首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Designing efficient photocatalytic systems for hydrogen evolution is extremely important from the viewpoint of the energy crisis. Highly crystalline heterostructure catalysts have been established, considering their interface electric field effect and structural features, which can help improve their photocatalytic hydrogen-production activity. In this study, we fabricated a highly crystalline heterojunction consisting of ZnFe2O4 nanobricks anchored onto 2D molybdenum disulfide (MoS2) nanosheets (i.e., ZnFe2O4/MoS2) via a hydrothermal approach. The optimized ZnFe2O4/MoS2 photocatalyst, with a ZnFe2O4 content of 7.5 wt%, exhibited a high hydrogen-production rate of 142.1 μmol h−1 g−1, which was 10.3 times greater than that for the pristine ZnFe2O4 under identical conditions. The photoelectrochemical results revealed that the ZnFe2O4/MoS2 heterojunction considerably diminished the recombination of electrons and holes and promoted efficient charge transfer. Subsequently, the plausible Z-scheme mechanism for photocatalytic hydrogen production under white-LED light irradiation was discussed. Additionally, the influence of cocatalysts on the photocatalytic hydrogen evolution for the ZnFe2O4/MoS2 heterostructure was investigated. This work has demonstrated a simplified coupling of one-dimensional or zero-dimensional structures with 2D nanosheets for improving the photocatalytic hydrogen production activity as well as confirmed that MoS2 is a viable substitute for precious metal-free photocatalysis.  相似文献   

2.
MoS2 is a promising noble-metal-free electrocatalyst for the hydrogen evolution reaction. Extensive trials have been carried out to increase its low electrical conductivity and insufficient active sites. Here, a remarkable electrocatalyst for hydrogen evolution is developed based on the in-situ preparation of MoS2 confined in graphene nanosheets. Graphene effectively controls the growth of MoS2 and immensely increases the conductivity and structural stability of the composite materials. Remarkably, because of the plentiful active sites, sufficient electrical contact and transport, MoS2 particles confined in graphene nanosheets exhibit an onset overpotential as small as 32 mV, an overpotential approaching 132 mV at 10 mA cm−2, and a low Tafel slope of 45 mV dec−1. This work presents a reasonable architecture for practical applications in efficient electrocatalytic H2 generation.  相似文献   

3.
Despite MoS2 being a promising non-precious-metal cocatalyst, poor electronic conductivity and low activity for hydrogen evolution caused by serious agglomeration have been identified as critical roadblocks to further developing MoS2 cocatalyst for photocatalytic water splitting using solar energy. In this work, the density functional theory calculations reveal that carbon intercalated MoS2 (C-MoS2) has excellent electronic transport properties and could effectively improve catalytic activity. The experiment results show that the prepared tremella-like C-MoS2 nanoparticles have large interlayer spacing along the c-axis direction and high dispersion because of intercalation of the carbon between adjacent MoS2 layers. Furthermore, the heterostructure photocatalyst of C-MoS2@g-C3N4 formed by loading the cocatalyst of C-MoS2 onto g-C3N4 nanosheets exhibits the H2 evolution rate of 157.14 μmolg−1h−1 when containing 5 wt% C-MoS2. The high photocatalytic H2 production activity of the 5 wt% C-MoS2@g-C3N4 can be attributed to the intercalated conductive carbon layers in MoS2, which leads to efficient charge separation and transfer as well as increased activities of the edge S atoms for H2 evolution. We believe that the C-MoS2 will offer great potential as a photocatalytic H2 evolution reaction cocatalyst with high efficiency and low cost.  相似文献   

4.
Herein we report a heterostructure with ultrathin nanosheets of Co-doped molybdenum sulfide on CdS nanorod array (donated as CdS@CoMo2S4/MoS2) by hydrothermal synthesis. Firstly, elemental Co doping MoS2 (CoMo2S4) delivers the double benefits of increased active sites and enhanced conductivity. Secondly, the structural characteristics maximally exposes the MoS2 edges and enlarges interfacial contact area between the composite catalyst and electrolyte, as well as the efficient interfacial charge transfer. The ratio of CoMo2S4/MoS2 in CdS@CoMo2S4/MoS2 plays a crucial role for the enhanced photo-assistant electrocatalytic hydrogen evolution reaction (HER). We can tune the ratio of CoMo2S4/MoS2 by controlling the preparation time or the ratio of precursor of Co/Mo. The catalyst with predominant MoS2 phase shows superior photocatalytic HER performance with a high H2 production rate of 46.60 μmol mg−1 h−1. Meanwhile, the catalyst with predominant CoMo2S4 phase exhibits not only relatively low overpotential of 172 mV at 10 mA cm−2, which outperforms most values that have been reported on catalyst supported on ITO substrate, but also possesses H2 production rate of 23.47 μmol mg−1 h−1. The superior photo-assistant electrocatalytic HER activity results from the synergistically structural and electronic modulations, as well as the proper energy band alignment between MoS2 and CdS. This investigation could provide an approach to integrate the electro- and photocatalytic activities for HER, especially the photo responding behaviour at a bias potential which is meaningful to produce H2 for actual application.  相似文献   

5.
The development of inexpensive and competent electrocatalysts for high-efficiency hydrogen evolution reaction (HER) has been greatly significant to realize hydrogen production in large scale. In this paper, we selected the inexpensive and commercially accessible stainless steel as the conductive substrate for loading MoS2 as a cathode for efficient HER under alkaline condition. Interconnected MoS2 nanosheets were grown uniformly on 316-type stainless steel meshes with different mesh numbers via a facile hydrothermal way. And the optimized MoS2/stainless steel electrocatalysts exhibited superior electrocatalytic performance for HER with a low overpotential of 160 mV at 10 mA cm−2 and a small Tafel slope of 61 mV dec−1 in 1 M KOH. Systematic study of the electrochemical properties was performed on the MoS2/stainless steel electrocatalysts in comparison with the commonly used carbon cloth to better comprehend the origin of the superior HER performance as well as stability. By collaborative optimization of MoS2 nanosheets and the cheap stainless steel substrate, the interconnected MoS2 nanosheets on stainless steel provide an alternative strategy for the development of efficient and robust HER catalysts in strong alkaline environment.  相似文献   

6.
The MoS2/Ti3C2 catalyst with a unique sphere/sheet structure were prepared by hydrothermal method. The MoS2/Ti3C2 heterostructure loading 30% Ti3C2 has a maximum hydrogen production rate of 6144.7  μmol g−1 h−1, which are 2.3 times higher than those of the pure MoS2. The heterostructure maintains a high catalytic activity within 4 cycles. The heterostructure not only effectively reduce the recombination of photogenerated electrons and holes, but also provide more activation sites, which promotes the photocatalytic hydrogen evolution reaction (HER). These works can provide reference for the development of efficient catalysts in photocatalytic hydrogen evolution.  相似文献   

7.
The unique architecture is very significant for photocatalysts to achieve high photocatalytic efficiency. Herein, hollow Cu2MoS4/ZnIn2S4 heterostructural nanocubes with intimate-contact interface have been prepared for the first time via a self-template way, which can promote the photocatalysis hydrogen evolution. First, novel hollow structured Cu2MoS4 nanocubes were successfully synthesized using Cu2O as a precursor, then the ZnIn2S4 nanosheets were in-situ grew on the surface of hollow Cu2MoS4 nanocubes. The unique hollow heterostructures have markedly enhanced photocatalytic efficiency, and 15 wt% Cu2MoS4/ZnIn2S4 sample exhibits the highest hydrogen production rate of 8103 μmol·h−1·g−1, which is approximately four times higher than pure ZnIn2S4. The improved photocatalytic performance is mainly attributed to the following two points: (1) the hollow nanocube structure can provide rich active sites and increase light absorption; (2) forming a built-in electric field is conducive to transfer the holes generated by ZnIn2S4 to Cu2MoS4, which can effectively promote charge separation. This work may provide insights for the design of hollow architecture cage materials for high photocatalytic performance.  相似文献   

8.
An oxygen-vacancy rich, bismuth oxide (Bi2O3) based MoS2/Bi2O3 Z-scheme heterojunction catalyst (2-BO-MS) was prepared in an autoclave hydrothermal method using ethanol and water. The performance of MoS2/Bi2O3 catalyst was examined for photocatalytic hydrogen evolution, photoelectrochemical activity, and crystal violet (CV) dye degradation by comparing with pristine Bi2O3 and MoS2. The hydrogen evolution performances of 2-BO-MS catalyst exhibited 3075.21 μmol g−1 h−1, which is 7.18 times higher than that of MoS2 (428.14 μmol g−1 h−1). The XPS, XRD and HRTEM analyses covered that the superior photocatalytic performance of 2-BO-MS catalyst might have stemmed out due to the existence of oxygen vacancies, enhanced strong interfacial interaction between MoS2 and Bi2O3 and specific surface area. The in-depth investigation has been performed for MoS2/Bi2O3 Z-scheme heterojunction using several characterization techniques. Moreover, the photocatalytic mechanism for hydrogen evolution and photodegradation were proposed based on trapping experiment results. This results acquired using MoS2/Bi2O3 Z-scheme heterojunction would be stepping stone for developing heterojunction catalyst towards attaining outstanding photocatalytic activity.  相似文献   

9.
Integrating MoS2 with carbon-based materials, especially graphene, is an effective strategy for preparing highly active non-noble-metal electrocatalysts in the hydrogen evolution reaction (HER). This work demonstrates a convenient hydrothermal method to fabricate molybdenum disulfide nanosheets/nitrogen-doped reduced graphene oxide (MoS2/NGO) hybrids using polyoxomolybdate as the Mo precursor. Introducing more defects and expanding interlayer spacing of MoS2 can be achieved through decreasing the pH value of the reactive system due to the existed high-nuclear polyoxometalate clusters. MoS2/NGO hybrids prepared at low pH exhibit superior HER activity to those obtained at high pH. MoS2/NGO-pH1.5 exhibits an ultralow overpotential of 81 mV at 10 mA cm−2, a low Tafel slope of 60 mV·dec−1 and good stability in alkaline electrolyte. Such excellent electrocatalytic activity is contributed by the abundant HER catalytic active sites, the increased electrochemically-accessible area and the synergetic effects between the active MoS2 catalyst and NGO support.  相似文献   

10.
Recently, 2D semiconductor-based heterojunctions emerge as a focal point of intensive research owing to their unique properties, including efficient charge separation and large interface areas. Herein, Ni or Co-doped black phosphorus/molybdenum disulfide (BP/MoS2–Y (Y: Ni, Co)) heterojunctions fabricate for photocatalytic H2 evolution and electrochemical nitrite sensor. Compared to the BP/MoS2, the BP/MoS2–Ni and BP/MoS2–Co exhibit enhanced H2 performance, as 6.4139 mmol h−1 g−1 and 7.4282 mmol h−1 g−1, respectively, in the presence of Eosin-Y (λ ≥ 420 nm). Furthermore, BP/MoS2–Co applies as an electrocatalyst on a GCE for the electrochemical detection of nitrite. To optimize the nitrite sensing performance of BP/MoS2–Co, the effect of the pH, amount of material, scan rates, and other conditions study in detail. The BP/MoS2–Co displays a linear response within the range of 100–2000 μM with a detection limit of 4.1 μM for DPV. This work can offer an opportunity for hydrogen systems as well as electrochemical sensor applications.  相似文献   

11.
Developing earth-abundant and highly active bifunctional electrocatalysts are critical to advance sustainable hydrogen production via alkaline water electrolysis but still challenging. Herein, heterojunction hybrid of ultrathin molybdenum disulfide (MoS2) nanosheets and non-stoichiometric nickel sulfide (Ni0.96S) is in situ prepared via a facile one-step hydrothermal strategy, followed by annealing at 400 °C for 1 h. Microstructural analysis shows that the hybrid is composed of intimate heterojunction interfaces between Ni0.96S and MoS2 with exposed active edges provided by ultrathin MoS2 nanosheets and rich defects provided by non-stoichiometric Ni0.96S nanocrystals. As expected, it is evaluated as bifunctional electrocatalysts to produce both hydrogen and oxygen via water electrolysis with a hydrogen evolution reaction (HER) overpotential of 104 mV at 10 mA cm−2 and an oxygen evolution reaction (OER) overpotential of 266 mV at 20 mA cm−2 under alkaline conditions, outperforming most current noble-metal-free electrocatalysts. This work provides a simple strategy toward the rational design of novel heterojunction electrocatalysts which would be a promising candidate for electrochemical overall water splitting.  相似文献   

12.
An efficient ternary Mn0.2Cd0.8S/MoS2/Co3O4 heterojunction was prepared and displayed excellent photocatalytic performance. The ternary Mn0.2Cd0.8S/MoS2/Co3O4 heterojunction with 0.62 wt% of MoS2 and 1.51 wt% of Co3O4 achieved the highest H2 evolution activity (16.45 mmol g−1 h−1), which was well above Mn0.2Cd0.8S (2.72 mmol g−1 h−1). The improved H2 evolution activity was ascribed to the synergistic effect of the Mn0.2Cd0.8S/Co3O4 p–n heterojunction and the modification of MoS2 as a co-catalyst. This work can offer a new perspective for the application of MnxCd1−xS-based ternary heterojunction towards solar energy conversion.  相似文献   

13.
Platinum-based alloy materials as effective cocatalysts in improving the performance of photocatalytic H2 production have raised great interest. Herein, a facile strategy of chemical reduction is established to synthesize bimetallic PtNi nanoparticles on 2D g-C3N4 nanosheets with excellent photocatalytic activity. The addition of PtNi nanoparticles can provide new H+ reduction sites and increase more active sites of the material. The synergistic effect between PtNi alloy nanoparticles and 2D g-C3N4 nanosheets can regulate electronic structure, narrow the band, accelerate charge transfer efficiency and inhabit the recombination of photo-induced electron (e) and hole pairs (h+), contributing to the improvement of hydrogen evolution activity. The optimal hydrogen evolution rate of Pt0.6Ni0.4/CN shows higher hydrogen evolution rate (9528 μmol·g−1·h−1), which is 13.1 times than that of pure g-C3N4 nanosheets. Besides, a possible mechanism of photocatalytic hydrogen generation has been brought up according to a series of physical and chemical characterization. This work also provides a potential idea of developing cocatalysts integrating metal alloys with 2D g-C3N4 nanosheets for promoting photocatalytic hydrogen evolution.  相似文献   

14.
A novel graphene-based three-dimensional (3D) aerogel embedded with two types of functional nanomaterials had been prepared by a facile one-pot hydrothermal process. During the hydrothermal reaction, graphene, TiO2 nanoparticles and MoS2 nanosheets were self-assembled into the 3D interconnected networks aerogel, where the uniformly dispersed TiO2 nanoparticles were densely anchored onto the graphene nanosheets and decorated with the ultrathin MoS2 nanosheets. The UV–vis DRS and PL spectra measurement shows that the MoS2/P25/graphene aerogel exhibits enhanced light absorption and efficient charge separation properties. As a new photocatalyst, the photocatalytic activity was evaluated by photoelectrochemical test and photodegradation methyl orange (MO) under UV irradiation, an improvement of photocurrent was observed, as 6 times higher for MoS2/P25/graphene aerogel (37.45 mA/cm2) than pure P25 at +0.6 V, and the fastest photodegradation of MoS2/P25/graphene aerogel was found within 15 min. The improved photocatalytic activity is attributed to the porous structure, good electrical conductivity and the maximization of accessible sites of the unique 3D graphene aerogel, the increasing active adsorption sites and photocatalytic reaction centers for the introduction of MoS2 nanosheets, and the positive synergetic effect between the three components in this hybrid. This work demonstrates that the as-prepared MoS2/P25/graphene aerogel may have a great potential application in photoelectrochemical hydrogen production and pollution removal.  相似文献   

15.
A novel three-dimensional (3D) hybrid consisting of molybdenum disulfide nanosheets (MoS2) uniformly bound at N-doped macro-mesoporous carbon (N-MMC) surface was fabricated by the solvothermal method. The resulting MoS2/N-MMC hybrid possesses few-layer MoS2 nanosheets structure with abundant edges of MoS2 exposed as active sites for hydrogen evolution reaction (HER), in sharp contrast to large aggregated MoS2 nanoflowers without N-MMC. The high electric conductivity of N-MMC and an abundance of exposed edges on the MoS2 nanosheets make the hybrid excellent electrocatalytic performance with a low onset potential of 98 mV, a small Tafel slope of 52 mV/decade, and a current density of 10 mA cm?2 at the overpotential of 150 mV. Moreover, the MoS2/N-MMC hybrid exhibits outstanding electrochemical stability and structural integrity owing to the strong bonding between MoS2 nanosheets and N-MMC.  相似文献   

16.
Photocatalytic water splitting is considered to be a green H2 generation approach and has potential to be applied in the future. As a photocatalytic active material for H2 evolution, CdS is a good candidate. However, the pristine CdS still suffers from low efficiency and poor stability. To address those issues, we developed noble-metal-free CdS@MoS2 core-shell nanoheterostructures which exhibit outstanding photocatalytic H2 evolution performance thus far with rate of 62.55 mmol g−1 h−1, which exceeds that of pristine CdS by a factor of 148. Meanwhile, the photocatalytic stability can be well retained with no deterioration of activity in 24 h reaction. The excellent performance can be reasonably attributed to the low crystallinity of MoS2 with numerous active sites provided, and the band alignment of CdS and MoS2 as determined by valence band-XPS and Mott-Schottky plots analysis, which significantly promotes charge transportation and separation. The enhanced photocatalytic stability here should be ascribed to the intimate growth of MoS2 shells which significantly passivate the surface trap states of CdS cores and thus the photocorrosion is remarkably retarded. This novel strategy will inspire the fabrication of other photocatalytic systems, and may high-efficient photocatalysts be obtained.  相似文献   

17.
A facile oxidation-sulfidation strategy is proposed to fabricate the vertically aligned amorphous MoS2 nanosheets on MoO2 films/Mo foil (MF) as free-standing electrode, which features as the integration of three merits (high conductivity, abundant exposures of active sites, and enhanced mass transfer) into one electrode for hydrogen evolution reaction (HER). Density functional theory (DFT) calculations reveal the strong interaction between MoS2 and MoO2, which can enhance the intrinsic conductivity with narrow bandgap, and decreases hydrogen adsorption free energy (ΔGH1 = ~0.06 eV) to facilitate the HER process. Benefiting from the unique hierarchical structure with amorphous MoS2 nanosheets on conductive MoO2 films/MF to facilitate the electron/mass transfer by eliminate contact resistance, controllable number of stacking layers and size of MoS2 slabs to expose more edge sites, the optimal MoS2/MoO2/MF exhibits outstanding activity with overpotential of 154 mV at the current density of 10 mA cm−2, Tafel slope of 52.1 mV dec−1, and robust stability. Furthermore, the intrinsic HER activity (vs. ECSA) on MoS2/MoO2/MF is significantly enhanced, which shows 4.5 and 18.6 times higher than those of MoS2/MF and MoO2/MF at overpotential of 200 mV, respectively.  相似文献   

18.
The MoS2 quantum dots (QDs) were interspersed on anatase TiO2 nanosheets with exposed (001) facets by a facile self-assembly strategy. As expected, the MoS2 QDs/TiO2 nanosheets display an excellent photocatalytic performance for hydrogen production, and its hydrogen evolution rate is 139 μmol/h/g. More importantly, the hydrogen evolution rate of MoS2 QDs/TiO2 nanosheets is almost 4-fold in comparison to that of nude TiO2 nanosheets. Based on the detailed characterizations, it can be obtained that the improved photocatalytic activity for hydrogen production can be ascribed to the particular characteristics of MoS2 QDs, which can intensify the photo-absorption efficiency of TiO2 nanosheets and enhance the separation and transfer efficiency of photo-excited charge carriers. It is anticipated that this work provides a novel paradigm to fabricate the highly-efficient photocatalysts for hydrogen evolution.  相似文献   

19.
A novel nano-heterojunction photocatalysts of CdS/MoS2 with appropriate interfacial contact was successfully obtained by the facile two-step hydrothermal synthesis. The MoS2 ultrathin layer was well combined with CdS nanosheets and formed the interaction, which facilitated the transfer and separation of charges. The CdS/MoS2 15 wt% possessed much higher H2 evolution photocatalytic performance (35.24 mmol h?1 g?1), exhibiting an 85.95 times enhancement as compared to that of pure CdS (0.41 mmol h?1 g?1). Moreover, the photochemical stability of CdS/MoS2 heterojunctions was excellent, which showed no significant decrease in activity after four cycles of experiments. The finding provides a novel method to integrate the structure of MoS2 with CdS, which exhibits great potential in solar energy conversion.  相似文献   

20.
Developing efficient and cost-effective transition metal-based electrocatalysts for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) is crucial to generate clean and renewable hydrogen energy. The construction of hybrid catalysts with multiple active sites is an effective approach to promote catalytic performance. Herein, a molybdenum disulfide (MoS2)-based hybrid with N-doped carbon wrapped CoFe alloy (MoS2/CoFe@NC) was synthesized through a typical hydrothermal method. The MoS2/CoFe@NC exhibits excellent electrocatalytic performance with overpotentials of 172 mV for HER and 337 mV for OER at 10 mA cm−2, and long-term stability of 24-h electrolytic reaction in 1 M KOH solution. The chemical coupling between MoS2 and CoFe@NC provides improved electronic structures and more accessible active sites. The CoFe@NC substrate accelerates the charge transfer to MoS2 through a synergistic effect. This work demonstrates that the CoFe@NC is a promising substrate for depositing MoS2 nanosheets (NSs) to achieve excellent catalytic performance for both HER and OER.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号