共查询到20条相似文献,搜索用时 15 毫秒
1.
Grzegorz Milczarek Aleksander CiszewskiIzabela Stepniak 《Journal of power sources》2011,196(18):7882-7885
Novel oxygen-doped activated carbon fiber cloths (OACFC), with different compositions of surface oxygen functionalities, have been prepared by direct electrooxidative/reductive methods in an undivided electrolytic cell filled with high purity water without a supporting electrolyte under high voltage conditions. The morphology and surface chemical composition of the materials have been investigated by SEM, Raman and XPS spectroscopies. They revealed an electrochemical erosion of the CF surface upon activation, concomitant with a strong change of the D/G ratio of characteristic Raman bands and the surface O/C atomic ratio, respectively. Thus pretreated material was tested as electrodes for an electrochemical capacitor by cyclic voltammetry, galvanostatic charge/discharge, and electrochemical impedance spectroscopy measurements in 3.75 M H2SO4. The performance of the electrochemical capacitor based on modified carbon electrodes was compared to that of an analogous device with unmodified carbon. The measurements revealed altered electrochemical behavior of the OACFC in terms of the determined capacitances. The proposed activation method is also superior to other electrochemical activation procedures, since it uses much less energy per CF surface or mass. 相似文献
2.
《International Journal of Hydrogen Energy》2022,47(8):5220-5229
A nickel nanocone-modified NiMoO4 hybrid (NiMoO4/NNC) on Ni foam (NF) substrate is engineered to enhance the capacitance performance of NiMoO4 via facile and convenient electrodeposition strategy, followed by hydrothermal method. The presence of nickel nanocone (NNC) increases the density of reaction active sites of NiMoO4/NNC/NF, which can shorten the charge diffusion pathway and boost ionic/electronic conductivities. As expected, the NiMoO4/NNC/NF, as a prospective electrode material, presents appreciable electrochemical properties. Remarkably, the NiMoO4/NNC/NF electrode demonstrates a high specific capacitance of 2813 F g?1 at 3 A g?1 and manifests considerable cycling durability with a retention of 94% of the initial capacitance over consecutive 5000 cycles. Furthermore, a NiMoO4/NNC/NF//AC/NF asymmetric supercapacitor displays a great electrochemical performance by delivering high energy density (43 Wh kg?1) and power density (821 W kg?1) as well as notable durableness (10% decay after 5000 cycles). The presented results suggest that NiMoO4/NNC/NF can be considered as a binder-free electrode for highly stable supercapacitors. 相似文献
3.
Muhammad Sufyan Javed Abdul Jabbar Khan Muddasir Hanif Muhammad Tariq Nazir Shahid Hussain Muhammad Saleem Rizwan Raza Sining Yun Zhongwu Liu 《International Journal of Hydrogen Energy》2021,46(15):9976-9987
Supercapacitors (SCs) have proven remarkable interest in portable digital devices because of their long life span and high power densities. However, low energy densities of SCs hindered their applications due to the lack of high-performance negative electrode materials. In this work, we demonstrated the successful surface engineering of iron oxide nanoparticles (Fe3O4-NPs) by polyaniline (PANI) coating through a facile low-temperature hydrothermal method. The polyaniline coated iron oxide nanoparticles (Fe3O4/PANI-NPs) were characterized by a series of techniques including XRD, FT-IR, RAMAN, XPS, TGA, BET, SEM, and TEM. Fe3O4-NPs and Fe3O4/PANI-NPs are investigated as negative electrode materials for SCs in basic potassium hydroxide (KOH) electrolyte. The Fe3O4/PANI-NPs sample possesses specific capacitance of 1669.18 F g?1 while Fe3O4-NPs exhibits 1351.13 F g?1 at 1 A g?1 at identical conditions. The Fe3O4/PANI-NPs sample exhibits remarkable electrochemical cycling performance (96.5%) over pristine Fe3O4-NPs (92%) at high current density of 15 A g?1 by exceeding the 25,000 times charge/discharge cycles. The PANI coating not only offers a strong shell to avoid degradation of the material but also contributes to enhancing the capacitance with outstanding stability. Furthermore, we analyzed the charge storage contributions by implementing the power's law and interestingly Fe3O4/PANI-NPs sample exhibits high capacitive type storage (85% capacitive at 10 mVs?1). Based on our experiments, Fe3O4/PANI-NPs shows exceptional high electrochemical results in basic electrolyte with excellent stability and surpass most of recently reported work based on the iron oxides and their composites. Therefore, the proposed strategy can be applied to fabricate the high-performance negative electrode materials for supercapacitors. 相似文献
4.
We synthesize carbon nanocapsules (CNCs) by a flame combustion method and evaluate their potential as the electrode material for electrochemical double layer capacitor using a titanium cavity electrode (TCE). Identical process is conducted on commercially available carbonaceous materials such as Vulcan XC72R, Black Pearl 2000 (BP2000), multi-walled carbon nanotubes (MWCNTs), and active carbon (AC1100) for comparison purposes. Images from Scanning electron microscope and Transmission electron microscope on the CNCs demonstrate irregular-shaped particles in average size of 10-20 nm with graphene layers on perimeter compassing a hollow core. Electrochemical characterizations including cyclic voltammetry (CV), current reversal chronopotentiometry (CRC), and impedance spectroscopy are carried out in 1N H2SO4 to determine the specific capacitance and cycle life time. Among these samples, the BP2000 still delivers the highest specific capacitance in F g−1 but the CNCs demonstrate the largest value in μF cm2. In addition, the CNCs exhibit impressive life time for 5000 cycles without notable degradation. Consistent results are obtained by CV, CRC, and impedance measurements, validating the TCE as a facile tool to perform reliable electrochemical evaluations. 相似文献
5.
Calcium carbide (CaC2)-derived carbon (CCDC)/polyaniline (PANI) composite materials are prepared by in situ chemical oxidation polymerization of an aniline solution containing well-dispersed CCDC. The structure and morphology of CCDC/PANI composite are characterized by Fourier infrared spectroscopy (FTIR), scanning electron microscope (SEM), transmission electron microscopy (TEM) and N2 sorption isotherms. It has been found that PANI was uniformly deposited on the surface and the inner pores of CCDC. The supercapacitive behaviors of the CCDC/PANI composite materials are investigated with cyclic voltammetry (CV), galvanostatic charge/discharge and cycle life measurements. The results show that the CCDC/PANI composite electrodes have higher specific capacitances than the as grown CCDC electrodes and higher stability than the conducting polymers. The capacitance of CCDC/PANI composite electrode is as high as 713.4 F g−1 measured by cyclic voltammetry at 1 mV s−1. Besides, the capacitance retention of coin supercapacitor remained 80.1% after 1000 cycles. 相似文献
6.
A doped activated carbon prepared from polyaniline for high performance supercapacitors 总被引:3,自引:0,他引:3
Limin Li Jian Li Yanjing Yang Haijie Shen Zhengzheng Huang Xiaoxia Xiang Wen Li 《Journal of power sources》2010,195(5):1516-2780
A novel doped activated carbon has been prepared from H2SO4-doped polyaniline which is prepared by the oxypolymerization of aniline. The morphology, surface chemical composition and surface area of the carbon have been investigated by scanning electron microscope, X-ray photoelectron spectroscopy and Brunaner-Emmett-Teller measurement, respectively. Electrochemical properties of the doped activated carbon have been studied by cyclic voltammograms, galvanostatic charge/discharge, and electrochemical impedance spectroscopy measurements in 6 mol l−1 KOH. The specific capacitance of the carbon is as high as 235 F g−1, the specific capacitance hardly decreases at a high current density 11 A g−1 after 10,000 cycles, which indicates that the carbon possesses excellent cycle durability and may be a promising candidate for supercapacitors. 相似文献
7.
《International Journal of Hydrogen Energy》2020,45(55):30859-30869
Ni (Nickel) doped zeolitic-imidazolate framework (ZIF-67) has been prepared in presence of reduced graphene oxide (rGO) to realize a ZIF-67/rGO composite. The doping level of Ni and the ratio of rGO (wt%) in the composite have been optimized to attain desirable redox activity and electrical conductivity. A partial incorporation of redox active Ni ions to substitute Co (cobalt) ions in ZIF-67 has resulted in better electrochemical characteristics by inducing additional pseudocapacitance. A finalized composite with 33% Ni and 20% of rGO (i.e, Ni33/ZIF-67/rGO20) has been used as a supercapacitor electrode material to achieve a high specific capacitance of 304 F/g at a current density of 1 A/g in the presence of 1 M H2SO4 as an aqueous electrolyte. The above electrode has also been tested for an all-solid-state symmetric supercapacitor in the presence of a polymer gel electrolyte (PVA/1 M H2SO4). This device delivered high values of power and energy densities, i.e., 1 kW/kg and 21.5 Wh/kg, respectively. The device also exhibited an excellent cyclic stability. About 87% of capacitance could be retained even after 4500 charge-discharge cycles. The device has shown superior results for a working potential window of 0–2 V. The practical usefulness of the device has been demonstrated by preparing a symmetrical supercapacitor, which could energize a white LED for 8 min upon a charging of only 40 s. 相似文献
8.
Muslum Demir Babak Ashourirad Jethrine H. Mugumya Sushil K. Saraswat Hani M. El-Kaderi Ram B. Gupta 《International Journal of Hydrogen Energy》2018,43(40):18549-18558
Porous carbons as electrode materials are highly desired for use in energy storage/conversion devices. Herein, the development of a series of highly porous nitrogen and oxygen co-doped carbons by using pea protein (PP) as a cost-effective, sustainable and nitrogen-rich precursor is reported. Pea protein derived carbons (PPDCs) have been prepared by applying a straightforward two-step synthetic route including pyrolysis and KOH-chemical activation. Potassium hydroxide has been employed to generate porosity and introduce oxygen functionalities into the framework of carbon. The heteroatoms doping content and porosity parameters have been tuned by varying the synthesis temperature and activator to precursor ratio. The carbon obtained with optimal synthetic parameters (T = 800 °C and KOH/Precursor = 4) featured the highest surface area, the maximal pore volume and N-/O doping level of 3500 m2 g?1, 1.76 cm3 g?1, and 2.5-/17.9 at%, respectively. PPDC-4-800 as supercapacitor presented a very high specific capacitance (413 F g?1 at 1.0 A g?1 in 1 M KOH), remarkable cycling stability (92% retention after 20000 cycles) and outstanding rate capability (210 F g?1 at 30 A g?1). The cooperative effects of the well-developed porous architecture and surface modification of PPDCs resulted in enhanced electrochemical performances, suggesting their potential application for energy storage devices. 相似文献
9.
《International Journal of Hydrogen Energy》2022,47(16):9800-9809
The growing global demand for energy supply and environmental protection has led to the use of high-efficiency energy storage devices, which supercapacitors are used as one of these devices with high storage capacity and exceptional stability. To be used for this purpose, an easy and rapid synthetically method was used to produce the CO3O4/GO nanocomposite, and its electrochemical performance as the electrode material in hybrid-supercapacitors was further investigated. In this nanocomposite, the CO3O4 crystals with less than 500 nm particle size are uniformly in contact with the wrinkled GO sheets, that their structure and morphology were investigated by surface analyzes. In addition, the functional groups, crystallographic properties, and elemental composition were investigated using the FTIR, XRD, and EDX analyzes. To confirm the supercapacitive effectiveness of the prepared samples, the electrochemical measurements (EIS, CV, and GCD) were done. The results have shown that the values of specific capacity, energy and power densities of Co3O4/GO hybrid nanocomposite are 234 mAh g?1, 16.075 W h kg?1 and 251 W kg?1, respectively. Also, the Co3O4/GO has the lowest amount of resistance compared to other electrodes. Nearly constant efficiency at 104% after 1000 cycles indicates that the nanocomposite has excellent cyclic stability. The proper electrochemical efficiency of the nanocomposite corresponds to the synergistic effect on the composition. 相似文献
10.
Preparation of graphene nanosheet/carbon nanotube/polyaniline composite as electrode material for supercapacitors 总被引:1,自引:0,他引:1
Graphene nanosheet/carbon nanotube/polyaniline (GNS/CNT/PANI) composite is synthesized via in situ polymerization. GNS/CNT/PANI composite exhibits the specific capacitance of 1035 F g−1 (1 mV s−1) in 6 M of KOH, which is a little lower than GNS/PANI composite (1046 F g−1), but much higher than pure PANI (115 F g−1) and CNT/PANI composite (780 F g−1). Though a small amount of CNTs (1 wt.%) is added into GNS, the cycle stability of GNS/CNT/PANI composite is greatly improved due to the maintenance of highly conductive path as well as mechanical strength of the electrode during doping/dedoping processes. After 1000 cycles, the capacitance decreases only 6% of initial capacitance compared to 52% and 67% for GNS/PANI and CNT/PANI composites. 相似文献
11.
Parvin Asen Saeed Shahrokhian Azam Iraji zad 《International Journal of Hydrogen Energy》2017,42(33):21073-21085
A new ternary nanocomposite based on graphene oxide (GO), polypyrrole (PPy) and vanadium pentoxide (V2O5) is obtained via one-step electrochemical deposition process. Electrochemical deposition of V2O5, PPy and GO on a stainless steel (SS) substrate is conducted from an aqueous solution containing vanadyl acetate, pyrrole and GO to get V2O5/PPy/GO nanocomposite. Characterization of the electrode material is carried out by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX) and atomic force microscopy (AFM). The electrochemical performance of the as-prepared nanocomposite is evaluated by different electrochemical methods including cyclic voltammetry, galvanostatic charge-discharge and electrochemical impedance spectroscopy (EIS) in 0.5 M Na2SO4 solution. Remarkably, V2O5/PPy/GO nanocomposite shows a specific capacitance of 750 F g?1 at a current density of 5 A g?1, which is far better than PPy (59.5 F g?1), V2O5/PPy (81.5 F g?1) and PPy/GO (344.5 F g?1). Furthermore, V2O5/PPy/GO maintains 83% of its initial value after 3000 cycles, which demonstrates good electrochemical stability of the electrode during repeated cycling. These results demonstrate that the combination of electrical double layer capacitance of GO and pseudocapacitive behavior of the PPy and V2O5 can effectively increase the specific capacitance and cycling stability of the prepared electrode. Also, a symmetric supercapacitor device assembled by V2O5/PPy/GO nanocomposite yielded a maximum energy density of 27.6 W h kg?1 at a power density of 3600 W kg?1, and a maximum power density of 13680 W kg?1 at an energy density of 22.8 W h kg?1. 相似文献
12.
《International Journal of Hydrogen Energy》2019,44(31):16099-16109
A more practical, nontoxic and cheaper electrolyte, poly(2-acrylamido-2-methyl-1-propanesulfonic acid) (PAMPS) was used to construct supercapacitors with different nanocomposite electrodes. The flexible devices were fabricated including active carbon (AC) electrode and nanocomposites electrodes of AC/nano-silica (nano-SiO2) and AC/multiwalled carbon nanotubes (MWCNTs) at various weight percentages. The symmetrical cell made from AC electrodes generated a maximum specific capacitance (Cs) of 315 F g−1 at 0.5 A g−1. The energy density of this device was 55.5 Wh kg−1 at a power density of 690 W kg−1. Excellent performance was achieved after 5000 charge-discharge cycles where the supercapacitor maintains 92% of its activity. The energy storage capability of the supercapacitors was also investigated with the addition of nano-SiO2 and MWCNTs. The Cs of the supercapacitors made with the electrodes AC/nano-SiO2 (5%, 10%, 25% and 50%) were 172, 228, 247 and 55 F g−1, respectively. Similarly, the capacity of the device including the electrodes of AC/MWCNTs (5%, 10%, 25% and 50%) varied as 191, 244, 93 and 20 F g−1 at 0.5 A g−1. The maximum energy density of the devices having nano-SiO2 and MWCNT were 44.4 Wh kg−1 and 43.8 Wh kg−1, respectively at a power density of 520 W kg−1. A supercapacitor with certain dimension successfully operated a light-emitting diode (LED). 相似文献
13.
《International Journal of Hydrogen Energy》2020,45(38):19237-19245
Nickel sulfide-based materials have shown great potential for electrode fabrication owing to their high theoretical specific capacitance but poor conductivity and morphological aggregation. A feasible strategy is to design hybrid structure by introducing highly-conductive porous carbon as the supporting matrix. Herein, we synthesized hybrid composites consisting of interconnected NiS-nanosheets and porous carbon (NiS@C) derived from Zeolitic-imidazolate frameworks (ZIFs) using a facile low-temperature water-bath method. When employed as electrode materials, the as-prepared NiS@C nanocomposites present remarkable electrochemical performance owing to the complex effect that is the combined advantages of double-layer capacitor-type porous carbon and pseudocapacitor-type interconnected-NiS nanosheets. Specifically, the NiS@C nanocomposites exhibit a high specific capacitance of 1827 F g−1 at 1 A g−1, and excellent cyclic stability with a capacity retention of 72% at a very high current density of 20 A g−1 after 5000 cycles. Moreover, the fabricated hybrid supercapacitor delivers 21.6 Wh kg−1 at 400 W kg−1 with coulombic efficiency of 93.9%, and reaches 10.8 Wh kg−1 at a high power density of 8000 W kg−1, along with excellent cyclic stability of 84% at 5 A g−1 after 5000 cycles. All results suggest that NiS@C nanocomposites are applicable to high-performance electrodes in hybrid supercapacitors and other energy-storage device applications. 相似文献
14.
Qiang Li Jianhua LiuJianhua Zou Anindarupa ChunderYiqing Chen Lei Zhai 《Journal of power sources》2011,196(1):565-572
Multi-walled carbon nanotube (MWCNT)/polyaniline (PANI)/MnO2 (MPM) ternary coaxial structures are fabricated as supercapacitor electrodes via a simple wet chemical method. The electrostatic interaction between negative poly(4-styrenesulfonic acid) (PSS) molecules and positive Mn2+ ions causes the generation of MnO2 nanostructures on MWCNT surfaces while the introduction of PANI layers with appropriate thickness on MWCNT surfaces facilitates the formation of MWCNT/PANI/MnO2 ternary coaxial structures. The thickness of PANI coatings is controlled by tuning the aniline/MWCNT ratio. The effect of PANI thickness on the subsequent MnO2 nanoflakes attachment onto MWCNTs, and the MPM structures is investigated by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), and field-emission scanning electron microscopy (FESEM). The results suggest that appropriate thickness of PANI layers is important for building MPM ternary coaxial structures without the agglomeration of MnO2 nanoflakes. The MPM ternary coaxial structures provide large interaction area between the MnO2 nanoflakes and electrolyte, and improve the electrochemical utilization of the hydrous MnO2, and decrease the contact resistance between MnO2 and PANI layer coated MWCNTs, leading to intriguing electrochemical properties for the applications in supercapacitors such as a specific capacitance of 330 Fg−1 and good cycle stability. 相似文献
15.
Toshiki Tsubota Yoshihito MiyauchiNaoya Murakami Teruhisa Ohno 《Journal of power sources》2011,196(13):5769-5773
Starch or starch mixed with phosphoric acid, guanidine carbonate, or guanidine phosphate is heat-treated for use as an electrode in an electrochemical capacitor. In the case of starch, the capacitance value is low (31.2 F g−1 at 50 mA g−1). However, the capacitance value significantly increases with the addition of guanidine phosphate, which can act as a flame-retardant (124.1F g−1 at 50 mA g−1). The method used in this study, which involves mixing with a flame-retardant by immersion, should be a promising candidate for improving of the capacitance value of starch-derived carbon. 相似文献
16.
Humberto Gómez Manoj K. Ram Farah. AlviP. Villalba Elias StefanakosAshok Kumar 《Journal of power sources》2011,196(8):4102-4108
A novel graphene-polyaniline nanocomposite material synthesized using chemical precipitation technique is reported as an electrode for supercapacitors. The graphene (G)-polyaniline (PANI) nanocomposite film was dissolved in N-Methyl-2-pyrrolidone (NMP) and characterized using Raman, FTIR, Scanning Electron Microscopy, Transmission Electron Microscopy, and cyclic voltammetry (CV) techniques. The interesting composite structure could be observed using different ratios of graphene and aniline monomer. The supercapacitor is fabricated using G-PANI in N-Methyl-2-pyrrolidone (NMP) and G-PANI-Nafion films on graphite electrodes. A specific capacitance of 300-500 F g−1 at a current density of 0.1 A g−1 is observed over graphene-PANI nanocomposite materials. The aim of this study is to tailor the properties of the capacitors through the optimization of their components, and packaging towards a qualification for portable systems applications. Based on experimental data shown in this work, conducting polymer nanocomposite capacitor technology could be viable, and could also surpass existing technologies when such a novel approach is used. 相似文献
17.
Muhammad Rafique Iqra Sadaf Ghulm Nabi Muhammad Bilal Tahir Muhammad Isa Khan 《国际能源研究杂志》2019,43(6):2361-2368
Hybrid composites La2‐xCoxCuO4 (x = 0, 0.1, 0.2, and 0.3) are prepared using one‐step simple hydrothermal route as electrodes for supercapacitors. The effect of varying cobalt content on morphological, structural, and electrochemical properties has been explored using X‐ray diffraction, scanning electron microscopy, and cyclic voltammetry, respectively. The structural parameters obtained by X‐ray diffraction showed tetragonal phase of hybrid composite without any evident impurity phases. The analysis of morphological properties suggested a strong correlation with electrochemical properties, for instance, a relationship between fabric porous structures and electrochemically active sites for redox reactions and intercalation/de‐intercalation processes. The hybrid composite electrodes demonstrated high specific capacitance of the order of 1304 F/g at 10 mV/s scan rate and exhibited decreasing trend on increasing scan rate. Hybrid composites were also tested for their ability as an electrode of high performance supercapacitors in different aqueous electrolytes, i. e, KOH, H2SO4, and Na2SO4 to optimize the best compatible electrolyte. The composite electrode material showed excellent cyclic stability and 98% capacitance retention for 1 A/g after 2000 cycles. The remarkable performance of hybrid composite electrode entails its potential for commercial applications of supercapacitors. 相似文献
18.
《International Journal of Hydrogen Energy》2019,44(60):31780-31789
In recent years, the tenable design and synthesis of the core/shell heterostructure as electrode for the supercapacitor, have attained a huge attention and concerns. In this article, the three-dimensional heterostructure consisting of FeCo2O4 ultrathin nanosheets grown on the space of vertical Co3O4 nanowires has been designed and synthesized onto nickel foam (NF) for pseudocapacitive electrode applications. According to previous research, the NF@ FeCo2O4 electrodes can only exhibit specific capacity of 1172 F g−1 at a current density of 1 A g−1. In addition, although the capacity of the NF@Co3O4 electrodes can reach to 1482 F g−1 and it has the disadvantage of agglomeration, which restricts the diffusion of ions and has a negative effect on the progress of electrochemical reactions. Therefore, a core-shell nanostructure is fabricated by an improved two-step hydrothermal process, which improves the probability of ion reaction with more efficient charge transfer. Furthermore, in as-prepared unique core/shell heterostructure, the resultant electrode possesses the merits of large capacitance of 1680 F g−1 at a current density of 1 A g−1, an excellent rate capability of 70.1% at 20 A g−1 and only 9.8% loss of initial capacitance at a high charge/discharge current density after 2000 cycles. These results demonstrate that this kind of distinct electrode has potential utilization for supercapacitor. 相似文献
19.
《International Journal of Hydrogen Energy》2023,48(49):18856-18870
Recent research has focused on the search for new electrode materials to improve the specific capacitance of supercapacitors. Conductive polymers and metal oxides have been extensively tested as electrode materials for supercapacitors. Incorporating both conductive polymers and metal oxides into a composite provides excellent results for the electrochemical performance of supercapacitors. In this present work, we have fabricated the nanoscale α-NiMoO4 particles that enwrapped on electronically conducting polymer nanocomposites (PNCs) based on Polyvinyl alcohol (PVA)/Poly(vinyl) pyrrolidone (PVP) for supercapacitor applications. The different concentrations of PVA/PVP with α-NiMoO4 loaded polymer nanocomposites were developed by using a solution casting method. All the polymer nanocomposites have been subjected to Scanning Electron Microscopy (SEM), Fourier Transforms Infrared (FTIR), X-ray diffraction (XRD), and electrochemical studies. The prepared PNCs surface morphology has been acquired as a non-uniform rod-like structure. The electrochemical performances of the prepared PNCs have been investigated and the resultant value of the maximum specific capacitance is 15.56 F g−1 for 1 wt % of α-NiMoO4 nanoparticles(NPs) loaded polymer blended electrode at a scan rate of 5 mVs−1. The prepared PNCs exhibit 97.12% of columbic efficiency studied by using two electrode systems at room temperature in an aqueous electrolyte solution of 3 M KOH. From these investigation, it has been revealed that the PVA/PVP/α-NiMoO4 composites could be portable and flexible electrodes for energy storage applications. 相似文献
20.
Electrochemical properties of graphene nanosheets/polyaniline nanofibers composites as electrode for supercapacitors 总被引:1,自引:0,他引:1
Graphene nanosheets/polyaniline nanofibers (GNS/PANI) composites are synthesized via in situ polymerization of aniline monomer in HClO4 solution. The PANI nanofibers homogeneously coating on the surface of GNS greatly improve the charge transfer reaction. The GNS/PANI composites exhibit better electrochemical performances than the pure individual components. A remarkable specific capacitance of 1130 F g−1 (based on GNS/PANI composites) is obtained at a scan rate of 5 mV s−1 in 1 M H2SO4 solution compared to 402 F g−1 for pure PANI and 270 F g−1 for GNS. The excellent performance is not only due to the GNS which can provide good electrical conductivity and high specific surface area, but also associate with a good redox activity of ordered PANI nanofibers. Moreover, the GNS/PANI composites present excellent long cycle life with 87% specific capacitance retained after 1000 charge/discharge processes. The resulting composites are promising electrode materials for high-performance electrical energy storage devices. 相似文献