共查询到18条相似文献,搜索用时 64 毫秒
1.
针对高精度谐振式露点测量系统中电路故障诊断问题,提出了一种基于改进的麻雀搜索算法(Improved Sparrow Search Algorithm, ISSA)优化智能分类器参数的电路故障诊断模型,采用测前仿真故障诊断方法中的智能诊断方法,选择适用于小样本、非线性问题的支持向量机(Support Vector Machine, SVM)作为智能分类器,针对麻雀搜索算法中收敛速度慢、易陷入局部最优等问题进行改进,并将改进后的优化算法用于SVM参数寻优,构建ISSA?SVM故障诊断模型用于谐振电路故障诊断。实验结果显示,ISSA?SVM模型在建立的电路上能够达到88.9%的故障诊断率,可靠性较强,能够作为高精度谐振式露点传感器电路的故障诊断方法。 相似文献
2.
实施电缆隧道多状态综合监控系统是电缆专业智能化、精益化管理的发展方向,本文结合工作实际,对监控系统的功能设计与研究方向提出了可行性建议。 相似文献
3.
针对群智能算法优化支持向量机模型应用在滚动轴承故障诊断领域中易陷入局部最优、准确率较低的问题,提出了一种基于改进麻雀算法(sparrow search algorithm, SSA)优化支持向量机(support vector machine, SVM)的滚动轴承故障诊断方法。首先引入均匀化分布Chebyshev混沌映射初始化麻雀种群,以提高种群空间分布均匀性,之后将自适应惯性权重融入麻雀算法的发现者位置更新,最后对更新位置后的最优麻雀进行随机游走扰动,提高算法的全局和局部搜索能力,避免算法陷入局部最优。将该算法用于支持向量机的参数优化,构建改进麻雀算法优化支持向量机故障诊断模型实现对轴承故障信号的分类诊断。滚动轴承故障诊断试验分析结果表明,该算法模型故障分类效果明显优于粒子群算法优化支持向量机模型、遗传算法优化支持向量机模型和麻雀算法优化支持向量机模型,能够有效识别滚动轴承各故障类型。 相似文献
4.
冷水机组是一个高度非线性的复杂系统,其系统故障会导致系统的运行偏离正常状态,不仅会造成工作空间空气质量的下降,更会造成机组能耗的增加。在选取RP-1043实验数据中的一组正常数据之后,又选取了其中七组故障数据,建立了训练数据。通过支持向量机(SVM)方法进行分类,以测试其对于冷水机组故障诊断的性能,并采用正确率(correct rate,CP)、命中率(hit rate,HR)、虚警率(false alarm rate,FAR)三个指标来评价模型的分类性能。同时引入四种不同程度故障,分析SVM方法随着故障程度变化的分类准确率变化。 相似文献
5.
基于支持向量机的转子振动信号故障分类研究 总被引:7,自引:0,他引:7
转子在运行过程中的振动加速度信号包含了转子运行状态大量信号,瞬态过程中故障加速度信号特征的提取及其识别对于旋转机械故障诊断是十分重要的。针对在升降速运行时的故障特征数据样本有限而制约有效智能诊断的问题,探讨和提出了基于支持向量机的加速度信号故障诊断方法。实验分析结果表明:该方法可实现转子的振动加速度信号对转子在升降速运行时的多故障的识别和诊断。 相似文献
6.
7.
针对煮茧工艺优化需根据解舒质量反复人工试煮而造成生产效率低、原料浪费等问题,基于LSSA-LSSVM算法,提出一种面向纤检机构真空减压煮茧工艺的蚕茧解舒质量预测模型。首先,提取蚕茧质量特性、真空减压煮茧工艺参数与解舒质量变量作为最小二乘支持向量机(LSSVM)的输入与输出变量。其次,引入拉丁超立方抽样方法(LHS)与Levy飞行策略优化原始麻雀搜索算法的初始化方式与位置更新方式,获得改进的麻雀搜索算法(LSSA)。最后,利用LSSA得到LSSVM的最优超参数组合(γ*,σ2*),建立解舒质量预测模型。实验结果表明,该模型预测准确率均值可达94.75%,预测时间均值为0.15 s,满足煮茧工艺精度与实时性要求,可用于煮茧工艺参数仿真优化,进而减少试煮次数,提高生产效率,该方法同时可推广至缫丝企业。 相似文献
8.
综述了郑州电力电缆及电缆隧道运维现状以及影响电力电缆及电缆隧道正常运维的主要因素,针对这些影响因素,提出了基于GIS的多传感器信息融合的高压电缆及电缆隧道环境在线监测方案。 相似文献
9.
文章分析了重庆市某区220kV某输变电工程线路电缆隧道所在位置及邻近地段的地面建筑和地下构造物、管线状况,预测电缆线路开挖可能产生的影响,主要对围岩稳定性进行了评价分析,并提出有利于电缆隧道工程施工的建议。 相似文献
10.
支持向量机是以统计学习理论为基础发展起来的新的通用学习方法,较好解决了小样本、高维数、非线性等学习问题。从理论与实验上比较了目前常用的基于支持向量机的变压器故障诊断方法。 相似文献
11.
基于支持向量机的机械系统状态组合预测模型研究 总被引:7,自引:1,他引:7
提出了一种新的支持向量机(Support Vector Machines,SVM)机械系统状态组合预测模型。应用FPE(Final Principle Error)准则优化样本的维数,采用时域内的振动烈度和频域内的特征频率分量作为预测机械系统状态的敏感因子,构建了预测模型。支持向量机采用新型的结构风险最优化准则,预测能力强、鲁棒性好。采用径向基函数和ε损失函数,将该模型应用于实验台和旋转注水机组的状态预测,取得了较好的效果。这表明利用支持向量机的组合预测模型,可以降低设备维修代价,提高设备的安全性和可靠性。 相似文献
12.
13.
通过引入近场声全息和分块特征提取技术,改进了基于声像的故障诊断方法,发展了基于近场声全息模式识别的故障诊断技术.针对多个机械部件对应相同故障频率,并产生相干声场的故障情形进行了加肋板激振的模拟实验,使用传声器阵列扫描技术测取各种状态下声信号,在利用近场声全息技术得到声像进行噪声源识别与定位的基础上,对声像进行整体和分块相结合的奇异值特征,提取方式构造识别向量,然后采用多分类支持向量机进行训练分类,进而用于机械工作状态的诊断.实验结果表明,根据声像的物理特征使用整体和分块相结合的特征提取技巧能够较好改善诊断效果,同时进一步验证了声成像方法在故障诊断领域应用的可行性,并与常规的基于单点或几个孤立测点测试的声学故障诊断方法相比具有优越性,拓展了声学故障诊断技术的应用范围. 相似文献
14.
15.
为解决支持向量机算法(Support Vector Machine,SVM)的核函数参数及惩罚因子参数选取的盲目性,利用果蝇优化算法(Fruit Fly Optimization Algorithm,FOA)对SVM中参数进行优化。提出基于FOA的SVM故障诊断算法,并对汽轮机故障实验数据进行模式识别。该算法能对SVM相关参数自动寻优,且能达到较理想的全局最优解。通过与常用的粒子群算法(Particle Swarm Optimization,PSO)与遗传算法(Genetic Algorithm,GA)优化后支持向量机进行对比。结果表明,FOA-SVM算法稳定、识别速度快、识别率高。 相似文献
16.
免疫支持向量机复合故障诊断方法及试验研究 总被引:1,自引:2,他引:1
研究了传统分类算法在故障诊断中的不足,融合人工免疫系统中的实值否定选择(RNS)算法和支持向量机(SVM)算法提出了一种复合的故障诊断方法。在新方法中使用RNS算法产生检测器(非己集合)当作故障样本,这些样本再作为SVM算法的输入进行训练,这样就能解决分类算法所面临的训练样本不足的难题。轴向柱塞泵发生故障时,由于滑靴对斜盘冲击产生的振动信号被高频谐振信号调制,通过小波簇包络解调方法将调制信号解调出来,然后对包络信号用小波包分解子带特征能量法进行特征提取。最后用轴向柱塞泵多松靴和配流盘磨损多故障模式样本进行诊断测试,正确率可达90%以上,验证了复合诊断方法的有效性。 相似文献
17.
18.
针对服装、包装等加工行业中须将人工测量的纸质图纸或模型样件的尺寸信息录入计算机并转换成电子加工图纸而导致的加工周期长、生产效率低的问题,提出了一种基于机器视觉的平面加工机床控制系统,以实现对纸质图纸或模型样件的快速检测。采用“ARM+DSP”方式搭建了主从式运动控制系统,设计了系统各部分功能模块。构建了“工控机+工业CCD (charge coupled device,电荷耦合器件)相机+光源控制”的视觉检测系统,结合FAWS(feature adaptive wavelet shrinkage, 自适应特征的小波收缩)算法和麻雀搜索算法提出一种改进的FAWS算法进行图像降噪,并采用Canny算法进行图像边缘检测,实现图像轮廓的准确提取。设计了图像轮廓提取、轮廓数据转换为加工数据、数据通信等处理程序,实现了基于机器视觉的快速检测以及在系统加工过程中的人机交互。最后,对系统进行了实验测试,对实际加工效果进行了评价。结果表明,采用所研制的平面加工机床控制系统不仅能显著提高生产效率,而且能减小图像轮廓的误差。其性能稳定可靠,具有一定的工程实用价值。 相似文献