共查询到20条相似文献,搜索用时 15 毫秒
1.
Yang Yu Yi Meng Chan Zhoufeng Bian Fujiao Song Juan Wang Qin Zhong Sibudjing Kawi 《International Journal of Hydrogen Energy》2018,43(32):15191-15204
The hydrogenation of CO2 on CeNi catalyst modified with g-C3N4 (CeNiCN) as a sacrificial and protective template was studied by in-situ DRIFTS and Kinetics experiments to investigate the influence of modification on the catalytic activity and selectivity to gain mechanistic insight. After modification, the catalyst showed higher catalytic activity and selectivity. H2-TPR, CO2-TPD, TEM and XPS confirmed that this modification could enhance the interaction of nickel and ceria and decrease the particle size of nickel, which is in favor of the dissociation of H2 and adsorption of CO2. The in-situ DRIFTS experiments demonstrated that CO2 is adsorbed on ceria sites, forming carboxylate (CO2δ?), unidentate carbonate and bicarbonates, which, in turn, react with adsorbed and dissociated H on Ni to produce formate species. Furthermore, adsorbed methoxy species were observed, which are recognized to be intermediates in the methanation process. In-situ transient DRIFTS confirm that the adsorbed CO is not a reaction intermediate, but a by-product, which originates from the decomposition of weak-binding formate species on Ce3+ sites. The unmodified catalyst has more weak-binding formate species, which are more inclined to decompose into CO accounting for the low selectivity. Furthermore, the adsorbed CO on Ce3+ sites cannot react with the adsorbed hydrogen to produce methane. Kinetics studies are consistent with a Langmuir-Hinshelwood type mechanism in which the formation of bicarbonate is the rate-determining step (RDS). 相似文献
2.
《International Journal of Hydrogen Energy》2023,48(43):16267-16278
The effect of alkali metal Na on Pd/TiO2 catalyst for the selective catalytic reduction of NOx by H2 (H2-SCR) has been investigated. Compared with Pd/TiO2 and Na/TiO2, Pd–Na/TiO2 catalyst exhibited much higher catalytic activity and wider activity temperature window. Characterization results showed that more Pd0 and surface chemisorbed oxygen (Oα) existed on Pd0.5Na0.5/Ti than Pd/TiO2. In-situ DRIFTS results showed that more NOx adsorbed and activated on Pd0.5Na0.5/Ti, and these species are reactive. Meanwhile, NH3 species adsorbed on Lewis acid sites was generated by the reaction between NOx and H2, which then reduce NOx by the NH3-SCR route. As a consequence, the reduction of NOx over Pd–Na/TiO2 was significantly improved. Our study provides new insight for developing highly H2-SCR catalyst for the removal of NOx. 相似文献
3.
《International Journal of Hydrogen Energy》2019,44(20):9978-9986
For the first time the influence of CO, CO2 and H2O content on the performance of chlorinated NiCeO2 catalyst in selective or preferential CO methanation was studied systematically. It was shown that the rate of CO methanation over Ni(Cl)/CeO2 increases with the increasing H2 concentration, is independent of CO2 concentration and decreases with increasing CO and H2O concentrations; the rate of CO2 methanation is weakly sensitive to H2 and CO2 concentrations and decreases with increasing CO and H2O concentrations. High catalyst selectivity was attributed to Ni surface blockage by strongly adsorbed CO molecules and ceria surface blockage by Cl, which both inhibit CO2 hydrogenation.For the first time, selective CO methanation over Ni(Cl)/CeO2 was studied for deep CO removal from formic acid derived hydrogen-rich gases characterized by high CO2 (40–50 vol%), low CO (30–1000 ppm) content and trace amounts of water. Composite Ni(Cl)/CeO2-η-Al2O3/FeCrAl wire mesh catalyst was demonstrated to be effective for this process at temperatures of 180–220°С, selectivity 30–70%, WHSV up to 200 L (STP)/(g∙h). The catalyst provides high process productivity, low pressure drop, uniform temperature distribution, and appears highly promising for the development of a compact CO cleanup reactor. Selective CO methanation was concluded to be a convenient way to CO-free hydrogen produced by formic acid decomposition. 相似文献
4.
Lu Zhang Zhiming Gao Lixia Bao Hongwei Ma 《International Journal of Hydrogen Energy》2018,43(19):9287-9295
It is attempted to optimize preparation of ZrO2 as support of the nickel catalysts for selective methanation of CO in H2-rich gas (CO-SMET). Therefore, the supports ZrO2 were prepared at first by thermal decomposition method from zirconium oxynitrate and zirconium oxychloride at the calcination temperature of 400 °C and 800 °C, respectively. It is illustrated that the salt kind and calcination temperature affected phase state (tetragonal, monoclinic), crystallite size and specific surface area (SSA) of the supports. The difference in property of the supports influenced catalytic performance of the catalysts Ni/ZrO2 for CO-SMET reaction. Especially, the chlorine ion residues in the support ZrO2 prepared from zirconium oxychloride was beneficial for CO removal selectively. Furthermore, a precipitation method was adopted to prepare ZrO2 for comparison with the thermal decomposition method with use of the zirconium oxychloride as starting material. It is found that the supports ZrO2 prepared by the precipitation method induced a better dispersion of metallic Ni on its surface. The catalyst Ni/ZrO2 with use of the support ZrO2 prepared by the precipitation method and calcination at 400 °C exhibited a good performance at the reaction temperature of 220 °C in the 100 h durability test, where CO outlet concentration was kept below 10 ppm and the selectivity remained constant at 100%. Relation of Ni crystallite size and chlorine ion residues with the catalytic performance was discussed. 相似文献
5.
《International Journal of Hydrogen Energy》2020,45(55):29917-29928
In this study, tungsten oxide with a high specific surface area was fabricated using a nanocasting technique and used to prepare support for nickel catalysts for CO methanation. Additionally, Mg was further introduced as a promoter for tuning the catalytic performance. The 25Ni/WO3 catalyst demonstrated a relatively high CO conversion, but a poor CH4 selectivity; however, with the addition of 7 wt% Mg to the catalyst, the CH4 selectivity reached 92% at a temperature of 440 °C. The improved CH4 selectivity can be attributed to the enhanced CO dissociation, which was related to the reduced Ni particle size, as well as the enhanced Ni electron cloud density. The role of a physical barrier and electron transfer of MgO induces an enhancement of the metal–support interactions, which are conducive to decreasing the Ni particle size. Meanwhile, the electron transfer performance of MgO constitutes a crucial factor in enhancing the Ni electron cloud density. Furthermore, with benefit from the inhibition of agglomeration of the Ni particles by the MgO promoter, a significantly better catalytic stability was also observed on 7Mg25Ni/WO3 than with the 25Ni/WO3 catalyst. 相似文献
6.
Ziyaad Mohamed Venkata D.B.C. Dasireddy Sooboo Singh Holger B. Friedrich 《International Journal of Hydrogen Energy》2018,43(49):22291-22302
CO oxidation and methanation over Ru-TiO2 and Ru-ZrO2 catalysts were investigated for CO removal for applications in proton exchange membrane fuel cells. The catalysts were synthesised by the deposition precipitation method at a pH of 7–7.5 for better interactions between the support and the active Ru metal. Various characterization experiments such as TPR, XPS, FTIR-CO, CO chemisorption and HRTEM were conducted to better understand the physio-chemical properties of Ru on the supports. Both catalysts showed excellent activity for the total oxidation of CO, however, with the addition of H2, the catalysts activity to CO oxidation decreased significantly. Higher temperatures for the preferential oxidation reaction indicated that the Ru catalysts not only oxidize CO, but hydrogenate it as well. Furthermore, H2 oxidation was favoured over the catalysts. Hydrogenation of CO over these catalysts gave high CO conversion and selectivity towards CH4. Both the catalysts showed similar activity across the temperature range screened and gave maximum CO conversions of 99.9% from 240 °C onwards, with 99.9% selectivity towards CH4. The catalysts also showed good stability in the reaction and the similarities in the catalytic activity of these were attributed to the well-dispersed Ru metal over the supports. The Ru catalysts effectively reduced CO concentrations in the reformate gas to less than 10 ppm, as is required for practical applications. 相似文献
7.
Xuzhuang Yang Wendurima Guanjun Gao Quanquan Shi Xin Wang Jianan Zhang Chenhui Han Jie Wang Huailiang Lu Jie Liu Min Tong 《International Journal of Hydrogen Energy》2014
Nickel catalysts supported on different acid-treated clays were prepared by the impregnation method in order to investigate the effect of the pore structures of supports on the dispersion and the chemical states of nickel species, and thus on the carbon depositions resulted from the dissociation of the CO molecules adsorbed on different active nickel sites. The catalysts and supports were characterized by the X-ray diffraction (XRD), the transmittance electron microscopy (TEM), the H2 temperature-programmed reduction (H2-TPR), the nitrogen adsorption–desorption, and the thermogravimetry and differential thermal analysis (TG-DTA). The CO methanation performance of the catalyst was investigated at a temperature range from 300 °C to 500 °C. The results indicated that the dispersion and the states of the nickel species on the support were influenced strongly by the pore structures of the acid-treated clays, and only the mesopores composed by partly damaged clay layers were conducive to forming the active nickel species, and thus reducing the deposition of the inactive carbon and improving the stability of the catalyst. The carbon species deposited on different active sites was slightly different in the oxidative properties when it was oxidized in air. A fraction of aluminum in the clays was leached out by acid, which decreased the possibility of forming the spinel phase of nickel aluminate in the catalyst. The highly dispersed nickel species showed little relevance to the high activity of the catalyst, but it exhibited a strong relation to the nickel sites from the bulk nickel species. 相似文献
8.
Dan Ping Xinfa Dong Yunhao Zang Xiao Feng 《International Journal of Hydrogen Energy》2017,42(23):15551-15556
Highly efficient and non-noble metal-based Ni/ZrO2 catalyst templated with Ni/UiO-66 precursor was successfully prepared and applied to CO selective methanation in H2-rich gases. This catalyst showed excellent activity and selectivity in an extremely wide temperature window of 215–350 °C, and it also had high stability with no deactivation during a long-term stability test (120 h). The increased specific surface area, smaller crystallite size (3.5 nm) and higher dispersion (15.3%) of Ni nanoparticles, and the enhanced chemisorption capability for CO might contribute to its excellent performance. 相似文献
9.
《International Journal of Hydrogen Energy》2019,44(43):23975-23982
In order to simultaneously inhibit the Ni sintering and coke formation as well as investigate the effects of WO3 promoter on catalytic performance, the ordered mesoporous Ni–WO3/Al2O3 catalysts were synthesized by a facile one-pot evaporation-induced self-assembly method for CO methanation reaction to produce synthetic natural gas. Addition of WO3 species could significantly promote the catalytic activity due to the enhancement of the Ni reducibility and the increase of active centers, and the optimal N10W5/OMA catalyst with NiO of 10 wt% and WO3 of 5 wt% achieved the maximum CH4 yield 80% at 425 °C, 0.1 MPa and a weight hourly space velocity of 60000 mL g−1 h−1. Besides, the reference catalyst N10W5/OMA-Im prepared by the conventional co-impregnation method was also evaluated. Compared with N10W5/OMA, N10W5/OMA-Im showed lower catalytic activity due to the partial block of channels by Ni and WO3 nanoparticles, which reduced active centers and restrict the mass transfer during the reaction. In addition, the N10W5/OMA catalyst showed superior anti-sintering and anti-coking properties in a 425oC-100 h-lifetime test, mainly because of confinement effect of ordered mesoporous structure to anchor the Ni particle in the alumina matrix. 相似文献
10.
《International Journal of Hydrogen Energy》2022,47(72):30981-31002
CO methanation has arisen as an attractive research area due to its ability to transform syngas into substituted natural gas. Current monometallic catalysts have a severe problem; quickly deactivated. It is generally known that by introducing another metal to create a bimetallic catalyst, synergistic interaction between both metals considerably enhances catalyst effectiveness. This paper provides a detailed overview of bimetallic catalysts for CO methanation, covering its synthesis method and effect on physicochemical characteristics. The bimetallic catalyst can both reinforce or weaken the metal-support and metal-metal interaction, which weakening it favors reducibility while reinforcing it favors stability. Particle size and dispersion also improve, whereas adding lanthanides can increases the basicity. We also present the mechanism of CO methanation over the bimetallic catalyst, which modifies the mechanism's energy and rate value. This review provides insights on how reaction effectiveness is enhanced, enabling catalyst development with the highest possible performance. 相似文献
11.
Jinping Du Jiajian Gao Fangna Gu Jiahao Zhuang Bin Lu Lihua Jia Guangwen Xu Qing Liu Fabing Su 《International Journal of Hydrogen Energy》2018,43(45):20661-20670
Supported Ni/Al2O3 catalysts are widely used in chemical industries. Regeneration of the deactivated Ni catalysts caused by sintering of Ni nanoparticles and carbon deposition after long-term operation is significant but still very challenging. In this work, a feasible strategy via solid-phase reaction between NiO and Al2O3 followed by a controlled reduction is developed which can burn out the deposited carbon and re-disperse the Ni nanoparticles well, thus regenerating the deactivated Ni catalysts. To demonstrate the feasibility of this method, Ni catalyst supported on α-Al2O3 (Ni/Al2O3) for CO methanation reaction was selected as a model system. The structure and composition of the fresh, deactivated and regenerated Ni/Al2O3 catalysts were comprehensively characterized by various techniques. The reduction and redistribution of Ni species as well as the interfacial interaction between Ni nanoparticles and Al2O3 support were investigated in detail. It is found that calcining the deactivated Ni/Al2O3 in air at high temperature can burn out the coke, while the sintered Ni species can combine with superficial Al2O3 to form a surface NiAl2O4 spinel phase through the solid-phase reaction. After the controlled reduction of the NiAl2O4 spinel, highly dispersed Ni nanoparticles on Al2O3 support are re-generated, thus achieving the regeneration of the deactivated Ni/Al2O3. Interestingly, compared with the fresh Ni/Al2O3 catalyst, the sizes of Ni nanoparticles became even smaller in the regenerated ones. The regenerated Ni/Al2O3 showed much enhanced catalytic activity in CO methanation and became more resistant to carbon deposition, due to the better dispersed Ni nanoparticles and strengthened interaction between Ni and Al2O3 support. Our work not only addresses the long existing catalyst regeneration issue, but also provides effective and renewable Ni-based catalysts for CO methanation. 相似文献
12.
《International Journal of Hydrogen Energy》2023,48(64):25065-25074
Selective CO methanation from H2-rich stream has been regarded as a promising route for deep removal of low CO concentration and catalytic hydrogen purification processes. This work is focused on the development of more efficient catalysts applied in practical conditions. For this purpose, we prepared a series of catalysts based on Ru supported over titania and promoted with small amounts of Rh and Pt. Characterization details revealed that Rh and Pt modify the electronic properties of Ru. The results of catalytic activity showed that Pt has a negative effect since it promotes the reverse water gas shift reaction decreasing the selectivity of methanation but Rh increases remarkably the activity and selectivity of CO methanation. The obtained results suggest that RuRh-based catalyst could become important for the treatment of industrial-volume streams. 相似文献
13.
《International Journal of Hydrogen Energy》2020,45(23):12822-12834
CDRM (Carbon Dioxide Reforming of Methane) is an effective route to utilize the most abundant greenhouse gases, CH4 and CO2, to produce synthesis gas. This study aims to define the CDRM features, including both surface characteristics and mechanistic properties, of Co–Ce/ZrO2 catalysts via FTIR-DRIFTS (Diffuse Reflectance Infrared Fourier Transform Spectroscopy). In this manner, CO adsorption, CDRM reaction and cyclic experiments are applied to Co–Ce/ZrO2 system under different operating conditions. Accordingly, it is verified that Co sites are responsible for CH4 activation. Ceria has a strong interaction with oxygen related groups, due to its enhanced oxygen transfer ability. Co/Ce ratio dominantly affects surface properties of the catalysts and causes variations on type and amount of surface intermediates during the reaction. CO2 activation occurs at ZrO2 sites, especially at their oxygen vacancies. The CH4/CO2 feed ratio is crucial in maintaining C–O balance in the reaction medium. Finally, a possible reaction route, valid for all tested catalysts, is discussed. 相似文献
14.
Huailiang Lu Xuzhuang Yang Guanjun Gao Kebing Wang Quanquan Shi Jie Wang Chenhui Han Jie Liu Min Tong Xiaoyuan Liang Changfu Li 《International Journal of Hydrogen Energy》2014
The Ni catalysts supported on a new structure with zirconia nanoparticles highly dispersed on the partly damaged clay layers has been prepared by the incipient wetness impregnation method and the new structure of the support has been prepared in one pot by the hydrothermal treatment of the mixture of the clay suspension and the ZrO(NO3)2 solution. The catalytic performances for the CO and CO2 methanation on the catalysts have been investigated at a temperature range from 300 °C to 500 °C at atmospheric pressure. The catalysts and supports have been characterized by X-ray diffraction (XRD), transmittance electron microscopy (TEM), H2 temperature-programmed reduction (H2-TPR), nitrogen adsorption–desorption, and thermogravimetry and differential thermal analysis (TG-DTA). It is found that the zirconia-modified clays have the typical bimodal pore size distribution. Most of the pores with the sizes smaller than 10 nm are resulted from the zirconia pillared clays and the mesopores with the sizes larger than 10 nm and the macropores with the sizes larger than 50 nm are resulted from the partly damaged clay layers. The bimodal pore structure is beneficial to the dispersion of Ni on the layers of the zirconia-modified clays and the increase in Ni loading. The zirconia nanoparticles are highly dispersed on the partly damaged clay layers. Nickel oxide in cubic phase is the only Ni species that can be detected by XRD. The nickel oxide nanoparticles with the sizes of 12 nanometers or more are well dispersed on the zirconia-modified clay layers, which are observed to be buried in the stack layers of zirconia. The presence of nickel oxide in six different forms could be perceived on the new structure. Five of them except the Ni species that forms the spinel phase with Al in clays can be reduced to the active Ni species for the CO and CO2 methanation. But the activity of the Ni species is different, which is associated with the chemical environment at which the Ni species is located. The catalyst with the higher zirconia content, which also has the larger specific surface area and pore volume, exhibits the better catalytic performance for the CO or CO2 methanation. Zirconia in the catalyst is responsible for the dispersion of the Ni species, and it prevents the metallic Ni nanoparticles from sintering during the process of the reaction. In addition, it is also responsible for the reduction of the inactive carbon deposition. The catalyst with 15 wt.% zirconia content has the highest CO conversion of about 100% and the highest methane selectivity of about 93% at 450 °C for CO methanation, and the catalyst with 20% zirconia content has the CO2 conversion of about 80% and the highest methane selectivity of about 99% for CO2 methanation at 350 °C. The catalyst with 15 wt.% zirconia possesses promising stability and no distinct deactivation could be perceived after reaction for 40 h. This new catalyst has great potential to be used in the conversion of the blast furnace gas (BFG) and the coke oven gas (COG) to methane. 相似文献
15.
《International Journal of Hydrogen Energy》2023,48(64):25144-25157
Carbon monoxide selective methanation (CO-SMET) is one of the most efficient technologies for hydrogen purification and CO deep removal. This paper applies the field synergy principle for a deep understanding on the chemically reactive flow in a CO-SMET tubular reactor. The variation of CO conversion rate under different operating conditions is interpreted, at the first time, as relevant to the variation of the synergy angle between temperature and gas concentration fields. Sensitive analyses of the bed pressure, CO/CO2 ratio, heat exchange modes, etc., are studied to obtain the profile of field synergy angle in the inlet gas temperature range of 373 K – 873 K. It is found that the region with synergy angles between 0° and 70° enhances the heat transfer between mass transfer and contributes the main output of CO conversion. This work provides a fundamental basis on the future optimal design of CO–SMET reactors. 相似文献
16.
《International Journal of Hydrogen Energy》2023,48(64):24652-24662
The CO methanation reaction has been widely used in the fields of synthetic natural gas and ammonia (NH3). This study improves the CO methanation performance using a two-dimensional NiAl-layered double oxide (2D NiAl-LDO) decorated by SiO2 nanoparticles and reduced under hydrogen atmosphere. The as-obtained H–NiAl-LDO/SiO2 exhibited a high specific surface area of 240.5 m2/g and high surface-adsorbed oxygen of 20.77%. Furthermore, it had an excellent CO conversion of 100% at 300 °C and 96.87% at 250 °C, which was much better than those of H–NiAl-LDO (84.03% at 300 °C and 0% at 250 °C). We believe that it provides an additional strategy to easily and effectively improve CO methanation performance and shows potential for the application of similar catalysts. 相似文献
17.
Zhouxin Chang Zhisong Liu Chao Wang Jiangwei Li Junming Zeng Ying Liu Mengjuan Zhang Jiangbing Li Feng Yu 《International Journal of Hydrogen Energy》2021,46(11):7912-7925
CO methanation has attracted much attention because it transforms CO in syngas and coke oven gas into CH4. Here, porous Al2O3 microspheres were successfully used as catalyst supports meanwhile the Mn was used as a promoter of Ni/Al2O3 catalysts. The as-obtained Ni/Al2O3 and Mn–Ni/Al2O3 samples display a micro-spherical morphology with a center diameter near 10 μm. Versus the Ni/Al2O3 catalyst, the 10Mn–Ni/Al2O3 catalyst exhibits a high specific surface area of 92.5 m2/g with an average pore size of 7.0 nm. The 10Mn–Ni/Al2O3 catalyst has the best performance along with can achieve a CO conversion of 100% and a CH4 selectivity of 90.7% at 300 °C. Even at 130 °C, the 10Mn–Ni/Al2O3 catalyst shows a CO conversion of 44.0% and a CH4 selectivity of 84.1%. The higher low-temperature catalytic activity may be since the catalyst surface contains more CO adsorption sites and thus has a stronger adsorption performance for CO. Density functional theory (DFT) calculations confirm that the Mn additive enhances the adsorption of CO, especially for the 10Mn–Ni/Al2O3 catalyst with the strongest adsorption energy. 相似文献
18.
《International Journal of Hydrogen Energy》2020,45(16):9522-9534
In this study, the conversion of CO into CH4 was investigated utilizing a series of cobalt loaded on fibrous silica (KCC-1) catalysts (Co loading of 5–30 wt%), that were synthesized via microemulsion and impregnation techniques. FESEM-EDX and N2 physisorption demonstrated that the KCC-1 possessed a spherical structure with fibrous silica dendrimeric morphology with a superior surface area of 861 m2g-1. A significant decreased in the catalyst surface area was noticed upon the addition of Co, suggesting a possible occurrence of KCC-1 pore blockage. Inversely, the number of basic sites on KCC-1 was enhanced after the incorporation of Co, as observed by pyrrole adsorbed FTIR. At 523 K, bare KCC-1 exhibited a very low activity for CO methanation due to low basicity and the absence of surface active sites. The 20Co/KCC-1 demonstrated the best catalytic performance with 72.7% yield of CH4 and 6.8% of CO2. These results were plausibly attributed to the high intrinsic number of basic sites and high dispersion of Co on KCC-1 support. A detailed in-situ FTIR spectroscopy study revealed that both types of associative and dissociative mechanism pathways significantly contributed to the high catalytic methanation activity. In addition to the dissociative mechanism, the linear CO species adsorbed on the Co metal by associative mechanism was also further hydrogenated to obtain the final CH4 products. 相似文献
19.
Selective CO methanation (CO‐SMET) is viewed as an effective H2‐rich gas purification technique for proton exchange membrane fuel cells. In this work, improved composite‐supported Ru catalysts were developed for the CO‐SMET process. Mixed metal oxides (MMOs) obtained by calcination of layered double hydroxides precursor were used as an effective catalyst supports. After incorporation of TiO2, the resulting TiO2‐MMO composites were expected to have an enhanced catalytic performance. Therefore, a series of TiO2‐NiAl layered double hydroxides was successfully prepared via 1‐pot deposition method. After calcination, the derived TiO2‐NiAl MMO‐supported Ru catalysts obtained by impregnation method showed excellent catalytic performance for CO‐SMET reaction. The catalyst could deeply remove the CO outlet concentration (<10 ppm) with a high selectivity (>50%) over the wide low‐temperature window (175‐260°C). Furthermore, the catalyst also showed high stability with no deactivation during a long‐term durability test (120 h). Based on X‐ray diffraction, Fourier transform infrared, Raman, thermogravimetric differential scanning calorimetry, N2 adsorption‐desorption, temperature‐programmed reduction, scanning electron microscopy, and transmission electron microscopy analyses, the enhanced catalytic performance of the TiO2‐NiAl MMO‐supported Ru catalyst was found to be related to the higher dispersion of Ru nanoparticles, partially reduced NiO species, and the increased specific surface area and structural stability of the support. The facile synthesis strategy proposed herein may open a new window for the efficient production of high‐quality H2. 相似文献
20.