首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The influences of Nb-containing oxides and ternary compound in hydrogen sorption performance were investigated. As faster desorption kinetic and lower activation energy were reported by addition of a ternary compound catalyst such as K2NiF6, the influence of KNbO3 on hydrogen storage properties of MgH2 has been investigated for the first time. The MgH2 - KNbO3 composite desorbed 3.9 wt% of hydrogen within 10 min, while MgH2 and MgH2-Nb₂O₅ composites desorbed 0.66 wt% and 3.2 wt% respectively under similar condition. For MgH2 with other Nb-contained catalysts such as Nb, NbO and Nb₂O3, the desorption rate was almost the same as the one registered for as-milled MgH2. The analysis of differential scanning calorimetry (DSC) showed that MgH2-KNbO3 composite started to release hydrogen at ∼335 °C which is 50 °C lower compared to as-milled MgH2 without any additives. The activation energy for the hydrogen desorption was estimated to be about 104 ± 6.8 kJ mol−1 for this material, while for the as-milled MgH2 was about 165 ± 2.0 kJ mol−1. It is believed that Nb-ternary oxide catalyst (KNbO3) showed a good catalytic effect and enhance the sorption kinetics of MgH2.  相似文献   

2.
Magnesium-based hydrogen storage materials (MgH2) are promising hydrogen carrier due to the high gravimetric hydrogen density; however, the undesirable thermodynamic stability and slow kinetics restrict its utilization. In this work, we assist the de/hydrogenation of MgH2 via in situ formed additives from the conversion of an MgNi2 alloy upon de/hydrogenation. The MgH2–16.7 wt%MgNi2 composite was synthesized by ball milling of Mg powder and MgNi2 alloy followed by a hydrogen combustion synthesis method, where most of the Mg converted to MgH2, and the others reacted with the MgNi2 generating Mg2NiH4, which produced in situ Mg2Ni during dehydrogenation. Results showed that the Mg2Ni and Mg2NiH4 could induce hydrogen absorption and desorption of the MgH2, that it absorbed 2.5 wt% H2 at 473 K, much higher than that of pure Mg, and the dehydrogenation capacity increased by 2.6 wt% at 573 K. Besides, the initial dehydrogenation temperature of the composite under the promotion of Mg2NiH4 decreased greatly by 100 K, whereas it is 623 K for MgH2. Furthermore, benefiting from the catalyst effect of Mg2NiH4 during dehydrogenation, the apparent activation energy of the composite reduced to 73.2 kJ mol−1 H2 from 129.5 kJ mol−1 H2.  相似文献   

3.
MgTM/ZIF-67 nanocomposites were prepared by the deposition-reduction method using ZIF-67, MgCl2, and TMClx (TM = Ni, Cu, Pd, Nb) as raw materials. The dehydrogenation activation energies of MgTM/ZIF-67 (TM = Ni, Cu, Pd, Nb) nanocomposites were calculated to be 115.4 kJ mol−1 H2, 115.7 kJ mol−1 H2, 113.6 kJ mol−1 H2, and 75.8 kJ mol−1 H2, respectively; hence, the MgNb/ZIF-67 nanocomposite manifested the best comprehensive hydrogen storage performance. The hydrogen storage capacity of the MgNb/ZIF-67 nanocomposite was hardly attenuated after the 100th hydrogen absorption-desorption cycle. The dehydrogenated enthalpies of MgH2 and CoMg2H5 in MgNb/ZIF-67 hydride were calculated to be 72.4 kJ mol−1 H2 and 81.0 kJ mol−1 H2, respectively, which were lower than those of additive-free MgH2 and Mg/ZIF-67. The improved hydrogen storage properties of MgNb/ZIF-67 can be ascribed to the CoMg2–Mg(Nb) core-shell structure and the catalytic effects of NbH and niobium oxide nanocrystals.  相似文献   

4.
Using a deposition-reduction method, Mg/MOF nanocomposites were prepared as composites of Mg and metal-organic framework materials (MOFs = ZIF-8, ZIF-67 and MOF-74). The addition of MOFs can enhance the hydrogen storage properties of Mg. For example, within 5000 s, 0.6 wt%, 1.2 wt%, 2.7 wt%, 3.7 wt% of hydrogen were released from Mg, Mg/MOF-74, Mg/ZIF-8, Mg/ZIF-67, respectively. Activation energy values of 198.9 kJ mol−1 H2, 161.7 kJ mol−1 H2, 192.1 kJ mol−1 H2 were determined for the Mg/ZIF-8, Mg/ZIF-67, Mg/MOF-74 hydrides, which are 6 kJ mol−1 H2, 43.2 kJ mol−1 H2, and 12.8 kJ mol−1 H2 lower than that of Mg hydride, respectively. Moreover, the cyclic stability characterizing Mg hydride was significantly improved when adding ZIF-67. The hydrogen storage capacity of the Mg/ZIF-67 nanocomposite remained unchanged, even after 100 cycles of hydrogenation/dehydrogenation. This excellent cyclic stability may have resulted from the core-shell structure of the Mg/ZIF-67 nanocomposite.  相似文献   

5.
MgH2 has been extensively regarded as a low-cost hydrogen storage material with high gravimetric hydrogen capacity of approximately 7.6 wt%. However, the hydrogen release and absorption kinetics in MgH2 still needs further improving. For the first time, the catalytic impacts of a new dual-cation metal fluoride K2TaF7 upon the hydrogen storage characteristics of MgH2 have been investigated in this work. With only 1 wt% K2TaF7 dopant, the initial dehydrogenation temperature of MgH2 was lowered by about 130 °C, releasing more than 7.3 wt% hydrogen totally. The desorption activation energy of MgH2 + 1 wt% K2TaF7 composite was decreased to 107.2 ± 1.2 kJ mol?1. Besides, at 190 °C, the dehydrogenated MgH2 + 1 wt% K2TaF7 sample could absorb 6.56 wt% H2, while pristine MgH2 re-absorbed only 3.45 wt% H2. Further studies revealed that K2TaF7 could react with MgH2 during dehydrogenation and produce symbiotic hydrides KMgH3 and TaH0.8, which could play the role of hydrogen pumps during hydrogen release and uptake. The cooperative catalysis between the hydrogen pump effect and the active interface in the multi-hydride area significantly enhanced the reversible hydrogen storage in the MgH2+1 wt% K2TaF7 composite. This study provides new thinking for novel catalysts to elevate the hydrogen storage performance of MgH2.  相似文献   

6.
Recently, silanides (MSiH3) have been proposed as the possible hydrogen storage materials due to their hydrogen storage properties. Among these silanides, KSiH3 has been considered as leading contender due to its high hydrogen storage capacity i.e. 4.3 wt% and suitable thermodynamic parameters. It can absorb and desorb hydrogen reversibly at near ambient temperature, however, a high activation barrier slows down its kinetics. To enhance its kinetic properties, several catalysts have been attempted so far. Nb2O5 has been proven as leading catalyst with significant improvement. In the present work, Fe based catalysts were chosen due to their suitability for hydrogen storage materials. Among all the studied catalysts in this work, Fe2O3 was found to be the most effective catalyst, reducing the activation energy down to 75 kJ mol−1 from 142 kJ mol−1 for pristine KSi.  相似文献   

7.
Hydrogen storage capacity on Cu(I)-exchanged SSZ-39 (AEI), -SSZ-13 (CHA) and Ultra stable-Y (US–Y, FAU) at temperatures between 279 K and 304 K are investigated. The gravimetric hydrogen storage capacity values reaching 83 μmol H2 g−1 (at 279 K and 1 bar) are found to be comparable with the highest adsorption capacity values reported on metal-organic frameworks. The volumetric hydrogen storage capacity values; on the other hand, are found to be more than three times of those reported on metal-organic frameworks (0.57 g/L on Cu(I)-SSZ-39 at 1 bar and 296 K vs. ca. 0.18 g/L on Co2(m-dobdc) at 1 bar and 298 K (Kapelewski MT, Runčevski T, Tarver JD, Jiang HZH, Hurst KE, Parilla PA et al. Record High Hydrogen Storage Capacity in the Metal-Organic Framework Ni2(m-dobdc) at Near-Ambient Temperatures. Chem Mater 2018; 30:8179–89)). The isosteric heat of adsorption values are calculated to be between 80 kJ mol−1 and 49 kJ mol−1 on Cu(I)-SSZ-39 and between 22 kJ mol−1 and 15 kJ mol−1 on Cu(I)-US-Y indicating H2 adsorption mainly at Cu(I) cations located at the eight-membered rings on Cu(I)-SSZ-39 and at six-membered rings on Cu(I)-US-Y. Hydrogen adsorption experiments performed at 77 K showed higher adsorption capacity values for Cu(I)-SSZ-39 at 1 bar, but Cu(I)-US-Y showed potential for hydrogen storage at higher pressure values.  相似文献   

8.
To improve the dehydrogenation/hydrogenation performance of magnesium hydride (MgH2), a nickel-vanadium bimetallic oxide (NiV2O6) was prepared by a simple hydrothermal method using ammonium metavanadate and nickel nitrate as raw materials. This oxide was used to improve the hydrogen storage performance of MgH2. NiV2O6 reacted with Mg to form Mg2Ni and V2O5; Mg2Ni and V2O5 played an important role in improving the hydrogen storage properties of MgH2. The NiV2O6-doped MgH2 had an excellent hydrogen absorption and desorption kinetics performance, and it could absorb 5.59 wt% of hydrogen within 50 min at 150 °C and release about 5.3 wt% of hydrogen within 12 min. The apparent activation energies for the dehydrogenation and hydrogenation of MgH2-NiV2O6 were 92.9 kJ mol?1 and 24.9 kJ mol?1, respectively. These were 21.7% and 66.3% lower than those of MgH2, respectively. The mechanism analysis demonstrated that the improved kinetic properties of MgH2 resulted from the heterogeneous catalysis of vanadium and nickel.  相似文献   

9.
The hydrogen storage performance of MgH2–10 wt.% TiC composite was investigated. The additive TiC nanoparticle led to a pronounced improvement in the de/hydrogenation kinetics of MgH2. The composite could dehydrogenate 6.3 wt.% at 573 K while the milled MgH2 only released 4.9 wt.% of hydrogen at the same condition. The improvement came from that the activation energy of dehydrogenation was decreased from 191.27 kJ mol−1 to 144.62 kJ mol−1 with the TiC additive. The MgH2–10 wt.% TiC composite also absorbed 6.01 wt.% (or 5.1 wt.%) of hydrogen under 1 MPa H2 at 573 K (or 473 K) in 3000 s. Even at 1 MPa H2 and 373 K, it could absorb 4.1 wt.% of hydrogen, but milled MgH2 could not absorb hydrogen at this condition. Additionally, the composite had good cycling stability, and its hydrogen capacity only decreased 3.3% of the first run after 10 de/hydrogenation cycles. The improved hydrogen storage properties were explained to the TiC particles embedded in the MgH2, which provided the pathways for the hydrogen diffusion into the MgH2–10 wt.% TiC composite.  相似文献   

10.
The catalytic effect of MoS2 and MoO2 on the hydrogen absorption/desorption kinetics of MgH2 has been investigated. It is shown that MoS2 has a superior catalytic effect over MoO2 on improving the hydrogen kinetic properties of MgH2. DTA results indicated that the desorption temperature decreased from 662.10 K of the pure MgH2 to 650.07 K of the MgH2 with MoO2 and 640.34 K of that with MoS2. Based on the Kissinger plot, the activation energy of the hydrogen desorption process is estimated to be 101.34 ± 4.32 kJ mol−1 of the MgH2 with MoO2 and 87.19 ± 4.48 kJ mol−1 of that with MoS2, indicating that the dehydriding process energy barrier of MgH2 can be reduced. The enhancement of the hydriding/dehydriding kinetics of MgH2 is attributed to the presence of MgS and Mo or MgO and Mo which catalyze the hydrogen absorption/desorption behavior of MgH2. The detailed comparisons between MoS2 and MoO2 suggest that S anion has superior properties than O anion on catalyzing the hydriding/dehydriding kinetics of MgH2.  相似文献   

11.
Reversible hydrogen storage in MgH2 under mild conditions is a promising way for the realization of “Hydrogen Economy”, in which the development of cheap and highly efficient catalysts is the major challenge. Herein, A two-dimensional layered Fe is prepared via a facile wet-chemical ball milling method and has been confirmed to greatly enhance the hydrogen storage performance of MgH2. Minor addition of 5 wt% Fe nanosheets to MgH2 decreases the onset desorption temperature to 182.1 °C and enables a quick release of 5.44 wt% H2 within 10 min at 300 °C. Besides, the dehydrogenated sample takes up 6 wt% H2 in 10 min under a hydrogen pressure of 3.2 MPa at 200 °C. With the doping of Fe nanosheets, the apparent activation energy of the dehydrogenation reaction for MgH2 is reduced to 40.7 ± 1.0 kJ mol−1. Further ab initio calculations reveal that the presence of Fe extends the Mg–H bond length and reduces its bond strength. We believe that this work would shed light on designing plain metal for catalysis in the area of hydrogen storage and other energy-related issues.  相似文献   

12.
Magnesium borohydride (Mg(BH4)2) is an attractive materials for solid-state hydrogen storage due to its high hydrogen content (14.9 wt%). In the present work, the dehydrogenation performance of Mg(BH4)2 by adding different amounts (10, 20, 40, 60 wt%) of two-dimensional layered Ti3C2 MXene is studied. The Mg(BH4)2-40 wt% Ti3C2 composite releases 7.5 wt% hydrogen at 260 °C, whereas the pristine Mg(BH4)2 only releases 2.9 wt% hydrogen under identical conditions, and the onset desorption temperature decreases from 210 °C to a relative lower temperature of 82 °C. The special layered structure of Ti3C2 MXene and fluorine plays an important role in dehydrogenation process especially at temperatures below 200 °C. The main dehydrogenation reaction is divided into two steps, and activation energy of the Mg(BH4)2-40 wt% Ti3C2 composite is 151.3 kJ mol−1 and 178.0 kJ mol−1, respectively, which is much lower than that of pure Mg(BH4)2.  相似文献   

13.
Fluorographene (FG), which inherits the properties of graphene and fluorographite (FGi), was successfully fabricated through a simple sonochemical exfoliation route in N-methyl-2-pyrrolidone (NMP) and then MgH2-FG composite was prepared by ball milling. The dehydrogenation and rehydrogenation performances of MgH2-FG composite were investigated systematically comparing with as-received MgH2 and MgH2-G composite. It is found that the as-prepared FG exhibited a significant catalytic effect on the dehydrogenation and rehydrogenation properties of MgH2. The MgH2-FG composite can uptake 6.0 wt% H2 in 5 min and release 5.9 wt% H2 within 50 min at 300 °C, while the as-received MgH2 uptakes only 2.0 wt% H2 in 60 min and hardly releases hydrogen at the same condition. The hydrogen storage cycling kinetics in the first 10 cycles remains almost the same, indicating the excellent reversibility of the MgH2-FG composite. SEM analysis shows that the particle size of MgH2-FG composite was ∼200 nm, much smaller than that of as-received MgH2 (∼20 μm). TEM observations show that MgH2 particles were embedded in FG layers during ball milling. The dehydrogenation apparent activation energy for the MgH2 is reduced from 186.3 kJ mol−1 (as-received MgH2) to 156.2 kJ mol−1 (MgH2-FG composite). The catalytic mechanism has been proposed that F atoms in FG serve as charge-transfer sites and accelerate the rate of hydrogen incorporation and dissociation, consequently enhance the dehydrogenation and rehydrogenation properties of MgH2-FG composite. Furthermore, the FG can inhibit the sintering and agglomeration of MgH2 particle, thus it improves the cycling dehydrogenation and rehydrogenation of MgH2-FG composite.  相似文献   

14.
Reduced graphene-oxide-supported nickel (Ni@rGO) nanocomposite catalysts were synthesized, and incorporated into magnesium (Mg) hydrogen storage materials with the aim of improving the hydrogen storage properties of these materials. The experimental results revealed that the catalytic effect of the Ni@rGO nanocomposite on Mg was more effective than that of single nickel (Ni) nanoparticles or graphene. When heated at 100 °C, the Mg–Ni and Mg–Ni@rGO composites absorbed 4.70 wt% and 5.48 wt% of H2, respectively, whereas the pure Mg and Mg@rGO composite absorbed almost no hydrogen. The addition of the Ni@rGO composite as a catalyst yielded significant improvement in the hydrogen storage property of the Mg hydrogen storage materials. The apparent activation energy of the pure Mg sample (i.e., 163.9 kJ mol−1) decreased to 139.7 kJ mol−1 and 123.4 kJ mol−1, respectively, when the sample was modified with single rGO or Ni nanoparticles. Under the catalytic action of the Ni@rGO nanocomposites, the value decreased further to 103.5 kJ mol−1. The excellent hydrogen storage properties of the Mg–Ni@rGO composite were attributed to the catalytic effects of the highly surface-active Ni nanoparticles and the unique structure of the composite nanosheets.  相似文献   

15.
A metal-organic framework based on Ni (II) as metal ion and trimasic acid (TMA) as organic linker was synthesized and introduced into MgH2 to prepare a Mg-(TMA-Ni MOF)-H composite through ball-milling. The microstructures, phase changes and hydrogen storage behaviors of the composite were systematically studied. It can be found that Ni ion in TMA-Ni MOF is attracted by Mg to form nano-sized Mg2Ni/Mg2NiH4 after de/rehydrogenation. The hydriding and dehydriding enthalpies of the Mg-MOF-H composite are evaluated to be −74.3 and 78.7 kJ mol−1 H2, respectively, which means that the thermodynamics of Mg remains unchanged. The absorption kinetics of the Mg-MOF-H composite is improved by showing an activation energy of 51.2 kJ mol−1 H2. The onset desorption temperature of the composite is 167.8 K lower than that of the pure MgH2 at the heating rate of 10 K/min. Such a significant enhancement on the sorption kinetic properties of the composite is attributed to the catalytic effects of the nanoscale Mg2Ni/Mg2NiH4 derived from TMA-Ni MOF by providing gateways for hydrogen diffusion during re/dehydrogenation processes.  相似文献   

16.
Ternary eutectic Mg76.87Ni12.78Y10.35 (at. %) ribbons with mixed amorphous and nanocrystalline phases were prepared by melt spinning. The microstructures of the melt-spun, hydrogenated and dehydrogenated samples were examined and compared by X-ray diffraction and transmission electron microscopy. The amorphous structure transforms into a thermally stable nanocrystalline structure with a grain size of about 5 nm during hydrogen ab/desorption cycles. The Mg, Mg2Ni and phases with Y in the melt-spun state transform into MgH2, Mg2NiH4, Mg2NiH0.3, YH2 and YH3 after hydrogenation, and transform back to Mg, Mg2Ni and YH2 upon subsequent dehydrogenation. The reaction enthalpy (ΔH) and entropy (ΔS) of the higher plateau pressure corresponding to Mg2Ni hydride formation are −53.25 kJ mol−1 and −107.74 J K−1 mol−1, respectively. The amorphous/nanocrystalline structure effectively reduces the enthalpy and entropy of Mg2Ni hydride formation, but has little effect on Mg. The activation energy for dehydrogenation of the hydrogenated ribbons is 69 kJ mol−1. This suggests that Mg–Ni–Y with ternary eutectic composition can form an amorphous/nanocrystalline structure by melt spinning, and this nanostructure efficiently improves the thermodynamics and kinetics for hydrogen storage.  相似文献   

17.
In the present work, the hydrogen storage properties of MgH2-X wt.% FeCl3 (X = 5, 10, 15 and 20) are investigated experimentally. It is found that the MgH2 + 10 wt.% FeCl3 sample exhibits the best comprehensive hydrogen storage properties, in terms of the onset dehydrogenation temperature, the hydrogen amounts de/reabsorbed as well as the relative de/rehydrogenation rates. The onset dehydrogenation temperature of the 10 wt.% FeCl3-doped MgH2 sample is reduced by about 90 °C compared to the as-milled MgH2, and the sorption kinetics measurements indicate that the FeCl3-doped sample displays an average dehydrogenation rate 5–6 times faster than that of the undoped MgH2 sample. Higher levels of doping introduce negative effects, such as lower capacity and slower absorption/desorption rates compared to samples with lower FeCl3 doping levels. The apparent activation energy for hydrogen desorption is decreased from 166 kJ•mol−1 for as-milled MgH2 to 130 kJ•mol−1 by the addition of 10 wt.% FeCl3. It is believed that the improvement of the MgH2 sorption properties in the MgH2/FeCl3 composite is due to the catalytic effects of the in-situ generated Fe species and MgCl2 that are formed during the heating process.  相似文献   

18.
Bimetallic catalysts possess unique physical and chemical properties that distinct from the individual, which offer the opportunity to ameliorate the hydrogen storage properties of MgH2. Herein, a Ni3Fe catalyst homogeneously loaded on the surface of reduced graphene oxide (Ni3Fe/rGO) was prepared based on layered double hydroxide (LDH) precursor. The novel Ni3Fe/rGO nano-catalyst was subsequently doped into MgH2 to improve its hydrogen storage performance. The MgH2-5 wt.% Ni3Fe/rGO composite requires only 100 s to reach 6 wt% hydrogen capacity at 100 °C, while for MgH2 doped with 5 wt% Ni3Fe, Ni/rGO and Fe/rGO all require more than 500 s to uptake 3 wt% hydrogen under the same condition. The onset dehydrogenation temperature of the MgH2-5 wt.% Ni3Fe/rGO composite is about 185 °C, much lower than that of the MgH2 doped with 5 wt% Ni3Fe (205 °C), Ni/rGO (210 °C) and Fe/rGO (250 °C), and it can release H2 completely even in 1000 s at 275 °C. Besides, the MgH2-5 wt% Ni3Fe/rGO displays the lowest dehydrogenation apparent activation energy of 59.3 kJ/mol calculated by Kissinger equation. The synergetic effect attributing to rGO, in-situ formed active species of Mg2Ni and Fe is in charge of the excellent catalytic effect on hydrogen storage behavior of MgH2. Meanwhile, this study supplies innovative insights to design high efficiency catalysts based on the LDH precursor.  相似文献   

19.
Transition metals, including Ni, show good catalytic activity in the hydrogen storage reaction of Mg. In the present paper, first-principles calculation is performed to predict and analyze the hydriding reaction of Ni-incorporated Mg and experimental study is used to verify the accuracy of the forecast. Theoretical studies show that the hydriding reaction of Ni-incorporated Mg is a diffusion-controlled process. With Ni incorporation, the energy barrier of H2 dissociation is significantly decreased and the diffusion becomes the limiting step. Experimental studies confirm the results of theoretical studies. Besides, the material with Ni incorporation shows excellent activation performance and rapid absorption rates, leading to a high hydrogen content of 4.1 wt% in 60 s under 240 °C 3.0 MPa H2 and a low activation energy of 56.1 kJ mol−1 versus 0.4 wt% and 73.5 kJ mol−1 for the material without Ni incorporation. Atomic Ni only plays a role of catalyst.  相似文献   

20.
To increase the interaction between the adsorbed hydrogen and the adsorbent surface to improve the hydrogen storage capacity at ambient temperature, decorating the sorbents with metal nanoparticles, such as Pd, Ni, and Pt has attracted the most attention. In this work, Pt-decorated porous carbons were in-situ synthesized via CVD method using Pt-impregnated zeolite EMC-2 as template and their hydrogen uptake performance up to 20 bar at 77, 87, 298 and 308 K has been investigated with focus on the interaction between the adsorbed H2 and the carbon matrix. It is found that the in-situ generated Pt-decorated porous carbons exhibit Pt nanoparticles with size of 2–4 nm homogenously dispersed in the porous carbon, accompanied with observable carbon nanowires on the surface. The calculated H2 adsorption heats at/near 77 K are similar for both the plain carbon (7.8 kJ mol−1) and the Pt-decorated carbon (8.3 kJ mol−1) at H2 coverage of 0.08 wt.%, suggesting physisorption is dominated in both cases. However, the calculated H2 adsorption heat at/near 298 K of Pt-decorated carbon is 72 kJ mol−1 at initial H2 coverage (close to 0), which decreases dramatically to 20.8 kJ mol−1 at H2 coverage of 0.014 wt.%, levels to 17.9 at 0.073 wt.%, then gradually decreases to 2.6 kJ mol−1 at 0.13 wt.% and closes to that of the plain carbon at H2 coverage above 0.13 wt.%. These results suggest that the introduction of Pt particles significantly enhances the interaction between the adsorbed H2 and the Pt-decorated carbon matrix at lower H2 coverage, resulting in an adsorption process consisting of chemisorption stage, mixed nature of chemisorption and physisorption stage along with the increase of H2 coverage (up to 0.13 wt.%). However, this enhancement in the interaction is outperformed by the added weight of the Pt and the blockage and/or occupation of some pores by the Pt nanoparticles, which results in lower H2 uptake than that of the plain carbon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号