首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To investigate the effect of equivalence ratio and turbulence intensity on the combustion characteristics of syngas/air mixtures, experiments involving premixed combustion of 70% H2/30% CO/air mixtures at various equivalence ratios and turbulence intensities were conducted in a turbulent combustion bomb at atmospheric temperature and pressure. The turbulent burning velocity and flame curvature were used to study turbulent combustion characteristics. The results show that the turbulent burning velocity grew nonlinearly as the equivalence ratio increased, while the normalized turbulent burning velocity tended to decrease. When the equivalence ratio was relatively low, the turbulence intensity was a greater determinant of the burning velocity. The normalized turbulent burning velocity increased as the turbulence intensity increased. Re and Da were found to be directly and inversely proportional to u’/uL, respectively. A linear relationship was observed between uT/uL and ln Re. As the turbulence intensity increased or equivalence ratio decreased, the wrinkle degree of the flame front increased, and the maximum and minimum values of flame front curvature increased and decreased, respectively. Meanwhile, the range of the flame front curvature increased gradually. The proportion of components with smaller absolute value of flame front curvature gradually decreases.  相似文献   

2.
In the present study, we conducted experiments to investigate the effects of external turbulence on the development of spherical H2/CH4/air unstable flames developments at two different equivalence ratios associated with different turbulent intensities using a spherical constant-volume turbulent combustion bomb and high speed schlieren photography technology. Flame front morphology and acceleration process were recorded and different effects of weak external turbulent flow field and intrinsic flame instability on the unstable flame propagation were compared. Results showed the external turbulence has a great influence on the unstable flame propagation under rich fuel conditions. For fuel-lean premixed flames, however, the effects of external turbulence on the morphology of the cellular structure on the flame front was not that obvious. Critical radius decreased firstly and then kept almost unchanged with the augment of the turbulence intensity. This indicated the dominating inhibiting effect of flame stretch on the turbulent premixed flame at the initial stage of the flame front development. Beyond the critical radius, the acceleration exponent was found increasing with the enhancement of initial turbulence intensity for fuel-lean premixed flames. For fuel-rich conditions, however, the initial turbulence intensity had little effect on acceleration exponent. In order to evaluate the important impact of the intrinsic flame instability and external turbulent flow field for spherical propagating premixed flames, intrinsic flame instability scale and average diameter of vortex tube were calculated. Intrinsic flame instability scale decreased greatly and then stayed unchanged with the propagation of the flame front. The comparison between intrinsic flame instability scale and average diameter of vortex tube demonstrated that the external turbulent flow filed will be more important for the evolution of wrinkle structure in the final stage of the flame propagation, when the turbulence intensity was more than 0.404 m/s.  相似文献   

3.
The flame brush characteristics and turbulent burning velocities of premixed turbulent methane/air flames stabilized on a Bunsen-type burner were studied. Particle image velocimetry and Rayleigh scattering techniques were used to measure the instantaneous velocity and temperature fields, respectively. Experiments were performed at various equivalence ratios and bulk flow velocities from 0.7 to 1.0, and 7.7 to 17.0 m/s, respectively. The total turbulence intensity and turbulent integral length scale were controlled by the perforated plate mounted at different positions upstream of the burner exit. The normalized characteristic flame height and centerline flame brush thickness decreased with increasing equivalence ratio, total turbulence intensity, and longitudinal integral length scale, whereas they increased with increasing bulk flow velocity. The normalized horizontal flame brush thickness increased with increasing axial distance from the burner exit and increasing equivalence ratio. The non-dimensional leading edge and half-burning surface turbulent burning velocities increased with increasing non-dimensional turbulence intensity, and they decreased with increasing non-dimensional bulk flow velocity when other turbulence statistics were kept constant. Results show that the non-dimensional leading edge and half-burning surface turbulent burning velocities increased with increasing non-dimensional longitudinal integral length scale. Two correlations to represent the leading edge and half-burning surface turbulent burning velocities were presented as a function of the equivalence ratio, non-dimensional turbulence intensity, non-dimensional bulk flow velocity, and non-dimensional longitudinal integral length scale. Results show that the half-burning surface turbulent burning velocity normalized by the bulk flow velocity decreased as the normalized characteristic flame height increased.  相似文献   

4.
Syngas has been widely concerned and tested in various thermo-power devices as one promising alternative fuel. However, little is known about the turbulent combustion characteristics, especially on outwardly propagating turbulent syngas/air premixed flames. In this paper, the outwardly propagating turbulent syngas/air premixed flames were experimentally investigated in a constant-volume fan-stirred vessel. Tests were conducted on stoichiometric syngas with different hydrogen volumetric fractions (XH2, 10%–90%) in the ambience with different initial turbulence intensity (u'rms, 0.100 m/s~1.309 m/s). Turbulent burning velocity was taken as the major topic to be studied upon the multi-zone model in constant-volume propagating flame method. The influences of initial turbulent intensity and hydrogen volumetric fraction on the turbulent flame speed were analysed and discussed. An explicit correlation of turbulent flame speed was obtained from the experimental results.  相似文献   

5.
Lewis number represents the thermo-diffusive effects on laminar flames. That of hydrogen–air mixture varies extensively with the equivalence ratio due to the high molecular diffusivity of hydrogen. In this study, the influences of pressure and thermo-diffusive effects on spherically propagating premixed hydrogen–air turbulent flames were studied using a constant volume fan-stirred combustion vessel. It was noted that the ratio of the turbulent to unstretched laminar burning velocity increased with decreasing equivalence ratio and increasing mixture pressure. Turbulent burning velocity was dominated by three factors: (1) purely hydrodynamic factor, turbulence Reynolds number, (2) relative turbulence intensity to reaction speed, the ratio of turbulence intensity to unstretched laminar burning velocity, and (3) sensitivity of the flame to the stretch due to the thermo-diffusive effects, Lewis and Markstein numbers. A turbulent burning velocity correlation in terms of Reynolds and Lewis numbers is presented.  相似文献   

6.
The turbulent flame topology characteristics of the model syngas with two different hydrogen ratios were statistically investigated, namely CO/H2 ratio at 65/35 and 80/20, at equivalence ratio of 0.7. The combustion pressure was kept at 0.5 MPa and 1.0 MPa, to simulate the engine-like condition. The model syngas was diluted with CO2 with a mole fraction of 0.3 which mimics the flue gas recycle in the turbulent combustion. CH4/air flame with equivalence ratio of 1.0 was also tested for comparison. The flame was anchored on a premixed type Bunsen burner, which can generate a controllable turbulent flow. Flame front, which is represented by the sharp increased interface of the OH radical distribution, was measured with OH-PLIF technique. Flame front parameters were obtained through image processing to interpret the flame topology characteristics. Results showed that the turbulent flames possess a wrinkled character with smaller scale concave/convex structure superimposed on a larger scale convex structure under high pressure. The wrinkled structure of syngas flame is much finer and more corrugated than hydrocarbon fuel flames. The main reason is that scale of wrinkled structure is smaller for syngas flame, resulting from the unstable physics. Hydrogen in syngas can increase the intensity of the finer structure. Moreover, the model syngas flames have larger flame surface density than CH4/air flame, and hydrogen ratio in syngas can increase flame surface density. This would be mainly attributed to the fact that the syngas flames have smaller flame intrinsic instability scale li than CH4/air flame. ST/SL of the model syngas tested in this study is higher than CH4/air flames for both pressures, due to the high diffusivity and fast burning property of H2. This is mainly due to smaller LM and li. Vf of the two model syngas is much smaller than CH4/air flames, which suggests that syngas flame would lead to a larger possibility to occur combustion oscillation.  相似文献   

7.
Unsteady three-dimensional Direct Numerical Simulation (DNS) data obtained from 16 statistically planar and one-dimensional, complex-chemistry, lean (equivalence ratio is equal to 0.50 or 0.35) hydrogen-air flames propagating in forced, intense, small-scale turbulence (Karlovitz number up to 565) are reported. The data are analyzed to compare roles played by leading and trailing edges of a premixed turbulent flame brush in its propagation. The comparison is based on the following considerations: (i) positively (negatively) curved reaction zones predominate at the leading (trailing, respectively) edge of a premixed turbulent flame brush and (ii) preferential diffusion of molecular or atomic hydrogen results in increasing the local fuel consumption and heat release rates in positively or negatively, respectively, curved reaction zones. Therefore, turbulent burning velocities computed by deactivating differential diffusion effects for all species with the exception of either H2 or H are compared for assessing roles played by leading and trailing edges of a premixed turbulent flame brush in its propagation. By analyzing the DNS data, a significant increase in the local fuel consumption and heat release rates due to preferential diffusion of H2 or H is documented close to the leading or trailing, respectively, edges of the studied flame brushes. Nevertheless, turbulent burning velocities computed by activating preferential diffusion solely for H2 are significantly higher than turbulent burning velocities computed by activating preferential diffusion solely for H. This result indicates an important role played by the leading edge in the propagation of the explored turbulent flame brushes.  相似文献   

8.
To investigate self-acceleration propagation characteristics of a laminar premixed flame, an experimental study of H2/CO/air mixtures with various hydrogen fractions and equivalence ratios was conducted. The acceleration exponent and fractal excess were defined to quantitatively investigated flame self-acceleration in the transition and saturation stages. Also, the influence of flame inherent instabilities on the acceleration exponent in the transition stage were investigated. The results indicate that with an increase in the hydrogen fraction, the first and second critical radius decreased, the proportion of the transition (saturation) stage in the whole flame propagation process decreased (increased), and the acceleration exponent and fractal excess of the transition and saturation stages increased. Because of the limits of flame radius and different degrees of pulsation in the saturation stage, the acceleration exponent and fractal excess at the saturation stage measured do not show obvious regularity; the values are less than 1.5 and 0.33, respectively. When the hydrogen fraction in syngas is changed, the acceleration exponent in the transition stage showed a nonlinear decreasing trend with an increase in the effective Le number. The hydrodynamic instability usually increased with a decrease in flame thickness, and the acceleration exponent in the transition stage increased.  相似文献   

9.
The burning rates and surface characteristics of hydrogen-enriched turbulent lean premixed methane–air flames were experimentally studied by laser tomography visualization method using a V-shaped flame configuration. Turbulent burning velocity was measured and the variation of flame surface characteristics due to hydrogen addition was analyzed. The results show that hydrogen addition causes an increase in turbulent burning velocity for lean premixed CH4–air mixtures when turbulent level in unburned mixture is not changed. Moreover, the increase of turbulent burning velocity is faster than that of the corresponding laminar burning velocity at constant equivalence ratio, suggesting that the kinetics effect is not the sole factor that results in the increase in turbulent burning velocity when hydrogen is added. The further analysis of flame surface characteristics and brush thickness indicates that hydrogen addition slightly decreases local flame surface density, but increases total flame surface area because of the increased flame brush thickness. The increase in flame brush thickness that results in the increase in total surface area may contribute to the faster increase in turbulent burning velocity, when hydrogen is added. Besides, the stretched local laminar burning velocity may be enhanced with the addition of hydrogen, which may also contribute to the faster increase rate of turbulent burning velocity. Both the variation in flame brush thickness and the enhancement in stretched local laminar burning velocity are due to the decreased fuel Lewis number when hydrogen is added. Therefore, the effects of fuel Lewis number and stretch should be taken into account in correlating burning velocity of turbulent premixed flames.  相似文献   

10.
To study the effects of different diluents on the propagation characteristics of H2/CO/air mixture turbulent premixed flames, a series of experiments were carried out in a turbulent premixed flame experimental system. The effects of turbulence intensity (0.49–1.31 m/s), dilution gas content (10%, 20%, and 30%), hydrogen fraction (50%, 70%, and 90%), and equivalence ratio (0.6, 0.8, and 1.0) on the turbulent premixed flame were studied. The results show that with the increase in hydrogen fraction or turbulence intensity or equivalence ratio, the ST and ut increase at the same radius. Compared with N2 dilution, CO2 dilution showed a more obvious inhibition effect on ST. With the increase of Ka, ST;35mm/u’ gradually decreased, and the extent of ST;35mm/u’ decrease gradually became smaller. As the intensity of turbulence increases or the hydrogen fraction increases, the slope of ST,35mm/u’ with Da/Le gradually decreases. In the turbulence intensity range of this experiment, the ut,35mm/μl under nitrogen dilution condition has a larger floating range. The growth rate of ut,35mm/μl at a low equivalence ratio is significantly higher than that at a high equivalence ratio.  相似文献   

11.
The effects of density ratio and differential diffusion on premixed flame propagation of H2/O2/N2 mixtures are investigated by constant volume combustion chamber. The density ratio and differential diffusion are controlled independently by adjusting the O2/N2 ratio and equivalence ratio. Results show that the density ratio has no effect on turbulent burning velocity while the differential diffusion has a promotion effect on turbulent burning velocity. The onsets of laminar flame acceleration are promoted by both density ratio and differential ratio. The turbulent flames perform a continuous acceleration propagation and the dependence between flame propagation speed and flame radius can be characterized as (dR/dt)/(σ·SL) ~ R0.33~0.37, which is lower than the 1/2 power law. The acceleration parameters of laminar flames and turbulent flames (u/SL = 1) are around 0.17 and 0.36 respectively, and both of them are not affected by density ratio and differential diffusion. The empirical formula m = 0.19·(u/SL)0.4+0.17 is concluded to quantitatively describe the accelerative characteristics of laminar and turbulent flames. The current study indicates that the acceleration of laminar flames is mainly induced by flame intrinsic instability, and the latter can affect the acceleration onset but not affect the fractal excess. The acceleration of turbulent flames is dominated by turbulent stretch, while the effects of density ratio and differential diffusion can be ignored.  相似文献   

12.
Instantaneous flame front structure of syngas turbulent premixed flames including the local radius of curvature, the characteristic radius of curvature, the fractal inner cutoff scale and the local flame angle were derived from the experimental OH-PLIF images. The CO/H2/CO2/air flames as a model of syngas/air combustion were investigated at pressure of 0.5 MPa and compared to that of CH4/air flames. The convex and concave structures of the flame front were detected and statistical analysis including the PDF and ADF of the local radius of curvature and local flame angle were conducted. Results show that the flame front of turbulent premixed flames at high pressure is a wrinkled flame front with small scale convex and concave structures superimposed with large scale flame branches. The convex structures are much more frequent than the concave ones on flame front which reflects a general characteristic of the turbulent premixed flames at high pressure. The syngas flames possess much wrinkled flame front with much smaller fine cusps structure compared to that of CH4/air flames and the main difference is on the convex structure. The effect of turbulence on the general wrinkled scale of flame front is much weaker than that of the smallest wrinkled scale. The general wrinkled scale is mainly dominated by the turbulence vortex scale, while, the smallest wrinkled scale is strongly affected by the flame intrinsic instability. The effect of flame intrinsic instability on flame front of turbulent premixed flame is mainly on the formation of a large number of convex structure propagating to the unburned reactants and enlarge the effective contact surface between flame front and unburned reactants.  相似文献   

13.
The CO/H2/CO2/O2, CO/H2/CO2/air turbulent premixed flames as the model of syngas oxyfuel and syngas/air combustion were studied experimentally and compared to that of CH4/air mixtures at high pressures up to 1.0 MPa. Hydrogen ratio in syngas was set to be 35%, 50% and 65% in volumetric fraction. Four perforated plates are used to generate wide range of turbulence intensity and scales. The instantaneous flame structure was measured with OH-PLIF technique and then statistic flame structure parameters and turbulent burning velocity were derived to interpret the multi scale turbulence-flame interaction. Results show that the flame structure of syngas is wrinkled and convex cusps to the unburned mixtures are sharper and deeper comparing to that of CH4 flames. Pressure has a dominating effect on flame wrinkling other than mixtures composition at high pressure of 1.0 MPa. The flame surface density, Σ of syngas is larger than that of CH4. The Σ of syngas flames is almost independent on pressure and hydrogen ratio especially when hydrogen ratio is over 50% which is a significant feature of syngas combustion. Larger flame surface density for syngas flames mainly comes from the finer structure with smaller wrinkles which is the result of more intensive flame intrinsic instability. The ST/SL of syngas is larger than CH4 and it slightly increases with the pressure rise. The ST/SL of syngas oxyfuel is similar to that of syngas/air flames in the present study. The ST/SL increases with the increase of hydrogen ratio and keeps almost constant when hydrogen ratio is over 50%.  相似文献   

14.
A burner for the investigation of lean stratified premixed flames propagating in intense isotropic turbulence has been developed. Lean pre-mixtures of methane at different equivalence ratios were divided between two concentric co-flows to obtain annular stratification. Turbulence generators were used to control the level of turbulence intensity in the oncoming flow. A third annular weakly swirling airflow provided the flame stabilisation mechanism. A fundamental characteristic was that flame stabilisation did not rely on flow recirculation. The flames were maintained at a position where the local mass flux balanced the burning rate, resulting in a freely propagating turbulent flame front. The absence of physical surfaces in the vicinity of the flame provided free access for laser diagnostics. Stereoscopic Planar Image Velocimetry (SPIV) was applied to obtain the three components of the instantaneous velocity vectors on a vertical plane above the burner at the point of flame stabilisation. The instantaneous temperature fields were determined through Laser Induced Rayleigh (LIRay) scattering. Planar Laser Induced Fluorescence (PLIF) of acetone was used to calculate the average equivalence ratio distributions. Instantaneous turbulent burning velocities were extracted from SPIV results, while flame curvature and flame thermal thickness were calculated using the instantaneous temperature fields. The PDFs of these quantities were analysed to consider the separate influence of equivalence ratio stratification and turbulence. Increased levels of turbulence resulted in the expected higher turbulent burning velocities and flame front wrinkling. Flames characterised by higher fuel gradients showed higher turbulent burning velocities. Increased fuel concentration gradients gave rise to increased flame wrinkling, particularly when associated with positive small radius of curvature.  相似文献   

15.
针对生物柴油与醇类混合燃料燃烧机理研究的需求,采用高速纹影光学诊断方法和定容燃烧弹系统试验研究了异丁醇/辛酸甲酯混合燃料的预混层流燃烧特性。测量了不同当量比和初始压力条件下的不同配比混合燃料—空气预混合气的层流燃烧火焰速度,火焰拉伸率以及马克斯坦长度。分析了燃烧初始条件及异丁醇掺混比例对混合燃料的无拉伸层流燃烧速度及火焰不稳定性的影响规律。结果表明:异丁醇/辛酸甲酯混合燃料的拉伸层流火焰传播速度和层流火焰燃烧速度随着当量比的增加先增加后减少,随着初始压力的增加而减小;马克斯坦长度随着当量比和初始压力的增加而减小;异丁醇掺混比例的增加加快了层流火焰燃烧速度,但使得火焰的不稳定性倾向增加。  相似文献   

16.
Ammonia is one of the most promising alternative fuels. In particular, ammonia combustion for gas turbine combustors for power generation is expected. To shift the fuel for a gas turbine combustor to ammonia step-by-step, the partial replacement of natural gas by ammonia is considered. To reveal the turbulent combustion characteristics, CH4/NH3/air turbulent premixed flame at 0.5 MPa was experimentally investigated. The ammonia ratio based on the mole fraction and lower heating value was varied from 0 to 0.2. The results showed that the ratio of the turbulent burning velocity and unstretched laminar burning velocity decreased with an increase in the ammonia ratio. The reason for this variation is that the flame area decreased with an increase in the ammonia ratio as the flame surface density decreased and the fractal inner cutoff increased. The volume fractions in the turbulent flame region were almost the same with ammonia addition, indicating that combustion oscillation can be handled in a manner similar to that for the case of natural gas for CH4/NH3/air flames.  相似文献   

17.
The laminar flame speed of syngas (CO:H2 = 1:1)/air premixed gas in a wide equivalence ratio range (0.6–5) and initial temperature (298–423 K) was studied by Bunsen burner. The results show that the laminar flame speed first increases and then decreases as the equivalence ratio increasing, which is a maximum laminar flame speed at n = 2. The laminar flame speed increases exponentially with the increase of initial temperature. For different equivalent ratios, the initial temperature effects on the laminar flame speed is different. The initial temperature effects for n = 2 (the most violent point of the reaction) is lower than others. It is found that H, O and OH are affected more and more when the equivalence ratio increase. When the equivalence ratio is far from 2, the reaction path changes, and the influence of initial temperature on syngas combustion also changes. The laminar flame speed of syngas is more severely affected by H + O2 = O + OH and CO + OH = CO2 + H than others, which sensitivity coefficient is larger and change more greatly than others when the initial temperature and equivalence ratio change. Therefore, the laminar flame speed of syngas/air premixed gas is affected by the initial temperature and equivalence ratio. A new correlation is proposed to predict the laminar flame speed of syngas (CO:H2 = 1:1)/air premixed gas under the synergistic effect of equivalence ratio and initial temperature (for equivalence ratios of 0.6–5, the initial temperature is 298–423 K).  相似文献   

18.
Experimental studies of premixed, turbulent, gaseous explosion flames in a fan-stirred bomb are reported. The turbulence was uniform and isotropic, while changes in the rms turbulent velocity were achieved by changes in the speed of the fans. Central spark ignitions created mean spherical flame propagation. The spatial distributions of burned and unburned gases during the propagation were measured from the Mie scattering of tobacco smoke in a thin planar laser sheet. The plane was located just in front of the central spark gap and was generated by a copper vapor laser operating at a pulse rate of 4.5 kHz. High-speed schlieren images also were captured simultaneously.The distributions of the proportions of burned and unburned gases around circumferences were found for all radii at all stages of the explosion, and mean values of these proportions were derived as a function of the mean flame radius. The flame brush thickness increased with flame radius. The way the turbulent burning velocity is defined depends on the chosen associated flame radius. Various definitions are scrutinized and different flame radii presented, along with the associated turbulent burning velocities. Engulfment and mass turbulent burning velocities are compared. It is shown how the latter might conveniently be obtained from schlieren cine images. In a given explosion, the burning velocity increased with time and radius, as a consequence of the continual broadening of the effective spectrum of turbulence to which the flame was subjected. A decrease in the Markstein number of the mixture increased the turbulent burning velocity.  相似文献   

19.
In order to investigate oxyfuel combustion characteristics of typical composition of coal gasification syngas connected to CCS systems. Instantaneous flame front structure of turbulent premixed flames of CO/H2/O2/CO2 mixtures which represent syngas oxyfuel combustion was quantitatively studied comparing with CH4/air and syngas/air flames by using a nozzle-type Bunsen burner. Hot-wire anemometer and OH-PLIF were used to measure the turbulent flow and detect the instantaneous flame front structure, respectively. Image processing and statistical analyzing were performed using the Matlab Software. Flame surface density, mean progress variable, local curvature radius, mean flame volume, and flame thickness, were obtained. Results show that turbulent premixed flames of syngas possess wrinkled flame front structure which is a general feature of turbulent premixed flames. Flame surface density for the CO/H2/O2/CO2 flame is much larger than that of CO/H2/O2/air and CH4/air flames. This is mainly caused by the smaller flame intrinsic instability scale, which would lead to smaller scales and less flame passivity response to turbulence presented by Markstain length, which reduce the local flame stretch against turbulence vortex. Peak value of Possibility Density Function (PDF) distribution of local curvature radius, R, for CO/H2/O2/CO2 flames is larger than those of CO/H2/O2/air and CH4/air flames at both positive and negative side and the corresponding R of absolute peak PDF is the smallest. This demonstrates that the most frequent scale is the smallest for CO/H2/O2/CO2 flames. Mean flame volume of CO/H2/O2/CO2 flame is smaller than that of CH4/air flame even smaller than that of CO/H2/O2/air flame. This would be due to the lower flame height and smaller flame wrinkles.  相似文献   

20.
The present work reported observation studies on the flame structure of outwardly propagating HCNG-30 (adding H2 into CH4 with a volumetric ratio of 30%) premixed flames, the effects of turbulent intensities (from 0 to 1.31 m/s) and equivalence ratios (from 0.6 to 1.2) were discussed. First, the effects of equivalence ratios on laminar HCNG-30 premixed flames were analyzed and discussed upon the flame morphology and the macro indices to flame structure (critical radius and wrinkling ratio), with the decrease of equivalence ratio from rich to lean, the instability was dominated by both D-T instability and D-L instability. Then, with the presence of turbulence, the flame structure became more wrinkled for both the turbulence effects and the interactions to intrinsic instabilities. Upon the analysis about the spatial oscillation on the flame-front with same sizes, the relationship between the amplitude of the flame-front and the equivalence ratio in intense turbulence conditions is not regular, and this phenomenon could be attributed to the dominant influence of turbulence on the flame structure under intense turbulent conditions. Upon the wavelet analysis about the temporal oscillation on same local flame structure, the effects of turbulence would decline when the flame developed to certain size, and such phenomena could be attributed to the dissipation of turbulence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号