首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 984 毫秒
1.
Agave tequilana bagasse is a suitable lignocellulosic residue for energy production. However, the presence of lignin and the heterogeneous structure of hemicellulose may hinder the availability of polysaccharides. In this work, the pretreatment of A. tequilana bagasse with alkaline hydrogen peroxide (AHP) followed by enzymatic saccharification with hemicellulases and cellulases was assessed for the removal of lignin and extraction of fermentable sugars, respectively. Results of the AHP pretreatment indicated that it is possible to attain up to 97% delignification and recover 88% of cellulose and hemicellulose after only 1.5 h of treatment. Regarding the saccharification process, the total sugar yield and productivity were both increased by 2-fold using an enzymatic mixture (cellulases + hemicellulases) compared to single enzyme hydrolysis (cellulases), evidencing synergism. Further evaluation of the hydrolyzates as substrate for hydrogen and methane production, resulted in yields 1.5 and 3.6-times (215.14 ± 13 L H2 and 393.4 ± 13 L CH4 per kg bagasse, respectively) superior to those obtained with hydrolyzates of non-pretreated bagasse processed with a single enzyme. Overall, using AHP pretreatment and subsequent hydrolysis with enzymatic mixtures improves the saccharification of A. tequilana bagasse enhancing the production of hydrogen and methane.  相似文献   

2.
This work addresses the hydrogen production from enzymatic hydrolysates of Agave tequilana bagasse and the valorization of the acidogenic effluent for methane production in anaerobic sequencing batch reactors (ASBRs). Regarding hydrogen production, the ASBR was operated at four organic loading rates (OLRs), which were modified by decreasing the cycle time (from 24 to 12 h) and increasing the COD concentration (from 8 to 12 and 16 g L?1). Results showed that the highest OLR promoted the highest hydrogen production rate of 25.2 ± 2.1 NmL L?1 h?1. Conversely, the hydrogen molar yield remained constant, obtaining similar values to the highest reported for lignocellulosic hydrolysates in continuous reactors (1.6H2-mol molconsumed sugar?1). Regarding methane production from the acidogenic effluent, an unexpected methane suppression was observed during the first 5 cycles of the ASBR operation. Such event was attributed to the disaggregation of the granular sludge due to the remaining hydrolytic activity of the enzymatic cocktail used for the hydrolysates production. This was corroborated by feeding acetate to an ASBR (positive control) and supplying the enzymatic cocktail. Overall, even though the ASBR configuration demonstrated its suitability for hydrogen production, further studies are needed to coupling the methanogenic phase in different reactor configurations.  相似文献   

3.
Feasibility of hydrogen production from acid and enzymatic oat straw hydrolysates was evaluated in an anaerobic sequencing batch reactor at 35 °C and constant substrate concentration (5 g chemical oxygen demand/L). In a first experiment, hydrogen production was replaced by methane production. Selective pressures applied in a second experiment successfully prevented methane production. During this experiment, initial feeding with glucose/xylose, as model substrates, promoted biomass granulation. Also, the highest hydrogen molar yield (HMY, 2 mol H2/mol sugar consumed) and hydrogen production rate (HPR, 278 mL H2/L-h) were obtained with these model substrates. Gradual substitution of glucose/xylose by acid hydrolysate led to disaggregation of granules and lower HPR and HMY. When the model substrates were completely substituted by enzymatic hydrolysate, the HMY and HPR were 0.81 mol H2/mol sugar consumed and 29.6 mL H2/L-h, respectively. Molecular analysis revealed a low bacterial diversity in the stages with high hydrogen production and vice versa. Furthermore, Clostridium pasteurianum was identified as the most abundant species in stages with a high hydrogen production. Despite that feasibility of hydrogen production from hydrolysates was demonstrated, lower performance from hydrolysates than from model substrates was obtained.  相似文献   

4.
Acid agave bagasse hydrolyzates have been used as a substrate for hydrogen production, however, bioreactors are unstable and with poor performance. Granular biomass could be more successful in producing hydrogen from acid agave bagasse hydrolyzates in comparison with suspended biomass. Thus, this study aimed to evaluate the effect of increasing concentrations of acid agave hydrolyzates on hydrogen production, to compare the hydrogen productivity and stability of granular biomass in an expanded granular sludge bed (EGSB) reactor and suspended biomass in an anaerobic sequencing batch reactor (AnSBR) fed with acid hydrolyzates, and finally to determine the variation of microbial communities established in both bioreactor configurations. In batch tests, the heat-treated inoculum produced hydrogen from acid agave hydrolyzates without observing inhibition at 6.3 g/L of carbohydrates (CHO). This hydrolyzate concentration was used to start up the AnBSR, which reached a productivity of 226 ± 53 mL H2/L⋅d at organic loading rates (OLR) from 3.2 to 4.5 gCHO/L⋅d. The hydrogen production stability index decreased from 0.8 to 0.6 at increasing OLR, and the AnSBR failed at the highest OLR of 5.7 g/L⋅d. The EGSB reactor reached the highest productivity of 361 ± 130 mL H2/L⋅d at an OLR of 7.4 gCHO/L⋅d, but with a low stability index of 0.6. Independently of the bioreactor configuration, microbial communities associated with the production of acetate/lactate were successfully established in both configurations with the prevalence of Lactobacillus spp. A low abundance of typical H2 producers like Clostridium was always observed over the whole period of operation (<10% of the total abundance). In sum, the hydrogen productivity from acid agave hydrolyzates was higher for the EGSB reactor than for the AnSBR, but with much lower stability. The evidence provided by this study suggests the establishment of metabolic pathways for hydrogen production from organic acids.  相似文献   

5.
Treated ricebran hydrolysate was fermented anaerobically using Clostridium saccharoperbutylacetonicum N1-4 at an initial pH of 6 ± 0.2 and an operating temperature of 30 °C for production of hydrogen. The effects of different pretreatment methods on the liberation of sugar from 100 g of ricebran per litre of medium (distilled water) were investigated. In addition, the effects of the pretreatment method on ricebran hydrolysates of different initial ricebran concentrations on liberated sugar as well as the effects of the initial inoculum concentration, ricebran (substrate) concentration, and FeSO4·7H2O concentration on the yield as well as the productivity of hydrogen were investigated. The combination of enzymatic hydrolysis and a boiling pretreatment method produced the most fermentable sugar, 29.03 ± 0.0 g/L from 100 g of ricebran per litre of medium (distilled water), while the amount of sugar liberated by ricebran hydrolysates of different initial ricebran concentrations upon pretreatment monotonically increased with the initial ricebran concentration. The increment in substrate, inoculum, and FeSO4·7H2O concentrations had a significantly positive effect (p < 0.05) on both the yield and productivity of hydrogen. The maximum hydrogen gas yield (YP/S) and productivity of 3.37 mol-H2 per mol-sugar consumed and 7.58 mmol/(L h), respectively, were obtained from ricebran hydrolysate with a 100 g/L ricebran concentration (equivalent to 28.59 ± 1.27 g sugar/L). In other experiments, 0.03 g/L FeSO4·7H2O and 1.5 g/L inoculum resulted in the best hydrogen gas yield and productivity from ricebran hydrolysates.  相似文献   

6.
The present work aimed at establishing an efficient degradation and energy recovery system form sugarcane bagasse (SCB) through hydrogen peroxide-acetic acid (HPAC) pretreatment, thermophilic hydrogen production and mesophilic methane production. The degradation ratio of HPAC pretreated SCB (HPAC-SCB, 2%, w/v) exceeded 90% under the biological hydrolysis of C. thermocellum without enzyme addition. The hydrogen yield in the co-culture fermentation of T. thermosaccharolyticum and C. thermocellum from HPAC-SCB (2%, w/v) reached 226 mL/g substrate. The long-term hydrogen fermentation was successfully established with 1.59 L/(L·d), 0.159 L/g substrate for average hydrogen productivity and yield, respectively. Methane production of 0.341 L/g COD (chemical oxygen demand)added was recovered by semi-continuous methane fermentation from hydrogen-producing effluent at 12 days of hydraulic retention time (HRT). Average energy recovery of 8.79 MJ/kg SCB was obtained under the optimal conditions. The present work indicated the promising application of the established process in valorization of lignocellulosic bio-waste.  相似文献   

7.
A few studies have been made on fermentative hydrogen production from marine algae, despite of their advantages compared with other biomass substrates. In this study, fermentative hydrogen production from Laminaria japonica (one brown algae species) was investigated under mesophilic condition (35 ± 1 °C) without any pretreatment method. A feasibility test was first conducted through a series of batch cultivations, and 0.92 mol H2/mol hexoseadded, or 71.4 ml H2/g TS of hydrogen yield was achieved at a substrate concentration of 20 g COD/L (based on carbohydrate), initial pH of 7.5, and cultivation pH of 5.5. Continuous operation for a period of 80 days was then carried out using anaerobic sequencing batch reactor (ASBR) with a hydraulic retention time (HRT) of 6 days. After operation for approximately 30 days, a stable hydrogen yield of 0.79 ± 0.03 mol H2/mol hexoseadded was obtained. To optimize bioenergy recovery from L. japonica, an up-flow anaerobic sludge blanket reactor (UASBr) was applied to treat hydrogen fermentation effluent (HFE) for methane production. A maximum methane yield of 309 ± 12 ml CH4/g COD was achieved during the 90 days operation period, where the organic loading rate (OLR) was 3.5 g COD/L/d.  相似文献   

8.
Microbial communities involved in hydrogen (H2) production from enzymatic hydrolysates of agave bagasse were analyzed through 16S rRNA sequencing. Two types of reactor configurations and four different enzymatic hydrolysates were evaluated. Trickling bed reactors led to highly-diverse microbial communities, but low volumetric H2 production rates (VHPR, maximum: 5.8 L H2/L-d). On the contrary, well-controlled environments of continuous stirred-tank reactors favored the establishment of low diverse microbial communities composed by Clostridium-Sporolactobacillus leading to high-performance H2-production (VHPR maximum: 13 L H2/L-d). Cellulase-Viscozyme and Celluclast-Viscozyme hydrolysates led to the co-dominance of Clostridium and Sporolactobacillus, possibly due to the presence of xylose and hemicellulose-derived carbohydrates. Cellulase hydrolysates were linked to communities dominated by Clostridium, while maintaining low abundance of Sporolactobacillus. Stonezyme hydrolysates favored microbial communities co-dominated by Clostridium-Lachnoclostridium-Leuconostoc. Moreover, contrary to the prevailing theory, it was demonstrated that H2 production performance was inversely related to microbial diversity.  相似文献   

9.
The effect of culture parameters on hydrogen production using strain GHL15 in batch culture was investigated. The strain belongs to the genus Thermoanaerobacter with 98.9% similarity to Thermoanaerobacter yonseiensis and 98.5% to Thermoanaerobacter keratinophilus with a temperature optimum of 65–70 °C and a pH optimum of 6–7. The strain metabolizes various pentoses, hexoses, and disaccharides to acetate, ethanol, hydrogen, and carbon dioxide. However substrate inhibition was observed above 10 mM glucose concentration. Maximum hydrogen yields on glucose were 3.1 mol H2 mol−1 glucose at very low partial pressure of hydrogen. Hydrogen production from various lignocellulosic biomass hydrolysates was investigated in batch culture. Various pretreatment methods were examined including acid, base, and enzymatic (Celluclast® and Novozyme 188) hydrolysis. Maximum hydrogen production (5.8–6.0 mmol H2 g−1 dw) was observed from Whatman paper (cellulose) hydrolysates although less hydrogen was produced by hydrolysates from other examined lignocellulosic materials (maximally 4.83 mmol H2 g−1 dw of grass hydrolysate). The hydrogen yields from all lignocellulosic hydrolysates were improved by acid and alkaline pretreatments, with maximum yields on grass, 7.6 mmol H2 g−1 dw.  相似文献   

10.
Immobilized Clostridium butyricum TISTR 1032 on sugarcane bagasse improved hydrogen production rate (HPR) approximately 1.2 times in comparison to free cells. The optimum conditions for hydrogen production by immobilized C. butyricum were initial pH 6.5 and initial sucrose concentration of 25 g COD/L. The maximum HPR and hydrogen yield (HY) of 3.11 L H2/L substrate·d and 1.34 mol H2/mol hexose consumed, respectively, were obtained. Results from repeated batch fermentation indicated that the highest HPR of 3.5 L H2/L substrate·d and the highest HY of 1.52 mol H2/mol hexose consumed were obtained at the medium replacement ratio of 75% and 50% respectively. The major soluble metabolites in both batch and repeated batch fermentation were butyric and acetic acids.  相似文献   

11.
In this paper, the high concentration of corn stalk (60 g/L) was employed as feedstock to produce bio-hydrogen and methane by combining hydrogen fermentation and anaerobic digestion. In the first stage of hydrogen fermentation, the effects of several key parameters, such as strain enhancement technique, cetyl trimethyl ammonium bromide (CTAB), NH4HCO3 on hydrogen production from cornstalk were investigated and optimized. The maximum hydrogen yield of 79.8 ± 1.5 ml H2/g-TS and hydrogen production rate of 3.78 ml/g-cornstalk h was observed at fixed acidizing cornstalk of 60 g/L, strains Bacillus sp. FS2011 dosage of 10%(v/v), CTAB of 30 mg/L, NH4HCO3 of 1.2 g/L and initial pH of 7.5 ± 0.5 at 36 ± 1 °C, respectively. In the second stage of anaerobic digestion, the effluent from hydrogen production bio-reactor was further employed as the feedstock to produce methane by methanogenic bacteria, the maximum methane yield of 227 ± 2.5 ml CH4/g-COD and COD removal rate of 95  ± 1% was recorded. The interesting observations were that the total amount of the organic wastewater produced in a higher substrate concentration (60 g/l) by hydrogen fermentation was reduced by about two-thirds compared with that of traditional low substrate concentration (≤20 g/l).  相似文献   

12.
This study evaluated the feasibility of H2 and CH4 production in two-stage thermophilic (55 °C) anaerobic digestion of sugarcane stillage (5,000 to 10,000 mg COD.L−1) using an acidogenic anaerobic fluidized bed reactor (AFBR-A) with a hydraulic retention time (HRT) of 4 h and a methanogenic AFBR (AFBR-S) with HRTs of 24 h–10 h. To compare two-stage digestion with single-stage digestion, a third methanogenic reactor (AFBR-M) with a HRT of 24 h was fed with increasing stillage concentrations (5,000 to 10,000 mg COD.L−1). The AFBR-M produced a methane content of 68.4 ± 7.2%, a maximum yield of 0.30 ± 0.04 L CH4.g COD−1, a production rate of 3.78 ± 0.40 L CH4.day−1.L−1 and a COD removal of 73.2 ± 5.0% at an organic loading rate (OLR) of 7.5 kg COD.m−3.day−1. In contrast, the two-stage AFBR-A system produced a hydrogen content of 23.9 ± 5.6%, a production rate of 1.30 ± 0.16 L H2.day−1.L−1 and a yield of 0.34 ± 0.08 mmol H2.g CODap−1. Additionally, the decrease in the HRT from 18 h to 10 h in the AFBR-S favored a higher methane production, improving the maximum methane content (74.5 ± 6.0%), production rate (5.57 ± 0.38 L CH4.day−1.L−1) and yield (0.26 ± 0.06 L CH4.g COD−1) at an OLR of 21.6 kg COD.m−3.day−1 (HRT of 10 h) with a total COD removal of 70.1 ± 7.1%. Under the applied COD of 10,000 mg L−1, the two-stage system showed a 52.8% higher energy yield than the single-stage anaerobic digestion system. These results show that, relative to a single-stage system, two-stage anaerobic digestion systems produce more hydrogen and methane while achieving similar treatment efficiencies.  相似文献   

13.
Anaerobic digestion is an attractive process for generation of hydrogen and methane, which involves complex microbial processes on decomposition of organic wastes and subsequent conversion of metabolic intermediates to hydrogen and methane. Comparative performance of a sequential hydrogen and methane fermentation in two stage process and methane fermentation in one stage process were tested in batch reactor at varying ratios of feedstock to microbial inoculum (F/M) under mesophilic incubation. F/M ratios influence biogas yield, production rate, and potential. The highest H2 and CH4 yields of 55 and 94 mL g−1 VS were achieved at F/M of 7.5 in two stage process, while the highest CH4 yield of 82 mL g−1 VS in one stage process was observed at the same F/M. Acetic and butyric acids are the main volatile fatty acids (VFAs) produced in the hydrogen fermentation stage with the concentration range 10–25 mmol L−1. Little concentrations of VFAs were accumulated in methane fermentation in both stage processes. Total energy recovery in two stage process is higher than that in one stage by 18%. This work demonstrated two stage fermentation achieved a better performance than one stage process.  相似文献   

14.
Pretreatment of sweet sorghum bagasse, an energy crop residue, with NaOH for the production of fermentable substrates, was investigated. Optimal conditions for the alkaline pretreatment of sweet sorghum bagasse were realized at 10% NaOH (w/w dry matter). A delignification of 46% was then observed, and improved significantly the efficiency of enzymatic hydrolysis. Under hydrolysis conditions without pH control, up to 50% and 41% of the cellulose and hemicellulose contained in NaOH-pretreated sweet sorghum bagasse were converted by 24 h enzymatic hydrolysis to soluble monomeric sugars. The extreme thermophilic bacterium Caldicellulosiruptor saccharolyticus showed normal growth on hydrolysates of NaOH-pretreated biomass up to a sugar concentration of 20 g/L. Besides hydrogen, the main metabolic products detected in the fermentations were acetic and lactic acid. The maximal hydrogen yield observed in batch experiments under controlled conditions was 2.6 mol/mol C6 sugar. The maximal volumetric hydrogen production rate ranged from 10.2 to 10.6 mmol/(L h). At higher substrate concentrations the production of lactic acid increased at the expense of hydrogen production.  相似文献   

15.
Microwave alkali pretreated sugarcane bagasse was used as a substrate for production of cellulolytic enzymes, needed for biomass hydrolysis. The pretreated sugarcane bagasse was enzymatic hydrolyzed by crude unprocessed enzymes cellulase (Filter paper activity 9.4 FPU/g), endoglucanase (carboxymethylcellulase, 148 IU/g), β-glucosidase (116 IU/g) and xylanase (201 IU/g) produced by Aspergillus flavus using pretreated sugarcane bagasse as substrate under solid state fermentation. Concentrated enzymatic hydrolyzate was used for ethanol production using Saccharomyces cerevisiae immobilized on various matrices. The yield of ethanol was 0.44 gp/gs in case of yeast immobilized sugarcane bagasse, 0.38 gp/gs using Ca-alginate and 0.33 gp/gs using agar-agar as immobilization matrices. The immobilized yeast studied up to 10 cycles in case of immobilized sugarcane bagasse and up to 4 cycles in case of agar-agar and calcium alginate for ethanol production under repeated batch fermentation study.  相似文献   

16.
Biological hydrogen production using renewable resources is a promising possibility to generate hydrogen in a sustainable way. In this study, a sequential dark and photofermentation has been employed for biohydrogen production using sugar beet molasses as a feedstock. An extreme thermophile Caldicellulosiruptor saccharolyticus was used for the dark fermentation, and several photosynthetic bacteria (Rhodobacter capsulatus wild type, R. capsulatus hup mutant, and Rhodopseudomonas palustris) were used for the photofermentation. C. saccharolyticus was grown in a pH-controlled bioreactor, in batch mode, on molasses with an initial sucrose concentration of 15 g/L. The influence of additions of NH4+ and yeast extract on sucrose consumption and hydrogen production was determined. The highest hydrogen yield (4.2 mol of H2/mol sucrose) and maximum volumetric productivity (7.1 mmol H2/Lc.h) were obtained in the absence of NH4+. The effluent of the dark fermentation containing no NH4+ was fed to a photobioreactor, and hydrogen production was monitored under continuous illumination, in batch mode. Productivity and yield were improved by dilution of the dark fermentor effluent (DFE) and the additions of buffer, iron-citrate and sodium molybdate. The highest hydrogen yield (58% of the theoretical hydrogen yield of the consumed organic acids) and productivity (1.37 mmol H2/Lc.h) were attained using the hup mutant of R. capsulatus. The overall hydrogen yield from sucrose increased from the maximum of 4.2 mol H2/mol sucrose in dark fermentation to 13.7 mol H2/mol sucrose (corresponding to 57% of the theoretical yield of 24 mol of H2/mole of sucrose) by sequential dark and photofermentation.  相似文献   

17.
The composition, biodegradability, abundance, availability and cost determine the amenability of carbonaceous substrate for fermentative hydrogen and methane production systems. The aim of the present work was to determine suitability of lignocellulosic material, reed canary grass (RCG) (Phalaris arundinacea L.), for hydrogen and methane production at 35 °C by utilizing solid RCG and acid hydrolyzed soluble RCG. Synthetic cellulose was used as control substrate. Acid hydrolysis released 61.7 mg g−1 (dw) and 115 mg g−1 (dw) of reducing sugars from synthetic cellulose and chopped RCG, respectively. More hydrogen was produced from acid hydrolyzed RCG than from solid RCG, the highest yield being 1.25 mmol H2 per g (dw) RCG. Methane production from solid RCG resulted in the highest yield of 8.26 mmol CH4 per g (dw) RCG. In summary hydrogen and methane was produced from RCG, and acid hydrolysis was required for hydrogen, but not for methane production.  相似文献   

18.
Hydrogen gas production from melon and watermelon mixture by dark fermentation was studied with and without inoculum addition. In this context, hydrogen production performance of natural and external inoculation was compared in batch experiments by varying fruit mixture concentration between 0.74 and 37 g TS/L. Hydrogen production increased by increasing the substrate concentration due to higher initial total sugar content at elevated TS (total solids) concentrations. Hydrogen productivity at 37 g TS/L for natural microflora was 80.62 mLH2/Lreactor.h. However, this value significantly increased to 351.12 mLH2/Lreactor.h at same solid concentration when the fruit mixture was externally inoculated with heat treated anaerobic sludge. Most favorable nutrient and inoculum composition for hydrogen gas production were at 37 g TS/L. Moreover, the presence of the natural microflora in the fruit mixture led to less inoculum requirement and contribution for hydrogen formation.  相似文献   

19.
In India, annually about 3.3–5 million tons of cheese whey is produced which may causes serious problems for the environment if left untreated. In this study, pretreated cheese whey was utilized to produce hydrogen via dark fermentation by Enterobacter aerogenes 2822 cells in 2 L double walled cylindrical bioreactor having working volume of 1.5 L. Effect of change in total carbohydrate concentration in cheese whey (CWTC, 20–45 g L?1), temperature (T, 25–37 °C) and pH (5.5–7.5) was investigated on volumetric hydrogen production rate (VHPR) using Box Behnken design (BBD). Experimental VHPR of 24.7 mL L?1 h?1 was attained at an optimum concentration of 32.5 g L?1 CWTC, 31 °C T and 6.5 pH, which was in good correlation with predicted rate of 23.2 mL L?1 h?1. Mathematical models based on Monod and logistic equations were developed to describe the kinetics of substrate consumption and growth profile of E. aerogenes 2822 under optimum conditions. While for the modelling of fermentative hydrogen production in batch mode, Modified Gompertz equation and Leudeking-Piret models were used which gave proper simulated fitting. These results will add significant values to cheese whey by converting it into a clean form of bioenergy.  相似文献   

20.
The feasibility of thermophilic biomethane production from acidified palm oil mill effluent (POME) was assessed in a 5 L anaerobic sequencing batch reactor (ASBR). The effects of various hydraulic retention time (HRT) (10-1 d) on methane production performance and the stability of ASBR in treating acidified POME were evaluated herein. It was found that the highest methane productivity of 5.65 L CH4/L/d could be attained at HRT of 2 d. However, the removal of chemical oxygen demand (COD) and volatile fatty acid (VFA) at this HRT is rather low (65-62%) hence making it inefficient to operate at HRT 2 d since most of the contaminants remained in the liquid streams. Thus the most recommended HRT was 3 d with maximum methane productivity of 3.96 L CH4/L/d with corresponding methane yield of 260.3 L CH4/kgCODremoved. The COD removal efficiency at 3 d HRT was 71%, and the VFA consumption was more than 80%. The correlation of total VFA: total alkalinity (TVFA: TA) at HRT of 3 d was found to be 0.1. This recommended HRT of 3 is equally shorter than any previously reported application of POME as a substrate for thermophilic biomethane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号