technology is unlimited backstop supply depends on its performance on the sustainability criteria: democratic decided, globally accessible, environmental benign, low risk, affordable. 相似文献
14.
B. Lyseng T. Niet J. English V. Keller K. Palmer-Wilson B. Robertson A. Rowe P. Wild 《International Journal of Hydrogen Energy》2018,43(4):1966-1979
According to outlooks by the IEA and the U.S. EIA, renewables will become the largest source of electricity by 2050 if global temperature rise is to be limited to 2 °C. However, at penetrations greater than 30%, curtailment of wind and solar can be significant in even the most flexible systems. Energy storage can reduce curtailment and increase utilisation of variable renewables. Power-to-gas is a form of long-term storage based on electrolytic production of hydrogen. This research models the co-sizing of wind and solar PV capacity and electrolyser capacity in a jurisdiction targeting 80% penetration of variable renewable electricity. Results indicate that power-to-gas can reduce required wind and solar capacity by as much as 23% and curtailment by as much as 87%. While the majority of charging events last less than 12 h, the majority of the total annual stored energy comes from longer-term events. Additional scenarios reveal that geographic diversity of wind farms reduces capacity requirements, but the same benefit is not found for distributing solar PV. 相似文献
15.
《Energy Policy》2016
The main challenges associated with a growing production of renewable electricity are intermittency and dispersion. Intermittency generates spikes in production, which need to be curtailed when exceeding consumption. Dispersion means electricity has to be transported over long distances between production and consumption sites. In the Directive 2009/28/EC, the European Commission recommends sustainable and effective measures to prevent curtailments and facilitate transportation of renewable electricity. This article explores the material constraints of storing and transporting surplus renewable electricity by conversion into synthetic methane. Europe is considered for its mix of energy technologies, data availability and multiple energy pathways to 2050. Results show that the requirements for key materials and land remain relatively low, respecting the recommendations of the EU Commission. By 2050, more than 6 million tons of carbon dioxide might be transformed into methane annually within the EU. The efficiency of renewable power methane production is also compared to the natural process of converting solar into chemical energy (i.e. photosynthesis), both capturing and reenergizing carbon dioxide. Overall, the production of renewable methane (including carbon dioxide capture) is more efficient and less material intensive than the production of biofuels derived from photosynthesis and biomass conversion. 相似文献
16.
《International Journal of Hydrogen Energy》2021,46(62):31511-31522
This review presents the power-to-gas concept, particularly with hydrogen, from renewable energy sources to end-use applications in various sectors, ranging from transportation to natural gas distribution networks. The paper includes an overview of the leading related studies for comparative evaluation. Due to the intermittent/fluctuating phenomena of most renewables, power-to-hydrogen appears to be a promising option to offset any mismatch between demand and supply. It is a novel concept to increase the renewability of fuels and reach a sustainable energy system for future transportation, power and thermal process sectors. Comparisons of different hydrogen production methods fed by several energy sources are made regarding environmental impact, cost and efficiency. The present results show that hydrogen production (with power-to-hydrogen concept) via polymer electrolyte membrane electrolyser has lower environmental effects than other traditional methods, such as coal gasification and reforming and steam methane reforming. The geothermal energy-based system has the lowest levelized cost of electricity during hydrogen production, while natural gas has the highest value. The best option for the plant efficiency is found for high-temperature steam electrolysis fed from biogas, while the lowest efficiency value belongs to polymer electrolyte membrane electrolyser driven by solar photovoltaics, respectively. 相似文献
17.
A. Sainz-Garcia E. Abarca V. Rubi F. Grandia 《International Journal of Hydrogen Energy》2017,42(26):16657-16666
Renewable energies fluctuate, resulting in temporary mismatches between demand and supply. The conversion of surplus energy to hydrogen and its storage in geological formations is one option to counteract this energy imbalance. This study evaluates the feasibility of seasonal storage of hydrogen produced from wind power in Castilla-León region (northern Spain). A 3D multiphase numerical model is used to test different extraction well configurations during three annual injection-production cycles in a saline aquifer. Results demonstrate that underground hydrogen storage in saline aquifers can be operated with reasonable recovery ratios. A maximum hydrogen recovery ratio of 78%, which represents a global energy efficiency of 30%, has been estimated. Hydrogen upconing emerges as the major risk on saline aquifer storage without using other cushion gases. However, shallow extraction wells can minimize its effects. Steeply dipping geological structures are key for an efficient hydrogen storage. 相似文献
18.
This article focuses on the distribution of costs induced by the integration of electricity generation from renewable energy sources (RES-E). The treatment to distribute these costs on different market actors is crucial for its development. For this purpose, individual actors of electricity markets and several cost categories are identified. According to the defined cost structure, possible treatments to distribute the individual cost categories on different relevant actors are described. Finally, an evaluation of the cost distribution treatments based on an economic analysis is given. Economic efficiency recommends that clearly attributable (shallow) grid connection as well as (deep) grid costs are charged to the corresponding RES-E producer and that the RES-E producers are also charged the regulating power costs. However, deep grid integration costs should be updated to reflect evolving scarcities. Also regulating power costs should reflect actual scarcity and thus be symmetric and based on real-time prices, taking into account the overall system imbalance. Moreover, the time span between the closure of the spot market and actual delivery should be chosen as short as possible to enable accurate RES-E production forecasts. 相似文献
19.
As the world’s third leading economy and a major importer of fuels, the choice of future energy paths and policies that Japan makes in the next few years will have a significant influence on the energy security of the world as a whole, and of the Northeast Asia region in particular. In this article we describe the current status of and recent trends in the Japanese energy sector, including energy demand and supply by fuel and by sector. We then discuss the current energy policy situation in Japan, focusing on policies related to climate change targets, renewable energy development and deployment, liberalization of energy markets, and the evolution of the Japanese nuclear power sector. The final section of the article presents the structure of the Japan LEAP (long-range energy alternatives planning software system) dataset, describes several alternative energy paths for Japan – with an emphasis on alternative paths for nuclear power development and GHG emission abatement – and touches upon key current issues of energy policy facing Japan, as reflected in the modeling inputs and results. 相似文献
20.
《International Journal of Hydrogen Energy》2019,44(19):9486-9504
Currently, a significant transformation for energy systems has emerged as a result of the trend to develop an energy framework without fossil fuel reliance, the concerns about climate change and air quality, and the need to provide electricity to around of 17% of world population who lacks the service. Accordingly, the deployment of power plants located close to end-users and including multiple energy sources and carriers, along with the growing share of renewable energies, have suggested changes in the energy sector. Despite their potential capabilities, the design of distributed energy systems (DES) is a complex problem due to the simultaneous goals and constraints that need to be considered, as well as to the high context dependence of this kind of projects. For these reasons, in this work a systematic literature review of DES including hydrogen as energy vector, was made analyzing 106 research papers published between the years 2000–2018, and extracted from Scopus® and Web of Science databases. The aim was to identify how hydrogen is employed (technologies, uses) and the criteria that are evaluated (economic, technical, social and environmental) when these systems are designed, planned and/or operated. The results constitute a baseline information covering the type of technologies, equipment sizes and hydrogen applications, that could be valuable for the preliminary stages of research or project planning of DES involving hydrogen. Furthermore, other factors have also been identified, such as the focus on techno-economic issues, and the lack of considering socio/political aspects and the uncertainty about input data like weather conditions, energy prices and demands. Additionally, a more integrated approach is needed including all the hydrogen supply chain stages and project stakeholders, to tackle issues like safety of the energy systems that could produce consumer rejections. 相似文献