首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Developing effective catalysts for hydrogen evolution from hydrolysis of ammonia borane (AB) is of great significance considering the useful applications of hydrogen. Herein, graphitic carbon nitride (g-C3N4) prepared through the simply pyrolysis of urea was employed as a support for Rh nanoparticles (NPs) stabilization. The in-situ generated Rh NPs supported on g-C3N4 with an average size of 3.1 nm were investigated as catalysts for hydrogen generation from the hydrolysis of AB under mild conditions. The Rh/g-C3N4 catalyst exhibits a high turnover frequency of 969 mol H2· (min·molRh)?1 and a low activation energy of 24.2 kJ/mol. The results of the kinetic studies show that the catalytic hydrolysis of AB over the Rh/g-C3N4 catalyst is a zero-order reaction with the AB concentration and a first-order reaction with the Rh concentration. This work demonstrates that g-C3N4 is a useful support to design and synthesis of effective Rh-based catalyst for hydrogen-based applications.  相似文献   

2.
Supported Rh nanoparticle (NP) catalysts have been widespread investigated for hydrogen production from ammonia borane (AB) hydrolysis. However, it is still challenging to develop an efficient strategy to improve the catalytic performances of supported Rh NP catalysts considering the high-cost and limited reserve of Rh. To overcome this limitation, we propose a facile but effective method to significantly improve the catalytic performance of Rh NPs by using oxidized-Ti3C2Tx (o-Ti3C2Tx) as a NP support. The systematic investigation results suggest that well distributed and ultrasmall Rh NPs with a diameter of 2.60 nm are successfully loaded on the o-Ti3C2Tx surface, which can be used as excellent catalysts for hydrogen release from AB hydrolysis. The corresponding turnover frequency (TOF) of 2021 min−1 and activation energy of 18.7 kJ/mol are achieved, which are superior to that of Rh NPs supported on a fresh Ti3C2Tx support and most of previous reported Rh NP catalysts. Additionally, the reusability test shows that Rh/o-Ti3C2Tx can maintain 53% of the initial catalytic activity after the fifth run. This study opens a new avenue to adjust the catalytic activity of metal NP catalysts for use in field of catalytic applications.  相似文献   

3.
Hydrogen generation from the hydrolysis of ammonia borane (AB) over heterogeneous catalysts is essential for practical applications. Herein, efficient hydrogen evolution from AB hydrolysis over the carbon-supported Rh nanoparticles synthesized with sodium citrate (Rh/C-SC) was achieved at 25 °C. The turnover frequency value of Rh/C-SC was 336 mol H2 (molRh min)?1, whereas that of Rh/C catalyst only yielded a value of 134 mol H2 (molRh min)?1. The improvement of the catalytic performance of Rh/C-SC catalyst could be attributed to the small Rh particles with highly active surface areas, which were prepared by using sodium citrate as the stabilizing agent. This result indicates that sodium citrate can be applied as a useful stabilizing agent for synthesizing active metal nanoparticles, thus highly promoting the practical application of AB system for fuel cells.  相似文献   

4.
Hydrogen evolution from ammonia borane (AB) hydrolysis is of great importance considering the ever-increasing demand for green and sustainable energy. However, the development of a facile and efficient strategy to construct high-performance catalysts remains a grand challenge. Herein, we report an amino-group and space-confinement assisted strategy to fabricate Rh nanoparticles (NPs) using amino-functionalized metal-organic-frameworks (UiO-66-NH2) as a NP matrix (Rh/UiO-66-NH2). Owing to the coordination effect of amino-group and space-confinement of UiO-66-NH2, small and well-distributed Rh NPs with a diameter of 3.38 nm are successfully achieved, which can be served as efficient catalysts for AB hydrolysis at room temperature. The maximum turnover frequency of 876.7 min?1 is obtained by using the Rh/UiO-66-NH2 with an optimal Rh loading of 4.38 wt% and AB concentration of 0.2 M at 25 °C, outperforming most of the previously developed Rh-based catalysts. The catalyst is also stable in repetitive cycles for five times. The high performance of this catalyst must be ascribed to the structural properties of UiO-66-NH2, which enable the formation of small and well-dispersed Rh NPs with abundant accessible active sites. This study provides a simple and efficient method to significantly enhance the catalytic performance of Rh for AB hydrolysis.  相似文献   

5.
We report the preparation of an ammonia borane hydrolysis catalyst for use in hydrogen production by dispersing Rh nanoparticles on a nitrogen-doped carbon (NPC) support. The resulting Rh/NPC catalyst had a measured turnover frequency of 473.5 min?1, higher than that of many previously reported Rh-based catalysts. This catalyst could also be reused eight times. The large surface area and abundant nitrogen-functional species of NPCs facilitate dispersion of Rh nanoparticles on their surface, providing numerous catalytically active sites for ammonia borane hydrolysis, thereby leading to high catalytic activity. This study demonstrates that NPC support can be used to prepare highly active catalysts.  相似文献   

6.
Biomass-derived porous carbons are generally used as supports for metal nanoparticle (NP) stabilizations, while the strong hydrophilicity of such materials makes the as-prepared catalysts hard to be isolated after reaction, significantly affecting their potential applications. Herein, magnetic N-functionalized carbon (CN) encapsulated Ni composite (Ni@CN) prepared via pyrolysis of bamboo fungus pre-absorbed with nickel nitrate is exploited as a matrix to synthesize Rh/Ni@CN hybrid, which can be used as a magnetically recoverable catalytic material for hydrolytic dehydrogenation of ammonia borane (AB) to generate hydrogen. The Rh/Ni@CN (Rh loading: 0.84 wt%) exhibits an optimal activity (turnover frequency: 351 min−1) for hydrogen evolution from hydrolytic dehydrogenation of AB. Most importantly, this catalyst can be simply isolated by a magnet and reused at least five times with complete conversion of AB to hydrogen. The strong interaction between the two metals and the small size of Rh NPs are responsible for the improved catalytic activity for hydrolytic dehydrogenation of AB. This work provides an eco-friendly and efficient strategy to fabricate excellent catalysts in catalytic applications.  相似文献   

7.
We report nanoporous Ni, Ni–Fe, and Ni–Pt as catalysts for hydrogen generation from hydrolytic dehydrogenation of ammonia borane (NH3BH3, AB). The Ni and Ni–Fe nanoparticles with diameters of 20–25 nm were synthesized by a colloidal method in starch-containing aqueous solution. They exhibited considerable in situ catalytic performance but severely lost activity after separating from the reaction solution. Nanoporous Ni1−xPtx (x = 0.01, 0.08 and 0.19) with particle size below 5 nm was prepared from the isolated Ni nanoparticles through a replacement reaction. After centrifugation, drying, washing, and annealing, the obtained nanoporous Ni–Pt could attain remarkable activity, high hydrogen generation rate and efficiency, and low activation energy.  相似文献   

8.
Hydrolysis of ammonia borane provides a reliable pathway for hydrogen production, while suitable catalysts are indispensable to make the hydrolysis reaction reach a considerable rate. In the present work, a series of TiO2-supported RuCo catalysts have been fabricated by coprecipitation and subsequent reduction of Ru3+ and Co2+ on the surface of TiO2 nanoparticles. Transmission electron microscopy and elemental mapping have verified the good distribution of metal species in the catalysts. The fabricated catalysts have shown excellent performance for catalyzing ammonia borane hydrolysis, especially in alkaline solutions with 0.5 M NaOH. For Ru1Co9/TiO2 in which Ru/Co molar ratio is 1:9, the active energy of catalyzed ammonia borane hydrolysis is 33.25 kJ/mol, and a turnover frequency based on Ru as high as 1408 molH2/(molRu·min) is obtained at 25 °C. Moreover, when different types of TiO2 substrates are used, anatase TiO2-supported catalysts show better catalytic activity than their counterparts with rutile TiO2 as substrate or mixture of anatase and rutile TiO2 as substrate.  相似文献   

9.
Ammonia borane (AB, NH3BH3) hydrolysis is an effective way to safely generate hydrogen. However, a suitable catalyst is indispensable because the hydrolytic reaction cannot take place kinetically at room temperature. In this work, CuNi alloy nanoparticles are immobilized on porous graphitic carbon nitride (g-C3N4) with a facile adsorption-chemical reduction method. Benefiting from the hierarchical porous structure of the support, the interesting alloy effect of Cu and Ni, as well as the synergistic effect between g-C3N4 and the CuNi alloys, the optimal Cu0·7Ni0.3/g-C3N4 catalyst displays excellent catalytic performance in AB hydrolysis, such as high turnover frequency (2.08 min−1, at 303 K), low apparent activation energy (23.58 kJ mol−1), and satisfactory durability. The results verify that the optimal catalyst has particular potential in hydrogen energy utilization due to the advantages such as the facile preparation procedure, low cost and excellent catalytic behavior.  相似文献   

10.
Herein, we report the use of tungsten(VI) oxide (WO3) as support for Rh0 nanoparticles. The resulting Rh0/WO3 nanoparticles are highly active and stable catalysts in H2 generation from the hydrolysis of ammonia borane (AB). We present the results of our investigation on the particle size distribution, catalytic activity and stability of Rh0/WO3 catalysts with 0.5%, 1.0%, 2.0% wt. Rh loadings in the hydrolysis reaction. The results reveal that Rh0/WO3 (0.5% wt. Rh) is very promising catalyst providing a turnover frequency of 749 min?1 in releasing 3.0 equivalent H2 per mole of AB from the hydrolysis at 25.0 °C. The high catalytic activity of Rh0/WO3 catalyst is attributed to the reducible nature of support. The report covers the results of kinetics study as well as comparative investigation of activity, recyclability, and reusability of colloidal(0) nanoparticles and Rh0/WO3 (0.5 % wt. Rh) catalyst in the hydrolysis reaction.  相似文献   

11.
Ammonia borane (AB) is considered to be a promising solid hydrogen carrier. In this work, poly(N-vinyl-2-pyrrolidone) (PVP)-protected platinum nanoparticles are supported on γ-methacryloxypropyltrimethoxysilane (γ-MPS) modified silica spheres (Pt-PVP/SiO2(M)), which are firstly used as highly efficient catalysts for hydrolysis of AB. Platinum nanoparticles possess a tiny size of 2–3 nm and are uniformly dispersed over modified silica spheres. Pt-PVP/SiO2(M) catalysts with a Pt loading amount of 1.30 wt% show the highest catalytic activity with a turnover frequency (TOF) value of 371 molH2 molPt?1 min?1 (866 molH2 molPt?1 min?1 corrected for the surface atoms) at 25 °C. The activation energy is calculated to be 46.2 kJ/mol. Furthermore, owing to the synergistic effect between the modifier of silica spheres and the capping agent of metal nanoparticles, Pt-PVP/SiO2(M) catalysts have a higher loading amount (8.7 and 6.5 times) and TOF value (4.8 and 5.5 times) than the counterparts prepared without γ-MPS and PVP, respectively.  相似文献   

12.
A novel multifunctional catalytic system has been developed for efficient hydrogen generation through the hydrolysis of ammonia borane. This system combines Pd NPs with acid sites and amines, which are both task-specific functionalities able to destabilize the N → B dative bond. The acidity of the support (zeolites of different structure and SiO2/Al2O3 ratio) used to disperse the Pd NPs causes an increase in the hydrogen production rate. However, the positive effect of incorporating p-phenylenediamine in the catalyst is much more pronounced, causing a two-fold increase in the activity of the catalyst. The combined effect of the different functionalities yields excellent performance in the hydrolysis of ammonia borane, greatly enhancing the activity of the metal-based catalyst and reducing the activation energy of the catalyzed reaction.  相似文献   

13.
Construction of homogenously distributed and ultrafine Rh nanoclusters (NCs) anchored on suitable support with low loading toward hydrogen evolution reaction (HER) is paramount but remains challenging. Here, we developed a space confinement-assisted strategy for the construction of highly dispersed and ultrasmall Rh NCs supported on 3D nanosheet-assembled hierarchical carbon architectures (NHCAs) as advanced electrocatalysts for alkaline HER. Benefiting from the abundant and ultrasmall micro/mesopores of NHCAs, uniformly dispersed Rh NCs with diameters of 1.83 nm were embedded in NHCAs without the aid of surface capping agents. The resultant Rh NCs/NHCAs exhibited excellent electrochemical HER activity with low overpotentials of 7 and 48 mV at 10 and 100 mA cm−2 current densities in basic solution, respectively, superior than most of the previous developed electrocatalysts. The surface-clean and ultrafine Rh NCs with high dispersity on the NHCAs surface could provide abundant surface-active sites and resulted in the high performance of Rh NCs/NHCAs for HER. The present study may offer a novel yet convenient pathway to synthesize highly dispersed and catalytically active supported noble metal electrocatalyst for catalytic applications.  相似文献   

14.
We report the preparation of Ni3B and carbon-supported Ni3B (denoted as Ni3B/C) nanoparticles, and their catalytic performance for hydrogen generation from hydrolytic dehydrogenation of ammonia borane (NH3BH3, AB). Ni3B and Ni3B/C were prepared via a chemical reduction and crystallization in tetraethylene glycol solution. The obtained Ni3B catalysts are in well-defined crystalline state and Ni3B/C catalysts have a high dispersion in the carbon. The hydrogen generation measurement shows that the carbon-supported Ni3B presents enhanced catalyst activity during hydrolytic dehydrogenation of AB. Among the as-prepared Ni3B/C catalysts, Ni3B/C with 34.25 wt% Ni3B loading displays the best catalytic activity, delivering a high hydrogen release rate of 1168 mL min−1 g−1 and the lower activation energy of 46.27 kJ mol−1. The kinetic results show that the hydrolysis is a first-order reaction in catalyst concentration, while it is a zero-order in AB concentration. Furthermore, the Ni3B/C is a recyclable catalyst under mild reaction conditions, indicating that the carbon-supported Ni3B is a promising catalyst for AB hydrolytic dehydrogenation.  相似文献   

15.
In the study, a novel approach of Cu, Co tuned photocatalyst β-SiC catalyze hydrolysis of ammonia borane was proposed as a means to boost H2 evolution. Electronic properties including band structure and DOS of β-SiC and CuCo/β-SiC are calculated. In addition, the hydrolysis mechanism of AB and photocatalytic boosting mechanism of AB hydrolysis on the catalyst CuCo/β-SiC are discussed. The systematic investigation showed that the transition metal atom (Cu, Co) can tune the electronic properties of the β-SiC, and reduce the band gap of semiconductor catalyst β-SiC from the value of 2.739eV–0.535eV. Which makes the β-SiC response to the wider UV–Vis spectrum, and transition metal atom (Cu, Co) tuned β-SiC can help to boost the photocatalytic quantum efficiency of photocatalytic AB hydrolysis reaction. In the process of CuCo/β-SiC catalyzed AB hydrolysis, the reaction path can be described in three key steps: At first, CuCo/β-SiC bond to B of AB, induce the BH bond activation, then H3B- attacked by a H2O molecule, which contributes to the concerted dissociation of BN bond. Finally, via BH3 hydrolysis and produce the borate ion accompanied by the H2 produce. In the reaction of AB hydrolysis, the reaction barrier step is the step of H2O molecule attack BH3, and its energy barrier is 31.44 kcal/mol. In addition, the synergistic hydrolyze and photolyze AB to H2 evolution mechanism was first proposed due to AB can be photocatalyzed by semiconductor photocatalyst β-SiC and conventional catalyzed by the metal catalyst.  相似文献   

16.
Hydrolytic dehydrogenation of ammonia borane (AB) driven by efficient catalysts has attracted considerable attention and is regarded as a promising strategy for hydrogen generation. Herein, RuP2 quantum dots supported on graphitic carbon nitride (g-C3N4) were successfully prepared by in-situ phosphorization, yielding a highly efficient photocatalyst toward AB hydrolysis. The catalysts were characterized by field-emission scanning electron microscopy, transmission electron microscopy, x-ray diffraction, x-ray photoelectron microscopy, inductively coupled plasma atomic emission spectroscopy, UV–visible diffuse reflectance spectroscopy and photoluminescence spectroscopy. A conventional water-displacement method was employed to record the hydrogen volume as a function of reaction time. Owing to visible-light irradiation, the initial turnover frequency of the AB hydrolysis was significantly enhanced by 110% (i.e., 134 min?1) at room temperature. Furthermore, the apparent activation energy decreased from 67.7 ± 0.9 to 47.6 ± 1.0 kJ mol?1. The photocatalytic hydrolysis mechanism and catalyst reusability were also investigated.  相似文献   

17.
Ligand-free Ru nanoclusters supported on carbon black have been synthesized in situ for the first time from the reduction of RuCl3 by ammonia-borane concomitantly with its hydrolysis process at room temperature, and their catalytic activity has been investigated. Well dispersed Ru nanoclusters (∼1.7 nm) are stabilized and immobilized by carbon black. Due to the small size and the absence of ligands on the surface, the Ru catalysts exhibit high catalytic activity, which is partly retained after 5 reaction cycles. A kinetic study shows that the catalytic hydrolysis of ammonia-borane is first order with respect to Ru catalyst concentration; the turnover frequency is 429.5 mol H2 min−1 mol−1 Ru. The activation energy for the hydrolysis of ammonia-borane in the presence of Ru/C catalysts has been measured to be 34.81 ± 0.12 kJ mol−1, which is smaller than most of the values reported for other catalysts, including those based on Ru, for the same reaction.  相似文献   

18.
Ammonia borane hydrolysis is a promising strategy for developing sustainable hydrogen energy. However, this reaction is not kinetically feasible at ambient temperature, thus developing a proper catalyst is indispensable. In this work, Porous carbon is facilely prepared from cattail fibers by using K2CO3, and then used to stabilize Ru nanoparticles. The effects of different synthesis parameters for the biomass-derived carbon supports (e. g. K2CO3 dosage and calcination temperature) and various catalytic reaction conditions (e. g. the amounts of the catalysts, ammonia borane and NaOH, and reaction temperature) on the hydrolysis rate of ammonia borane are investigated. Benefitting from the interconnected hierarchical pores of the optimal porous carbon (p-C), which was prepared with a mass ratio of 6 : 1 for K2CO3 to cattail fibers and calcined at 873 K, and the high dispersion of Ru nanoparticles, the optimal Ru/p-C catalysts exhibit excellent catalytic performance. The corresponding apparent activation energy (28.8 kJ mol?1) and turnover frequency (744.7 min?1 in alkaline solution) are superior to many catalysts previously reported. This work offers a competitive catalyst for the hydrolytic dehydrogenation of chemical hydrogen storage materials.  相似文献   

19.
A modified Stöber method is applied to synthesize the magnetic core-shell Fe3O4@SiO2 particles, followed by compositing a series of porous glucose-derived carbon with ZnCl2 as etchant. Then, ultrafine Pd nanoparticles (NPs) are successfully anchored to the resulting Fe3O4@SiO2-PC composites with an in-situ reduction strategy. The particle sizes of Pd NPs are mainly centered in the range of 2.3–4.3 nm in the as-prepared Pd/Fe3O4@SiO2-PC catalysts, owning a hierarchical porous structure with high specific surface area (SBET = 626.0 m2 g−1) and large pore volume (Vp = 0.61 cm3 g−1). Their catalytic behavior for the hydrogen generation from ammonia borane (AB) hydrolysis is investigated in details. The corresponding apparent activation energy is as low as 28.4 kJ mol−1 and the reaction orders with AB and Pd concentrations are near zero and 1.10 under the present conditions, respectively. In addition, the magnetic catalysts, which could be easily separated out by a magnet, are still highly active even after nine runs, revealing their excellent reusability.  相似文献   

20.
Ultrasound-assisted research on both synthesis and in-situ hydrolysis of ammonia borane (NH3BH3) for hydrogen energy application was experimentally investigated in this study. The salt metathesis reaction between sodium borohydride (NaBH4) and ammonia sulfate ((NH4)2SO4) in the presence of organic solvent, tetrahydrofuran (THF), was performed to NH3BH3 synthesis by application of ultrasound. Specifically, the effect of molar ratio (0.96–1.06), solvent volume (100–300 ml), time (40–160 min) and temperature (20–60 °C) on yield was evaluated to optimize the reaction conditions. The effect of drying process was also assessed under specified conditions, and chemical structures of synthesized samples were compared with commercial supplied NH3BH3. The present investigation provided data on the crystal, and chemical properties of lab-made NH3BH3 and results confirmed the promoting effect of ultrasound on synthesis with excellent yield-96 wt. %. Moreover this, hydrogen deposition characteristics of concentrated lab-made NH3BH3 solutions (5–25 wt.%) were assisted by ultrasound to evaluate hydrogen by in-situ reaction in the presence of active metals (Co2+-, Ni2+-, and Cu2+-).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号