首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
By means of co-electrodeposition, we fabricated 3D assembly of Pt nanostructures with dominant (100) plane on reduced graphene oxide (rGO) modified graphite electrode. The strong metal-support interaction at the atomic level makes the nanostructure highly durable and this modified electrode exhibited high electrocatalytic activity towards methanol oxidation. It has been found that the morphology, active site and the electrochemical activity of Pt are highly dependent on the substrate and the number of electrochemical cycling used for the deposition. rGO-Pt composite deposited using one cycle showed a high mass activity of 2.54 A/mg at 0.67 V for methanol oxidation in acidic condition and 1.84 A/mg at ?0.03 V in alkaline medium. This simple and single step approach using electrodeposition to grow the morphology controlled Pt nanostructure on rGO, will aid in the development of active and stable catalyst for fuel cell applications.  相似文献   

2.
    
A three-part nano-catalyst including ruthenium oxide, manganese cobalt oxide, and reduced graphene oxide nanosheet in form of RuO2-MnCo2O4/rGO is synthesized by one-step hydrothermal synthesis. The material is placed on a glassy carbon electrode (GCE) for electrochemical studies. The ability of these nano-catalysts in the oxidation process of methanol in an alkaline medium for usage in direct methanol fuel cells (DMFC) was examined with electrochemical tests of cyclic voltammetry (CV), linear sweep voltammetry (LSV), and electrochemical impedance spectroscopy (EIS). The effect of the addition of rGO to the nanocatalyst structure in the methanol oxidation reaction (MOR) process was investigated. We introduced the RuO2-MnCo2O4/rGO as a nanocatalyst with excellent cyclic stability of 97% after 5000 cycles in the MOR process. Besides, the study of the Tafel plots and the effect of temperature and scan rate in the MOR process showed that RuO2-MnCo2O4/rGO nanocatalyst has better electrochemical properties than MnCo2O4 and RuO2-MnCo2O4. This high electrocatalytic activity could be related to the synergistic effect of placement of metal oxides of ruthenium, manganese, and cobalt near each other and putting them on rGO, which enhances conductivity and surface area and improve electron transfer. The decrease in the resistance against charge transfer and the increment in the anodic current density illustrated that the reaction rate is enhanced at higher temperature. Thus RuO2-MnCo2O4/rGO shows robust stability and superior performance for MOR.  相似文献   

3.
Exploiting highly efficient electrocatalysts through simple methods is very critical to the development of energy conversion technologies. Herein, we develop a hierarchical reduced graphene oxide supported dealloyed platinum–copper nanoparticle catalyst (Pt–Cu/RGO) by a facile one-step electrodeposition of graphene oxide in the presence of H2PtCl6 and copper ethylenediamine tetraacetate. The nanostructure and composition were characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, and Raman spectroscopy. Meanwhile, the electrocatalytic performance was investigated by cyclic voltammetry and chronoamperometry, showing that the Pt–Cu/RGO catalyst not only equips with an outstanding electrocatalytic activity for the methanol oxidation reaction (2.3 times that of commercial Pt/C catalyst), but also shows a robust durability and superior tolerance to CO poisoning. The excellent electrocatalytic performance could be attributed to the three-dimensional hierarchical structure, porous dealloyed nanoparticles and synergistic effect between each component.  相似文献   

4.
In this study, the surface of reduced graphene oxide (rGO) was modified with adenine via diazonium reaction. Then, to prepare Pt@Adenine-rGO, Pt was deposited on the surface of adenine-rGO, using cyclic voltammetry in the range of ?0.30 to +1.30 V at a scan rate of 100 mV s?1 in a solution containing Pt salt. Afterward, it was characterized by various techniques such as scanning electron microscopy, X-ray photoelectron spectroscopy, and infrared spectroscopy. Electrochemical studies showed the efficient electrocatalytic behavior of Pt@Adenine-rGO for the reduction of CO2 to methanol at ?0.30 V. The products formed on the surface of Pt@Adenine-rGO were monitored using different techniques including Raman spectroscopy, gas chromatography, gas chromatography-mass spectrometry, and 13C NMR spectroscopy. Our findings indicated that methanol with a reasonably high Faradaic efficiency up to 85% and a current density of 0.5 mA cm?2 as the main product of CO2 reduction on the surface of Pt@Adenine-rGO.  相似文献   

5.
The promoting effect of metal oxides to Pt catalysts toward methanol oxidation reaction (MOR) has attracted widespread attention in recent years. In this communication, we report the promoting effect of MoO3 to Pt catalyst by rationally designing and tuning the nanostructure of the catalysts. MoO3 nanorods are firstly synthesized through hydrothermal method and used as the substrate for the deposition of polyaniline (PANI) layer. The PANI-MoO3 composite nanostructures are then used as the support for Pt catalyst. Depending on the preparation method of Pt nanoparticles, the nanostructure can be PANI nanotube supported Pt (Pt/PANI) through etching MoO3 nanorods with NaBH4 and PANI-MoO3 composite nanorods supported Pt (Pt/PANI-MoO3). The catalytic properties of the two catalysts toward MOR are investigated. Results show that the current of methanol oxidation on Pt/PANI-MoO3 catalyst is comparable to that on Pt/PANI, while the peak potential of MOR on the former is lowered by 180 mV as compared with the latter, suggesting a much higher catalytic activity of Pt/PANI-MoO3. The presence of MoO3 may be responsible for the improvement of the catalytic properties through the co-synergistic effects of PANI and MoO3.  相似文献   

6.
Pt–Cu bimetallic nanoparticles supported on reduced graphene oxide (Pt–Cu/RGO) were synthesized through the simple one-step reduction of H2PtCl6 and CuSO4 in the presence of graphene oxide (GO) at room-temperature. The Pt–Cu/RGO was characterized with UV–vis spectrophotometer, X-ray diffraction, transmission electron microscopy and X-ray photoelectron spectroscopy and its catalytic behavior for the direct oxidation of methanol was investigated. Compared to Pt/RGO and Pt/C catalysts, Pt–Cu/RGO hybrids exhibited markedly superior catalytic activity for the electrocatalytic oxidation of methanol and ethanol. This improved catalytic activity can be attributed to the dendritic structure of the Pt–Cu bimetallic nanoparticles.  相似文献   

7.
    
In this feature article, Cu0.31Ni0.69O nanoparticles were assembled on reduced graphene nanosheets (Cu0.31Ni0.69O/rGO) by a simple hydrothermal method. The structural characterizations confirm that the synthesized nanoparticles with an average size around 9 nm are densely and uniformly assembled on the reduced graphene oxide (rGO) nanosheets. The electrochemical measurements demonstrate that the as-synthesized Cu0.31Ni0.69O/rGO catalyst exhibits excellent catalytic performance for oxygen reduction reaction with high cathodic current density (2.08 × 10−4 mA/cm2), positive onset potential (−0.21 V), low H2O2 yielding rate (less than 2.5%) and long-term running stability. The rotating disk and rotating ring-disk electrode measurements proved that the oxygen reduction reaction occurs on Cu0.31Ni0.69O/rGO through a high efficient four-electron pathway. The Cu0.31Ni0.69O/rGO nanoparticles shows great potential to be promising noble metal-free catalyst for cathodes of alkaline fuel cells.  相似文献   

8.
Seeking the efficient and robust electrocatalysts necessarily enhances performance of hydrogen evolution reaction (HER). Increasing the surface active sites is a means to improve the performance. Herein, we use the Ni0·85Se anchored on reduction of graphene oxide (Ni0·85Se/rGO) hybrid material skillfully established by one-step facile hydrothermal method as a robust and stable electrocatalyst applying to hydrogen evolution reaction (HER). In terms of morphology, Ni0·85Se nanospheres composed of many nanosheets are uniformly distributed on the graphene sheet layer. We also detailedly analyze its properties. Based on the interaction between Ni0·85Se and rGO, and the roles of graphene are as a substrate to heighten conductivity, possesses more active surface area by limiting growth of Ni0·85Se, and increases dispersion for exposing more active surface area and enlarge ion/electron transfer rate. In HER, the Ni0·85Se/rGO catalyst displays the overpotential of 128 mV with a common current density of 10 mA cm−2, a small Tafel slope of 91 mV dec−1, an extremely low onset potential of 37 mV, outstanding stability that a high current retention of 97.7% after 1000 cycles and well long-term stability for 18 h, outperforming the capability of Ni0·85Se nanospheres in alkaline solution for HER. The above results indicate that the Ni0·85Se/rGO hybrid material is a good HER ability and non-noble metal electrocatalyst has potential value in HER.  相似文献   

9.
    
The disadvantages of high cost, easy poisoning and insufficient durability hinder platinum (Pt) application in direct methanol fuel cells. In this study, a hybrid of reduced graphene oxide/carbon nanotubes-supported hollow copper spheres (Cu/rGO@CNTs) is prepared by a one-step electrodeposition method. Then, the internal and external surfaces of hollow Cu spheres are coated with Pt skims to obtain a hollow bimetallic electrocatalyst (Pt/Cu/rGO@CNTs) through a simple galvanic replacement reaction by immersing Cu/rGO@CNTs in a chloroplatinic acid (H2PtCl6) solution. The three dimensional rGO@CNTs network structure benefit mass transport and electron transfer. Pt skims expose abundant active sites for electrocatalytic methanol oxidation reactions (MORs). Cu cores synergize Pt skims to enhance anti-poison ability. As a result, Pt/Cu/rGO@CNTs shows an excellent electrocatalytic activity for MORs with a robust tolerance of catalyst poisoning.  相似文献   

10.
Here, we report a novel method for assembling reduced graphene oxide (RGO) and Pt nanoparticles on a carbon fiber (CF) electrode successively to form a stable Pt nanoparticle-RGO-Pt nanoparticle-RGO/CF multiple junction for electrocatalysis application. As the SEM imaging exhibited, Pt nanoparticles are uniformly deposited on the surface of each RGO sheet, performing an alternative covering structure of RGO and Pt nanoparticle multi-layer on the CF electrode. Thus, a novel three-dimensional (3D) multi-layered Pt/RGO modified CF electrode (N–Pt/RGO/CF) is obtained. Experimental results demonstrate that the prepared N–Pt/RGO/CF electrode shows good electrochemical properties and enhanced electrocatalytic activity toward methanol electrooxidation in alkaline medium as compared with the Pt/RGO/CF electrode without layer-by-layer structure or the Pt/CF electrode without RGO. It is due to the unique 3D pore structure of N–Pt/RGO/CF and the good electron transport property of RGO in the composite electrode.  相似文献   

11.
Integrating transition metal complexes with carbon-based materials, especially graphene, is a useful strategy for synthesizing effective hydrogen evolution catalysts. Herein, we report a design of hollow hexagonal NiSe–Ni3Se2 nanosheets grown on reduced graphene oxide (NiSe–Ni3Se2/rGO) by a simple hydrothermal method as an effective catalyst for hydrogen evolution reaction (HER) in the full pH range. In 0.5 M H2SO4, the NiSe–Ni3Se2/rGO possesses 112 mV to achieve 10 mA cm?2 and a small Tafel slope (61 mV dec?1). In 1.0 M PBS and 1.0 M KOH, the overpotentials are 261 and 188 mV at 10 mA cm?2, and Tafel slopes are 103 and 92 mV dec?1, respectively. Meanwhile, it owns good cycle stability and durability over 20 h in the whole pH range (0-14). In all solutions, the HER performance of NiSe–Ni3Se2/rGO is better than that of NiSe–Ni3Se2. This is because the rGO substrate accelerates the electron transfer and improves the electrical conductivity, increasing HER activity of catalyst.  相似文献   

12.
Strongly coupled platinum-based transition-metal oxide/carbon hybrids and the development of quantum-dot structures of hybrid catalysts are cost-effective and maximize accessible active sites. However, a significant obstacle still exists for the rational proposal and simple synthesis of hybrid quantum-dot material catalysts. Herein, novel PtxMo1-xSiC quantum dots encapsulated in reduced graphene oxide (rGO) (PtxMo1-xSiC QDs @rGO) for catalyzing the hydrogen evolution reaction (HER) were fabricated through a simple solution-induced impregnation method. The optimized Pt5Mo95SiC QDs @rGO catalyst only require overpotentials of 18 mV and 25 mV to deliver current densities of 10 mA cm−2 and 250 mA cm−2 in acidic media, respectively. The synergistic effects of the inner PtxMo1-xSiC QDs networks and outer conductive rGO sheets that promote electron transfer are responsible for the outstanding HER performance. This work presents a novel method for producing an extremely effective HER catalyst for applications on large-scale.  相似文献   

13.
    
In this study, we report a superior dehydrogenation catalyst for dimethylamine borane, which exhibited one of the best catalytic activities. The newly formed catalyst system contains well dispersed ruthenium-copper nanomaterials on reduced graphene oxide (3.86 ± 0.47 nm), which was prepared by using the ultrasonic double reduction technique. The characterization of monodisperse ruthenium-copper alloy nanoparticles was performed using some advanced analytical methods such as TEM, HRTEM, XPS, Raman spectroscopic analysis. The experiments results revealed that the monodisperse ruthenium-copper alloy catalyst (RuCu@rGO) has one of the highest catalytic activity compared to previous studies, having a high turnover frequency value (256.70 h−1). The detailed kinetic parameters such as activation energy, enthalpy, and entropy values were also calculated for the dehydrogenation of dimethylamine borane at room temperature. Also, the results showed that the monodisperse RuCu@rGO catalyst has high durability and reusability as retained its 81% initial catalytic activity even after 4th runs for the dehydrogenation of dimethylamine borane.  相似文献   

14.
    
In this study, a simple and fast electrochemical method was employed to synthesis molybdenum diselenide thin film. The morphology, structure and chemical composition of the nanocomposites were investigated by field emission scanning electron microscopy, X-ray diffraction, energy dispersive X-ray spectroscopy, Raman spectroscopy and X-ray photoelectron spectroscopy. The progressive effects of transition metal ions including Ni, Cu, and Co were surveyed on the hydrogen evolution activity of MoSe2 thin films. Co/MoSe2 nanocomposite thin films has significant electrocatalytic activity as compared to other samples, In order to achieve higher performance, preparing Co/MoSe2/RGO nanocomposite thin film, two strategies including layer by layer electrodeposition and co-electrodeposition has been employed. The presence of reduced graphene oxide leading to the onset potential shifts to more positive values and increase the current density. Also, results showed that the Co/MoSe2/RGO nanocomposite prepared by co-electrodeposition exhibits the best electrochemical hydrogen evolution at onset potential of −0.18 with an overpotential of −0.45 V.  相似文献   

15.
We present a novel nanocomposite catalyst, Ni nanoparticles (NPs) intercalated LTA-type nanozeolite (KZ) on reduced graphene oxide (RGO), abbreviated as KZ-Ni/RGO for the reduction of environmental pollutant 4-nitrophenol (4-NP) to 4-aminophenol (4-AP). The structure, composition and morphology of the catalyst were characterized by using the X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM) techniques. The presence of Ni inside the nanocomposite was confirmed by the elemental mapping analysis. 4-NP reduction reaction shows the high catalytic activity (30 min) to KZ-Ni/RGO nanocomposite compared to the KZ-Ni (75 min) with excellent stability up to 5 cycles.  相似文献   

16.
We have developed a covalent/coordinate strategy to immobilize Pt nanocrystals (average diameter 3.5 nm) on multichelate-functionalized carbon nanospheres (CNS). The method involves the covalent grafting of triethylenetetramine onto the CNS’ surface and the coordination of well-structured ethylenimine chains to Pt ions or atoms. The Pt-CNSs interface is probed with X-ray photoelectron spectroscopy to elucidate the nature of the chemical binding of ethylenimine to Pt. The Pt particle deposition can be easily controlled; to form separated and uniform Pt nanocrystals, or densely loaded Pt particles, depending on the molar ratio of Pt to amine groups. The Pt particle layer covered carbon exhibits significantly higher activity toward methanol oxidation (0.75 A mg−1 cm−2) than commercial E-TEK 40% Pt loaded carbon with the corresponding data of 0.51 A mg−1 cm−2.  相似文献   

17.
We have prepared a nanocomposite hybrid film to produce a collaborative network of gold (Au) nanoparticles that are highly dispersed on reduced graphene oxide (RGO) sheets, and tested it for electrocatalytic hydrogen production. The RGO/Au nanocomposite film synthesized on glassy carbon electrode (GCE) allows significant improvements to the electron-transfer process. The Au nanoparticles decorated on the surface of graphene increases the electron density, which synergistically promote the adsorption of hydrogen atoms on the graphene sheets and consequently enhance the hydrogen evolution reaction (HER) activity. The surface properties of the composite was characterized by field-emission scanning electron microscopy (FE-SEM) and the electrocatalytical performances evaluated as-prepared electrocatalyst toward (HER) by linear sweep voltammetry (LSV), Tafel polarization curves and electrochemical impedance spectroscopy (EIS) analyses. The GCE/RGO/Au nanohybrid electrode exhibited good catalytic activity for HER with an onset potential of ?0.3 V and a Tafel slope of 136 mV dec?1, achieving a current density of 10 mA cm?2 at an overpotential of ?0.43 V.  相似文献   

18.
    
Hydrogen energy has received great attention because of its advantages such as large energy density and not producing carbon dioxide, and it is currently considered to be one of the most valuable green energy sources. Therefore, the development of efficiently hydrogen production is of great importance. Hydrogen production from water electrolysis has large application prospects due to its cleanliness and no pollution. However, how to prepare an efficient, stable and low-cost electrocatalyst for this process is still challenging. Here, we develop a reduced graphene oxide-supported ruthenium (Ru) nanoparticle electrocatalyst synthesized by a simple method. The ruthenium precursors are encapsulated and isolated with N,N-dimethylformamide (DMF) (Ru3+-DMF), which effectively inhibits the further agglomeration growth of ruthenium. After Ru3+-DMF being loaded on graphene oxide, Ru is supported on reduced graphene oxide (Ru/rGO) by the liquid phase chemical reduction method and the remaining organic solvent could be removed by calcination to form a well-dispersed Ru-based electrocatalyst. Ru/rGO shows excellent electrocatalytic activity and long-term stability for hydrogen evolution reaction (HER). In a solution of 1.0 M KOH, the overpotential of 3.0 wt%Ru/rGO for the HER at 100 mA cm?2 is only 111.7 mV, and the Tafel slope is 31.5 mV dec?1. It exhibits better HER performance compared to commercial Pt/C and other Ru/rGO catalysts with different Ru loadings. The work could give a new strategy for the synthesis of efficient electrocatalysts.  相似文献   

19.
In the present work, a porous carbonaceous platform containing zirconium oxide was used for spreading Ni nanoparticles, and applied to methanol oxidation. The platform was obtained by calcination of a metal-organic framework (MOF) attached to graphene oxide. Nickel nanoparticles were then deposited on the nanocomposite by chemical reduction from a Ni2+ solution. The obtained electrocatalyst was characterized by different methods. An excellent electrocatalytic behavior was observed towards methanol oxidation in alkaline medium (j ~ 240 mA cm?2 or ~ 626 mA mg?1 in 1.0 M methanol). The results of methanol oxidation by various electrochemical studies (cyclic voltammetry, electrochemical impedance spectroscopy, chronoamperometry and chronopotentiometry) revealed the effective synergy between reduced graphene oxide, porous carbon material, ZrO2 metal oxide and Ni nanoparticles. Good durability and stability of the proposed electrocatalyst and significantly increased current density of methanol oxidation suggest it as a potential alternative for Pt-based electrocatalysts in direct methanol fuel cells.  相似文献   

20.
Carbon nanotube (CNT)-supported platinum modified with HxMoO3 (Pt-HxMoO3/CNT) was prepared and used as an electrocatalyst for methanol oxidation. In the preparation of this electrocatalyst, a platinum precursor was loaded on CNTs and reduced by sodium borohydride in ethylene glycol, resulting in CNT-supported platinum without modification (Pt/CNT), and then the Pt/CNT was modified with HxMoO3 that was formed by hydrolysis and subsequent reduction of ammonium molybdate. The surface morphology, structure and composition of Pt-HxMoO3/CNT and Pt/CNT as well as their activity toward methanol oxidation were investigated by transmission electron microscopy (TEM), X-ray diffraction (XRD), energy-dispersive spectrometry (EDS), Fourier transform infrared spectroscopy (FTIR), cyclic voltammetry (CV), chronoamperometry (CA), chronopentiometry (CP), and electrochemical impedance spectroscopy (EIS). The results, obtained from TEM, XRD, EDS, and FTIR, indicate that the platinum loaded on CNTs has a face-centered cubic structure with particle sizes of 2–5 nm, and the modification of HxMoO3 on platinum with an atom ratio of Pt:Mo = 2:1 has little effect on the particle size, distribution and structure of the platinum. The results, obtained from CV, CA, CP, and EIS, show that the Pt-HxMoO3/CNT exhibits higher electrocatalytic activity toward methanol oxidation and better carbon monoxide tolerance than Pt/CNT.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号