首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In the present paper autoignition is studied as the main stabilization mechanism in turbulent lifted H2/N2 jet flames issuing into a vitiated hot coflow. The numerical study is performed using the joint scalar PDF approach with detailed chemistry in a two dimensional axisymmetric domain. The SSG Reynolds stress model is used as a turbulence model in the simulation. Chemical structure and characteristics of autoignition are investigated using various methods and parameters. Reaction rate analysis is made to analyze the ignition process at the flame base. The results show the occurrence of a chain branching reaction preceding thermal runaway, which boosts the chain branching process in the flame. This demonstrates the large impact of autoignition at the flame base on the stabilization of the lifted turbulent flame. Further investigation using the scatter-plots of scalars reveals the characteristics of the ignition. The relation between the behavior of temperature and of key intermediate species demonstrates the formation of OH through consumption of HO2 at nearly isothermal conditions in a very lean-fuel mixture at the flame base. Flux analyses in the conservation equations of species are used to explore the impacts of mass transport on ignition process. Ignition is found to be mainly controlled by chemical features rather than the mixing processes near the flame base. Characteristics of autoignition are also investigated in terms of Damköhler number and progress variable.  相似文献   

2.
Due to energy crisis and concern regarding the environmental emission, hydrogen as an alternative clean fuel has received more attention. To develop new devices or upgrade the conventional combustion systems for hydrogen flames, fundamental concepts necessary for burner design need to be investigated. In the present work, characteristics of flame stabilization for a turbulent lifted H2/N2 jet flame issuing into a hot coflow of lean combustion are investigated using the Scalar probability density function (PDF) approach. Calculations are carried out for different coflow temperatures, concentrations of species and equivalence ratio. Reaction rate analyses are used to investigate the dominant chemistry at the flame base for a variety of conditions. The results show the occurrence of autoignition at the flame base that is responsible for the stabilization of the lifted turbulent flame. The coflow temperature plays an important role in the relative contribution of elementary reactions and the determination of the dominant chemistry at the flame base. This leads to a high sensitivity of lift-off height to the coflow temperature. Oxygen and water content in the hot coflow could affect the ignition process and lift-off height depending on the dominant chemistry at the flame base. Furthermore, the effect of oxygen content in hot coflow is found to be very important on the reactions controlling the high temperature combustion.  相似文献   

3.
Large-eddy simulation of a lifted methane jet flame in a vitiated coflow   总被引:1,自引:0,他引:1  
The impact of burned gases on flame stabilization is analyzed under the conditions of a laboratory jet flame in vitiated coflow. In this experiment, mass flow rate, temperature, and the exact chemical composition of hot products mixed with air sent toward the turbulent flame base are fully determined. Autoignition and partially premixed flame propagation are investigated for these operating conditions from simulations of prototype combustion problems using fully detailed chemistry. Using available instantaneous species and temperature measurements, a priori tests are then performed to estimate the prediction capabilities of chemistry tabulations built from these archetypal reacting flows. The links between autoignition and premixed flamelet tables are discussed, along with their controlling parameters. Using these results, large-eddy simulation of the turbulent diluted jet flame is performed, a new closure for the scalar dissipation rate of reactive species is discussed, and numerical predictions are successfully compared with experiments.  相似文献   

4.
This paper reports results of numerical simulations of a turbulent lifted jet flame of hydrogen–nitrogen mixtures including the effects of the autoignition. The impact of burned gases on the flame stabilization is analysed under the conditions of a laboratory jet flame in a vitiated coflow. In this study, mass flow rate, temperature and exact chemical composition of hot products mixed with air sent toward the turbulent flame base are fully determined. The effects of both non-infinitely fast chemistry and partially premixed combustion are taken into account within a Lagrangian intermittent framework. Detailed chemistry effects are incorporated through the use of a tabulation delay. The concept of residence time of the particles and the transport equation for the mean scalar dissipation rate are included. Numerical simulation of the turbulent diluted jet flame of H2/N2 studied by Cabra and his co-workers at Berkeley University is performed and satisfactory results are obtained: the flame liftoff height is reasonably captured and the predictions display a reasonable agreement with respect to experimental data.  相似文献   

5.
Fundamental characteristics of hydrogen flame in diluted atmosphere may have important guiding value for controlling the operation of argon-circulated hydrogen engines. In this paper, the impact of thermal-atmosphere (T ≥ 940 K, N2/O2, Ar/O2 and CO2/O2) on the flame characteristics of hydrogen jet were investigated experimentally and numerically based on a controllable active thermal-atmosphere burner. The effects of different diluents on flame liftoff height and luminosity were quantitatively analyzed and the different luminosity of the hydrogen jet flame under different dilution gas atmosphere was explained with the chemical reaction kinetics. Different critical temperatures exist in different atmospheres. The flame luminosity is in the increasing order of CO2/O2-, Ar/O2- and N2/O2-atmosphere. The analysis speculates that CO2* is generated in the flame of CO2/O2-atmosphere. The difference in axial velocity and mixture fraction under different dilution gas atmospheres is mainly influenced by the thermal atmosphere and the physical properties of the dilution gas, which also has a great influence on the jet before the autoignition occurs.  相似文献   

6.
The flame index concept for large eddy simulation developed by Domingo et al. [P. Domingo, L. Vervisch, K. Bray, Combust. Theory Modell. 6 (2002) 529–551] is used to capture the partially premixed structure at the leading point and the dual combustion regimes further downstream on a turbulent lifted flame, which is composed of premixed and nonpremixed flame elements each separately described under a flamelet assumption. Predictions for the lifted methane/air jet flame experimentally tested by Mansour [M.S. Mansour, Combust. Flame 133 (2003) 263–274] are made. The simulation covers a wide domain from the jet exit to the far flow field. Good agreement with the data for the lift-off height and the mean mixture fraction has been achieved. The model has also captured the double flames, showing a configuration similar to that of the experiment which involves a rich premixed branch at the jet center and a diffusion branch in the outer region which meet at the so-called triple point at the flame base. This basic structure is contorted by eddies coming from the jet exit but remains stable at the lift-off height. No lean premixed branches are observed in the simulation or and experiment. Further analysis on the stabilization mechanism was conducted. A distinction between the leading point (the most upstream point of the flame) and the stabilization point was made. The later was identified as the position with the maximum premixed heat release. This is in line with the stabilization mechanism proposed by Upatnieks et al. [A. Upatnieks, J. Driscoll, C. Rasmussen, S. Ceccio, Combust. Flame 138 (2004) 259–272].  相似文献   

7.
In this work, the combustion model is focused on to describe a multitude of reaction regimes that are deemed to affect the flame stabilization. For this purpose, an efficient flame indicator is formulated to differentiate the differing flame structures and make use of flamelet chemistry that accounts for autoignition and multi-regime reactions. The large eddy simulation with this methodology is carried out to compute a turbulent lifted hydrogen-nitrogen flame in vitiated coflow. The canonical flame models of a laminar premixed flame and an unsteady counterflowing flame have been used to simulate the flamelet structure at different regimes. Present model improves the prediction of mean and rms profiles for temperature and species mass fraction in the comparison with experiments and a reference simulation, adopting the single-regime flamelet. The computed results also demarcate the formation of a triple flame structure at the flame base, where combustion develops into the premixed reaction that extends to the fuel-lean and rich branches. The counterflow mixing mode with autoignition is identified as the major mechanism for stabilization and is responsible for the propagating premixed zone above the liftoff height. The developed multi-regime flamelet approach properly accounts for the interactive different modes of burning.  相似文献   

8.
In this article, conditional moment closure model (CMC) with detailed chemistry is used to model lifted turbulent methane flame in a high temperature and vitiated coflow and to predict flame lift-off height. The flow and mixing field are predicted by a 2D in-house code employing a k–ε turbulence model (RANS) with modified constant Cε2. The first-order CMC model on its own could not capture the behavior of the lifted flame. Large eddy simulations (LES) coupled with second-order CMC model would be a promising alternative but the objective here was to improve low-cost simulations based on RANS and first-order CMC to address realistic problems. Hence, an extinction model has been incorporated in the first-order CMC to improve its predictions and is referred in this paper as CMCE. In the CMCE model, flame is assumed to be extinguished when the ratio of flow time scale to the chemical time scale falls below a critical value. Predicted lift-off height by the CMCE model agrees very well with the experimental results. There is a significant improvement in temperature and species distributions in both axial and radial directions with the implementation of the CMCE model. Further, the model is extended to predict the flame lift-off height for various coflow temperatures and jet velocities by using scaling ratios. With these modifications, the lift-off heights predicted by the CMCE model match well with the experimental results for a wide range of jet velocities and coflow temperatures. Results from both CMC and CMCE models are compared against the experimental data to show the importance of the extinction model. Flame stabilization process indicates that flame stabilizes on the contour of mean stoichiometric mixture fraction where axial mean velocity equals the turbulent burning velocity.  相似文献   

9.
The recently developed method of chemical explosive mode (CEM) analysis (CEMA) was extended and employed to identify the detailed structure and stabilization mechanism of a turbulent lifted ethylene jet flame in heated coflowing air, obtained by a 3-D direct numerical simulation (DNS). It is shown that CEM is a critical feature in ignition as well as extinction phenomena, and as such the presence of a CEM can be utilized in general as a marker of explosive, or pre-ignition, mixtures. CEMA was first demonstrated in 0-D reactors including auto-ignition and perfectly stirred reactors, which are typical homogeneous ignition and extinction applications, respectively, and in 1-D premixed laminar flames of ethylene–air. It is then employed to analyze a 2-D spanwise slice extracted from the 3-D DNS data. The flame structure was clearly visualized with CEMA, while it is more difficult to discern from conventional computational diagnostic methods using individual species concentrations or temperature. Auto-ignition is identified as the dominant stabilization mechanism for the present turbulent lifted ethylene jet flame, and the contribution of dominant chemical species and reactions to the local CEM in different flame zones is quantified. A 22-species reduced mechanism with high accuracy for ethylene–air was developed from the detailed University of Southern California (USC) mechanism for the present simulation and analysis.  相似文献   

10.
Autoignition of hydrogen, leading to flame development under turbulent flow conditions is numerically investigated including a detailed chemical mechanism. The chosen configuration consists of a turbulent jet of hydrogen diluted with nitrogen which is issued into a coflow of heated air. Numerical simulations are performed with the Conditional Moment Closure model, to capture the transient evolution of the flow. Turbulence closure is achieved using the k? model. Simulations revealed that the injected hydrogen mixes with coflowing air, autoignites and a stable diffusion flame is established. Sometimes, flashback of the ignited mixture is observed, whereby the flame travels upstream and stabilizes. It is found that the constants assumed in various modeling terms can severely influence the degree of mixing. Hence, certain modifications to these constants are suggested, and improved predictions are obtained. The sensitivity of autoignition length to the coflow temperature is investigated. The predicted autoignition lengths show a reasonable agreement with the experimental data and LES results.  相似文献   

11.
Stabilization and autoignition mechanisms of lifted flames have been widely investigated to improve combustion efficiency and safety of combustion equipment. This paper focuses on liftoff behavior and combustion characteristic of methane and propane flames under various coflow conditions in a coflow burner. Unlike the case of free jet flame in ambient air, the different tendencies of liftoff height changes with jet velocity for both methane and propane flames in vitiated coflow illustrate a transition from conventional combustion to Moderate & Intense Low Oxygen Dilution (MILD) combustion. Flame temperature difference with radial position measured by primary spectrum pyrometry proves the transition regime.  相似文献   

12.
利用Ansys Fluent模拟了H2/N2的同轴喷射湍流燃烧情况,采用雷诺时均法(Reynolds-Averaged Navier-Stokes,RANS)处理燃料与氧化剂的湍流流动,涡扩散概念(Eddy Dissipation Concept,EDC)模型用来耦合湍流与化学反应。得到了燃烧室内部的温度(T)、混合分数(f)、H2、O2以及H2O的质量分数(F),并与实验结果进行了对比。结果表明,T沿轴向方向逐渐增大,f沿轴向逐渐降低。在火焰区域沿径向,T和F(H2O)先增大后降低,F(H2)逐渐降低,F(O2)逐渐升高,最后均稳定于伴随流的入口值。虽有一定偏差,但模拟结果较好地预测了实验结果的趋势。综合考虑两种RANS模型与实验结果的吻合情况,推荐RSM湍流模型结合EDC模型来研究类似的喷射燃烧情况。  相似文献   

13.
Characteristics of laminar lifted flames have been investigated experimentally by varying the initial temperature of coflow air over 800 K in the non-premixed jets of propane diluted with nitrogen. The result showed that the lifted flame with the initial temperature below 860 K maintained the typical tribrachial structure at the leading edge, which was stabilized by the balance mechanism between the propagation speed of tribrachial flame and the local flow velocity. For the temperature above 860 K, the flame was autoignited without having any external ignition source. The autoignited lifted flames were categorized in two regimes. In the case with tribrachial edge structure, the liftoff height increased nonlinearly with jet velocity. Especially, for the critical condition near blowout, the lifted flame showed a repetitive behavior of extinction and reignition. In such a case, the autoignition was controlled by the non-adiabatic ignition delay time considering heat loss such that the autoignition height was correlated with the square of the adiabatic ignition delay time. In the case with mild combustion regime at excessively diluted conditions, the liftoff height increased linearly with jet velocity and was correlated well with the square of the adiabatic ignition delay time.  相似文献   

14.
Autoignition of hydrocarbon fuels is an outstanding research problem of significant practical relevance in engines and gas turbine applications. This paper presents a numerical study of the autoignition of methane, the simplest in the hydrocarbon family. The model burner used here produces a simple, yet representative lifted jet flame issuing in a vitiated surrounding. The calculations employ a composition probability density function (PDF) approach coupled to the commercial CFD package, FLUENT. The in situ adaptive tabulation (ISAT) method is used to implement detailed chemical kinetics. An analysis of species concentrations and transport budgets of convection, turbulent diffusion, and chemical reaction terms is performed with respect to selected species at the base of the lifted turbulent flames. This analysis provides a clearer understanding of the mechanism and the dominant species that control autoignition. Calculations are also performed for test cases that clearly distinguish autoignition from premixed flame propagation, as these are the two most plausible mechanisms for flame stabilization for the turbulent lifted flames under investigation. It is revealed that a radical pool of precursors containing minor species such as CH3, CH2O, C2H2, C2H4, C2H6, HO2, and H2O2 builds up prior to autoignition. The transport budgets show a clear convective-reactive balance when autoignition occurs. This is in contrast to the reactive-diffusive balance that occurs in the reaction zone of premixed flames. The buildup of a pool of radical species and the convective-reactive balance of their transport budgets are deemed to be good indicators of the occurrence of autoignition.  相似文献   

15.
Two formulations of a turbulent combustion model based on the approximated diffusion flame presumed conditional moment (ADF-PCM) approach [J.-B. Michel, O. Colin, D. Veynante, Combust. Flame 152 (2008) 80-99] are presented. The aim is to describe autoignition and combustion in nonpremixed and partially premixed turbulent flames, while accounting for complex chemistry effects at a low computational cost. The starting point is the computation of approximate diffusion flames by solving the flamelet equation for the progress variable only, reading all chemical terms such as reaction rates or mass fractions from an FPI-type look-up table built from autoigniting PSR calculations using complex chemistry. These flamelets are then used to generate a turbulent look-up table where mean values are estimated by integration over presumed probability density functions. Two different versions of ADF-PCM are presented, differing by the probability density functions used to describe the evolution of the stoichiometric scalar dissipation rate: a Dirac function centered on the mean value for the basic ADF-PCM formulation, and a lognormal function for the improved formulation referenced ADF-PCMχ. The turbulent look-up table is read in the CFD code in the same manner as for PCM models. The developed models have been implemented into the compressible RANS CFD code IFP-C3D and applied to the simulation of the Cabra et al. experiment of a lifted methane jet flame [R. Cabra, J. Chen, R. Dibble, A. Karpetis, R. Barlow, Combust. Flame 143 (2005) 491-506]. The ADF-PCMχ model accurately reproduces the experimental lift-off height, while it is underpredicted by the basic ADF-PCM model. The ADF-PCMχ model shows a very satisfactory reproduction of the experimental mean and fluctuating values of major species mass fractions and temperature, while ADF-PCM yields noticeable deviations. Finally, a comparison of the experimental conditional probability densities of the progress variable for a given mixture fraction with model predictions is performed, showing that ADF-PCMχ reproduces the experimentally observed bimodal shape and its dependency on the mixture fraction, whereas ADF-PCM cannot retrieve this shape.  相似文献   

16.
Large eddy simulations with three-dimensional finite-volume Conditional Moment Closure (CMC) model are performed for a hydrogen/nitrogen lifted flame with detailed chemical mechanism. The emphasis is laid on the influences of mesh resolution and convection scheme of finite-volume CMC equations on predictions of reactive scalars and unsteady flame dynamics. The results show that the lift-off height is underestimated and the reactive scalars are over-predicted with coarser CMC mesh. It is also found that further refinement of the CMC mesh would not considerably improve the results. The time sequences of the most reactive and stoichiometric hydroxyl radical mass fractions indicate that finer CMC mesh can capture more unsteady details than the coarser CMC mesh. Moreover, the coarse CMC mesh has lower conditional scalar dissipation rate, which would promote the earlier auto-ignition of the flame base. Besides, the effects of the convection scheme for the CMC equations (i.e., upwind, central differencing and their blends) on the lifted flame characteristics are also investigated. It is shown that different convection schemes lead to limited differences on the time-averaged temperature, mixture fraction and species mass fractions. Moreover, the root-mean square values of hydrogen and hydroxyl mass fractions show larger deviation from the measurements with hybrid upwind and central differencing scheme, especially around the flame base. Furthermore, the distributions of the numerical fluxes on the CMC faces also show obvious distinctions between the upwind and blending schemes. The budget analysis of the individual CMC terms shows that a sequence of CMC faces has comparable contributions with upwind scheme. However, with the hybrid schemes, the instantaneous flux is dominantly from limited CMC faces. The reactivity of a CMC cell is more easily to be affected by its neighbors when the upwind scheme is used.  相似文献   

17.
18.
Direct numerical simulation (DNS) of a three-dimensional spatially-developing supersonic lifted hydrogen jet flame has been conducted in this paper. The scalar structure of the lifted flame is investigated through instantaneous images and conditional means of combustion statistics. And then the scalar dissipation rate and its implications on the flamelet-based combustion modeling are analyzed in detail. It can be found that most of the heat release occurs in the subsonic region. However, distributed reaction pockets exist in the sonic mixing layer due to the rolled up vortices. The magnitude of conditional compression or expansion rate of the fluid presents comparable to the corresponding heat release rate, and takes a great influence on the flame temperature in the high speed reacting flow. The probability density functions of mean conditional and unconditional scalar dissipation rate prove to qualitatively agree with the presumed log-normal distribution, while a little skewed to the higher scalar dissipation rate in the sonic mixing layer. The conditional mean scalar dissipation rate presents to be radial dependent at the flame base, especially in the fuel lean mixture. The DNS results show good agreement with the trends of the flamelet calculations; however, the amplitudes of temperature are far lower than the corresponding flamelet statistics due to finite rate reaction and expansion of the high speed reacting flow.  相似文献   

19.
B.C. Choi 《Combustion and Flame》2010,157(12):2348-2356
The autoignition characteristics of laminar lifted flames of methane, ethylene, ethane, and n-butane fuels have been investigated experimentally in coflow air with elevated temperature over 800 K. The lifted flames were categorized into three regimes depending on the initial temperature and fuel mole fraction: (1) non-autoignited lifted flame, (2) autoignited lifted flame with tribrachial (or triple) edge, and (3) autoignited lifted flame with mild combustion.For the non-autoignited lifted flames at relatively low temperature, the existence of lifted flame depended on the Schmidt number of fuel, such that only the fuels with Sc > 1 exhibited stationary lifted flames. The balance mechanism between the propagation speed of tribrachial flame and local flow velocity stabilized the lifted flames. At relatively high initial temperatures, either autoignited lifted flames having tribrachial edge or autoignited lifted flames with mild combustion existed regardless of the Schmidt number of fuel. The adiabatic ignition delay time played a crucial role for the stabilization of autoignited flames. Especially, heat loss during the ignition process should be accounted for, such that the characteristic convection time, defined by the autoignition height divided by jet velocity was correlated well with the square of the adiabatic ignition delay time for the critical autoignition conditions. The liftoff height was also correlated well with the square of the adiabatic ignition delay time.  相似文献   

20.
This review discusses recent progress in understanding turbulent, lifted hydrocarbon jet flames and the conditions under which they stabilize. The viewpoint is from that of the empiricist, focusing on experimental results and the physically based theories that have emerged from their interpretations, as well as from the theoretically founded notions that have been supported. Pertinent concepts from laminar lifted flame stabilization studies are introduced at the onset. Classification in broad categories of the types of turbulent lifted flame theories is then presented. Experiments are discussed which support the importance of a variety of effects, including partial premixing, edge-flames, local extinction, streamline divergence and large-scale structures. This discussion details which of the categories of theories are supported by particular experiments, comments on the experimental results themselves and their salient contributions. Overall conclusions on the state of the field are drawn and future directions for research are also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号