首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The transition to low- or zero-emission vehicles in the transportation sector is a challenging task toward meeting the greenhouse gas emission targets set by the majority of countries. One way of achieving this goal is to utilise hydrogen gas via fuel cell electric vehicles. This paper investigates the operation, driving range and refuelling process of a fuel cell electric bicycle. The methodology applied includes an estimation of the bike's range under different routes and riders, the riders' opinions and a financial evaluation of the hydrogen fuel cost compared to other urban vehicle alternatives. The results showed a minimum median range-to-energy consumption ratio of 20.5 km/kWh, while the maximum hydrogen cost was found to reach 0.025 €/km when refuelling the hydrogen bicycle in an autonomous hydrogen station. The outcome of this study indicates that the introduction of light-duty hydrogen vehicles in urban transportation may adequately meet the average daily driving distance of city residents.  相似文献   

2.
Road transportation consists of a significant contributor to total greenhouse gas emissions in developed countries. New alternative technologies in transportation such as electric vehicles aim to reduce substantially vehicle emissions, particularly in urban areas. Incentives of using two-wheel electric vehicles such as bicycles in big cities centres are promoted by local governments, and in fact, some countries are already trying to adopt this transition. An interesting case consists of the use of hydrogen fuel cells in such vehicles to increase their driving range under short refuelling times. To this end, this paper investigated the social and financial prospects of hydrogen infrastructure for city-oriented fuel cell electric vehicles such as bicycles. The results of the research indicated that a light mobility urban hydrogen refuelling station able to provide refuelling processes at pressures of 30 bar with a hydrogen fuel cost of 34.7 €/kgH2 is more favourable compared to larger stations.  相似文献   

3.
Nowadays, the development of hydrogen economy in the transportation sector is hindered by the principal barriers arising from the lack of adequate infrastructure and the small fleet of hydrogen-based road vehicles.This study investigates the potential of small-scale autonomous hydrogen refuelling stations with onsite production via an alkaline electrolysis apparatus powered by a small wind turbine. In this context, an urban area with promising wind resources has been selected. Based on the wind conditions and an indicative hydrogen demand for refuelling light-duty fuel cell electric vehicles such as bicycles, the sizing of the wind turbine and the electrolyser has been theoretically calculated. For supporting the daily hydrogen refuelling demand of the fuel cell electric bicycles, which is estimated at approximately 6 kg, it is calculated that a 50 kW wind turbine should be installed in order to power a 70 kW alkaline electrolyser for producing hydrogen. The capital cost of the hydrogen station is calculated at €248,130, while the retail price of the produced hydrogen is estimated to be more than 50.2 €/kgH2 in order to achieve a positive internal rate of return.Ultimately, the present paper aims at delivering a feasibility study of a small-scale H2 refuelling station for fuel cell bicycles in order to provide investors with initiatives to implement such schemes in urban environments where problems of low air quality and high traffic are intense.  相似文献   

4.
This paper presented a system design review of fuel cell hybrid vehicle. Fuel supply, hydrogen storage, DC/DC converters, fuel cell system and fuel cell hybrid electric vehicle configurations were also reviewed. We explained the difference of fuel supply requirement between hydrogen vehicle and conventional vehicles. Three different types of hydrogen storage system for fuel supply are briefly introduced: high pressure, liquid storage and metal oxides storage. Considering of the potential risk of explosion, a security hydrogen storage system is designed to restrict gas pressure in the safe range. Due to the poor dynamic performance of fuel cells, DC/DC converters were added in hybrid vehicle system to improve response to the changes of power demand. Requirements that in order to select a suitable DC/DC converter for fuel-cell vehicles design were listed. We also discussed three different configurations of fuel-cell hybrid vehicles: “FC + B”, “FC + C”, and “FC + B + C”, describing both disadvantages and advantages. “FC + B + C” structure has a better performance among three structures because it could provide or absorb peak current during acceleration and emergency braking. Finally, the energy management strategies of fuel cell and were proposed and the automotive energy power requirement of an application example was calculated.  相似文献   

5.
According to European Directive 2014/94/EU, hydrogen providers have the responsibility to prove that their hydrogen is of suitable quality for fuel cell vehicles. Contaminants may originate from hydrogen production, transportation, refuelling station or maintenance operation. This study investigated the probability of presence of the 13 gaseous contaminants (ISO 14687-2) in hydrogen on 3 production processes: steam methane reforming (SMR) process with pressure swing adsorption (PSA), chlor-alkali membrane electrolysis process and water proton exchange membrane electrolysis process with temperature swing adsorption. The rationale behind the probability of contaminant presence according to process knowledge and existing barriers is highlighted. No contaminant was identified as possible or frequent for the three production processes except oxygen (frequent for chlor-alkali membrane process), carbon monoxide (frequent) and nitrogen (possible) for SMR with PSA. Based on it, a hydrogen quality assurance plan following ISO 19880-8 can be devised to support hydrogen providers in monitoring the relevant contaminants.  相似文献   

6.
Environmental burdens associated with small scale (40 L hydrogen per minute) production of hydrogen fuel using electrolysis powered by electricity generated from stand-alone wind turbines (30 kW), stand-alone photovoltaic panels (3 kW peak) and UK grid electricity (current and future) has been undertaken. Utilization of fuel within a proton exchange membrane fuel cell passenger vehicle was included and compared to the operation of a petrol vehicle, a fuel cell vehicle fuelled with non-renewable hydrogen, and an electric (battery only) vehicle. The production of renewable hydrogen from wind energy incurs increased climate change burdens compared with extraction and processing of fossil petrol (0.09 mPt compared with 0.07 mPt). However, lower burdens for fossil fuel (1.85 mPt) and climate change (0.26 mPt) are realised by the renewable hydrogen options compared with petrol (4.44 mPt and 0.44 mPt, respectively) following utilization of the fuel due to lower emissions at end use. Utilizing a combination of renewable hydrogen fuelled vehicles and grid powered electric vehicles was considered to be a viable option for meeting UK policy ambitions.  相似文献   

7.
Hydrogen fuelling station is an infrastructure for the commercialisation of hydrogen energy utilising fuel cells, particularly, in the automotive sector. Hydrogen fuel produced by renewable sources such as the solar and wind energy can be an alternative fuel to depress the use of fuels based on fossil sources in the transport sector for sustainable clean energy strategy in future. By replacing the primary fuel with hydrogen fuel produced using renewable sources in road transport sector, environmental benefits can be achieved. In the present study, techno-economic analysis of hydrogen refuelling station powered by wind-photovoltaics (PV) hybrid power system to be installed in ?zmir-Çe?me, Turkey is performed. This analysis is carried out to a design of hydrogen refuelling station which is refuelling 25 fuel cell electric vehicles on a daily basis using hybrid optimisation model for electric renewable (HOMER) software. In this study, National Aeronautics and Space Administration (NASA) surface meteorology and solar energy database were used. Therefore, the average wind speed during the year was assessed to be 5.72 m/s and the annual average solar irradiation was used to be 5.08 kW h/m2/day for the considered site. According to optimisation results obtained for the proposed configuration, the levelised cost of hydrogen production was found to be US $7.526–7.866/kg in different system configurations. These results show that hydrogen refuelling station powered by renewable energy is economically appropriate for the considered site. It is expected that this study is the pre-feasibility study and obtained results encougare the hydrogen refuelling station to be established in Turkey by inventors or public institutions.  相似文献   

8.
The present work sheds light on the green hydrogen future in Morocco. A detailed techno-economic assessment and evaluation of a hydrogen refuelling station powered by an on-grid photovoltaic system are presented and discussed. This station is designed to supply the fleet of taxis in a Moroccan city by assuming different scenarios to replace the current taxi system with fuel-cell electric vehicles. A model is proposed to estimate the daily demand for hydrogen, which is used to determine the sizing of the station's components. An economic analysis is then conducted to calculate the cost of hydrogen production. The technical results demonstrate that about 152 kg/day is required to supply the total fleet, while only 30.4 kg/day is enough to provide 20%. It is also found that the costs of hydrogen produced are inversely proportional to the capacity of the hydrogen refuelling station, and the hydrogen cost is about 9.18 $/kg for the larger station and 12.56 $/kg for the smaller one. The proposed system offers an attractive solution to enhance the country's development and reduce the consumption of hydrocarbon fuels.  相似文献   

9.
The transport sector is considered as one of the sectors producing high carbon emissions worldwide due to the use of fossil fuels. Hydrogen is a non-toxic energy carrier that could serve as a good alternative to fossil fuels. The use of hydrogen vehicles could help reduce carbon emissions thereby cutting down on greenhouse gases and environmental pollution. This could largely be achieved when hydrogen is produced from renewable energy sources and is easily accessible through a widespread network of hydrogen refuelling stations. In this study, the techno-economic assessment was performed for a wind-powered hydrogen refuelling station in seven cities of South Africa. The aim is to determine the optimum configuration of a hydrogen refuelling station powered by wind energy resources for each of the cities as well as to determine their economic viability and carbon emission reduction capability. The stations were designed to cater for 25 hydrogen vehicles every day, each with a 5 kg tank capacity. The results show that a wind-powered hydrogen refuelling station is viable in South Africa with the cost of hydrogen production ranging from 6.34 $/kg to 8.97 $/kg. These costs are competitive when compared to other costs of hydrogen production around the world. The cities located in the coastal region of South Africa are more promising for siting wind powered-hydrogen refuelling station compared to the cities located on the mainland. The hydrogen refuelling stations could reduce the CO2 and CO emissions by 73.95 tons and 0.133 tons per annum, respectively.  相似文献   

10.
《Journal of power sources》2004,133(2):223-228
The design, fabrication, and testing of a prototype of electric bicycle powered by a proton exchange membrane fuel cell (PEMFC) is reported. The fuel-cell system is composed of a 300-W fuel-cell stack, metal hydride canisters, air pumps, solenoid valves, cooling fans, pressure and temperature sensors, and a microcontroller. To reduce cost, all components are commercially available except for the microcontroller, which has been developed to operate the system effectively. The fuel-cell system is installed on a commercial electric bicycle. Results show that the efficiency of the fuel-cell system can reach up to 35%, and the ratio of travel distance to fuel consumption of the prototype electric bicycle is about 1.35 km g−1 H2.  相似文献   

11.
Ammonia is of interest as a hydrogen storage and transport medium because it enables liquid-phase hydrogen storage under mild conditions. Although ammonia can be used directly for energy applications, its use in conventional fuel cell electric vehicles necessitates decomposition into nitrogen and hydrogen, and the purification of the hydrogen to the composition required for commercial proton exchange membrane fuel cells. This article provides a review of the material and process considerations for catalytic ammonia decomposition and shows that Ru-based catalysts on conductive support materials are active at < 500 °C, but further understanding around lifetimes and deactivation conditions is required. This review then explores materials and technologies for hydrogen purification from decomposed ammonia gas streams, and our experiments show that defect-free dense-metal membranes are uninhibited by ammonia and can achieve the required product purity.  相似文献   

12.
Reliable hydrogen fueling stations will be required for the successful commercialization of fuel cell vehicles. An evolving hydrogen fueling station has been in operation in Irvine, California since 2003, with nearly five years of operation in its current form. The usage of the station has increased from just 1000 kg dispensed in 2007 to over 8000 kg dispensed in 2011 due to greater numbers of fuel cell vehicles in the area. The station regularly operates beyond its design capacity of 25 kg/day and enables fuel cell vehicles to exceed future carbon reduction goals today. Current limitations include a cost of hydrogen of $15 per kg, net electrical consumption of 5 kWh per kg dispensed, and a need for faster back-to-back vehicle refueling.  相似文献   

13.
The number of hydrogen refuelling stations (HRSs) is steadily growing worldwide. In China, the first renewable hydrogen refuelling station has been built in Dalian for nearly 3 years. FLACS software based on computational fluid dynamics approach is used in this paper for simulation and analysis on the leakage and explosion of hydrogen storage system in this renewable hydrogen refuelling station. The effects of wind speed, leakage direction and wind direction on the consequences of the accident are analyzed. The harmful area, lethal area, the farthest harmful distance and the longest lethal distance in explosion accident of different accident scenarios are calculated. Harmful areas after explosion of different equipments in hydrogen storage system are compared. The results show that leakage accident of the 90 MPa hydrogen storage tank cause the greatest harm in hydrogen explosion. The farthest harmful distance caused by explosion is 35.7 m and the farthest lethal distance is 18.8 m in case of the same direction of wind and leakage. Moreover, it is recommended that the hydrogen tube trailer should not be parked in the hydrogen refuelling station when the amount of hydrogen is sufficient.  相似文献   

14.
Hydrogen has the potential to become a powerful energy vector with different applications in many sectors (industrial, residential, transportation and other applications) as it offers a clean, sustainable, and flexible alternative. Hydrogen trains use compressed hydrogen as fuel to generate electricity using a hybrid system (combining fuel cell and batteries) to power traction motors and auxiliaries. This hydrogen trains are fuelled with hydrogen at the central train depot, like diesel locomotives. The main goal of this paper is to perform a techno-economic analysis for a hydrogen refuelling stations using on-site production, based on PEM electrolyser technology in order to supply hydrogen to a 20 hydrogen-powered trains captive fleet. A sensitivity analysis on the main parameters will be performed as well, in order to acquire the knowledge required to take any decisions on implementation regarding electricity cost, hydrogen selling price, number of operation hours and number of trains for the captive fleet.The main methodology considers the evaluation of the project based on the Net Present Value calculation and the sensitivity analysis through standard method using Oracle Crystal Ball. The main result shows that the use of hydrogen as an alternative fuel for trains is a sustainable and profitable solution from the economic, environmental and safety points of view.The economic analysis concludes with the need to negotiate an electricity cost lower than 50 €/MWh, in order to be able to establish the hydrogen selling price at a rate higher than 4.5€/kg. The number of operating hours should be higher than 4800 h per year, and the electrolyser system capacity (or hydrogen refuelling station capacity) should be greater than 3.5 MW in order to reach a Net Present Value of 7,115,391 € with a Return of Investment set to 9 years. The result of the multiparametric sensitivity analysis for the Net Present Value (NPV) shows an 85.6% certainty that the project will have a positive result (i.e. profitability) (NPV> 0). The two main variables with the largest impact on Net Present Value are the electrolyser capacity (or hydrogen refuelling station capacity) and the hydrogen selling price. Moreover, a margin of improvement (higher NPV) could be reached with the monetization of the heat, oxygen by-product and CO2 emission reduction.  相似文献   

15.
On-board hydrogen storage and production via ammonia electrolysis was evaluated to determine whether the process was feasible using galvanostatic studies between an ammonia electrolytic cell (AEC) and a breathable proton exchange membrane fuel cell (PEMFC). Hydrogen-dense liquid ammonia stored at ambient temperature and pressure is an excellent source for hydrogen storage. This hydrogen is released from ammonia through electrolysis, which theoretically consumes 95% less energy than water electrolysis; 1.55 Wh g−1 H2 is required for ammonia electrolysis and 33 Wh g−1 H2 for water electrolysis. An ammonia electrolytic cell (AEC), comprised of carbon fiber paper (CFP) electrodes supported by Ti foil and deposited with Pt-Ir, was designed and constructed for electrolyzing an alkaline ammonia solution. Hydrogen from the cathode compartment of the AEC was fed to a polymer exchange membrane fuel cell (PEMFC). In terms of electric energy, input to the AEC was less than the output from the PEMFC yielding net electrical energies as high as 9.7 ± 1.1 Wh g−1 H2 while maintaining H2 production equivalent to consumption.  相似文献   

16.
If the general public is to use hydrogen as a vehicle fuel, customers must be able to handle hydrogen with the same degree of confidence, and with comparable risk, as conventional liquid and gaseous fuels. The hazards associated with jet releases from leaks in a vehicle-refuelling environment must be considered if hydrogen is stored and used as a high-pressure gas since a jet release in a confined or congested area can create an explosion hazard. As there was insufficient knowledge of the explosion hazards, a study was initiated to gain a better understanding of the potential explosion hazard consequences associated with high-pressure leaks from hydrogen vehicle refuelling systems. This paper describes the experiments with a dummy vehicle and dispenser units to represent refuelling station congestion. Experiments with ignition of premixed 5.4 m × 6.0 m × 2.5 m hydrogen–air clouds and hydrogen jet releases up to 40 MPa (400 bar) pressure are described. The results are discussed in terms of the conditions leading to the greatest overpressures and overall conclusions are made from these.  相似文献   

17.
The effect of orthohydrogen–parahydrogen concentration on the performance of a proton exchange membrane fuel cell is calculated and experimentally investigated. Gibbs free energy and reversible cell potential calculations predict that parahydrogen at room temperature produces a voltage 20 mV/cell higher than normal hydrogen and a 1.6% increase in efficiency over normal hydrogen. Experimental data based on a 1 kW proton exchange membrane fuel cell rapidly switched between normal and parahydrogen did not show a statistically significant difference in performance. Variations due to stack humidity and anode purging are found to dominate fuel cell output. The experimental results confirm that, as anticipated, parahydrogen concentration has a negligible impact on fuel cell performance for the majority of practical applications.  相似文献   

18.
A techno-economic analysis of a hydrogen valley is carried out in this paper. A hydrogen generator fed by a wind farm (WF) and/or a photovoltaic (PV) plant supplies four end-users: a stationary fuel cell, a hydrogen refuelling station, the injection in the natural gas pipeline and, in case of sufficient hydrogen surplus, a biological hydrogen methanation (BHM) process.The results demonstrated that an efficiency improvement and a reduction in hydrogen production costs arise from a balanced supply from wind and solar energy. Without the inclusion of a BHM process, hydrogen production costs lower than 7 €/kg were achieved by a hydrogen generator using 10–12% of the PV + WF annual energy with a PV share of 20%–50%. The hydrogen production costs were further reduced to 5 €/kg by introducing a BHM process and increasing the percentage of electrical energy supplied by the PV + WF system to 25% of its overall production.  相似文献   

19.
Hydrogen used in proton exchange membrane-based fuel cell applications is subject to very high quality requirements. While the influences of contaminations in hydrogen on long-term stability have been intensively studied, the purity of hydrogen for mobile applications provided at hydrogen refueling stations (HRS) is rarely analyzed. Hence, in this study, we present sampling of hydrogen at HRS with a specially designed mobile tank for up to 70 MPa. These samples are precisely analyzed with a sophisticated ion molecule reaction mass spectrometer (IMR-MS), able to determine concentrations of contaminants down to the ppb-level. Sampling and analysis of hydrogen at an HRS supplied by electrolysis revealed a high purity, but likewise considerable contaminations above the threshold of the international standard ISO 14687:2019. In this study, a state-of-the-art analysis coupled with a developed methodology for fuel cell electric vehicle-independent sampling of hydrogen with a mobile tank system is demonstrated and applied for comprehensive studies of hydrogen purity.  相似文献   

20.
The hydrogen proton exchange membrane (PEM) fuel cells are promising to utilize fuel cells in electric vehicle (EV) applications. However, hydrogen PEM fuel cells are still encountering challenges regarding their functionality and degradation mechanism. Therefore, this paper aims to study the performance of a 3.2 kW hydrogen PEM fuel cell under accelerated operation conditions, including varying fuel pressure at a level of 0.1–0.5 bar, variable loading, and short-circuit contingencies. We will also present the results on the degradation estimation mechanism of four fuel cells working at different operational conditions, including high-to-low voltage range and high-to-low temperature variations. These experiments examine over 180 days of continuous fuel cell working cycle. We have observed that the drop in the fuel cells' efficiency is at around 7.2% when varying the stack voltage and up to 14.7% when the fuel cell's temperature is not controlled and remained at 95 °C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号