首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Development of an inexpensive electrocatalyst for hydrogen evolution (HER) and oxygen evolution reactions (OER) receives much traction recently. Herein, we report a facile one-pot ethyleneglycol (EG) mediated solvothermal synthesis of orthorhombic Co2P with particle size ~20–30 nm as an efficient HER and OER catalysts. Synthesis parameters like various solvents, temperatures, precursors ratios, and reaction time influences the formation of phase pure Co2P. Investigation of Co2P as an electrocatalyst for HER in acidic (0.5 M H2SO4) and alkaline medium (1.0 M KOH), furnishes low overpotential of 178 mV and 190 mV, respectively to achieve a 10 mA cm?2 current density with a long term stability and durability. As an OER catalyst in 1.0 M KOH, Co2P shows an overpotential of 364 mV at 10 mA cm?2 current density. Investigation of Co2P NP by XPS analysis after OER stability test under alkaline medium confirms the formation of amorphous cobalt oxyhydroxide (CoOOH) as an intermediate during OER process.  相似文献   

2.
By increasing demand for hydrogen and oxygen gas for energy and industrial applications, designing a cheap, high-efficiency, and bifunctional electrocatalyst for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) seems necessary. For this purpose Ni–Mo–Fe as a bifunctional electrocatalyst was synthesized by one-step electrodeposition. From this electrocatalyst with optimal composition and current density, a small overpotential of 65, 161 mV for delivering 10, 100 mA/cm2 on HER in alkaline media was achieved. As-fabricated electrode exhibited 344,408 mV for delivering 10, 100 mA/cm2 in OER. Furthermore, this electrocatalyst shows high stability and negligible degradation in overpotential for HER and OER under long term stability tests in alkaline media. The notable function of As-fabricated Ni–Mo–Fe is due to the synergism effect between Ni, Mo, and Fe element and binder-free structure. Owing to the high-performance and high-stability of Ni–Mo–Fe electrocatalyst under Hydrogen and Oxygen evolution reactions is a candidate for industrial uses in the alkaline electrolyzer.  相似文献   

3.
In order to solve the problem of large overpotential in water electrolysis for hydrogen production, transition metal sulfides are promising bifunctional electrocatalysts for hydrogen evolution reaction/oxygen evolution reaction that can significantly reduce overpotential. In this work, Ni3S2 and amorphous MoSx nanorods directly grown on Ni foam (Ni3S2-MoSx/NF) were prepared via one-step solvothermal process, which were used as a high-efficient electrocatalyst for overall water splitting. The Ni3S2-MoSx/NF composite exhibits very low overpotentials of 65 and 312 mV to reach 10 mA cm−2 and 50 mA cm−2 in 1.0 M KOH for HER and OER, respectively. Besides, it exhibits a low Tafel slope (81 mV dec−1 for HER, 103 mV dec−1 for OER), high exchange current density (1.51 mA cm−2 for HER, 0.26 mA cm−2 for OER), and remarkable long-term cycle stability. This work provides new perspective for further the development of highly effective non-noble-metal materials in the energy field.  相似文献   

4.
Searching high-active, stable and abundant bifunctional catalysts to replace noble metals for hydrogen and oxygen evolution reactions (HER and OER) is desired. Herein, petal-like NiCoP sheets were synthesized on carbon paper covered with a 3D nitrogen-doped carbon nanofiber network (NiCoP/CNNCP) by a simple hydrothermal process followed by phosphorization. The HER overpotential in 0.5 M H2SO4 and OER overpotential in 1 M KOH of the NiCoP/CNNCP electrode only required 55 mV and 260 mV to drive a current density of 10 mA cm?2, respectively, which was comparable or even better than most nickel-and cobalt-based phosphide catalysts. The overall water-splitting electrolyzer with an asymmetric electrolyte system assembled using NiCoP/CNNCP as bifunctional electrodes required an extremely low cell voltage of 1.04 V to achieve a current density of 10 mA cm?2, which was much lower than almost all alkaline electrolysis systems.  相似文献   

5.
To develop earth-abundant and cost-effective catalysts for overall water splitting is still a major challenge. Herein, a unique “raisins-on-bread” Ni–S–P electrocatalyst with NiS and Ni2P nanoparticles embedded in amorphous Ni(OH)2 nanosheets is fabricated on Ni foam by a facile and controllable electrodeposition approach. It only requires an overpotential of 120 mV for HER and 219 mV for OER to reach the current density of 10 mA cm−2 in 1 M KOH solution. Employed as the anode and cathode, it demonstrates extraordinary electrocatalytic overall water splitting activity (cell voltage of only 1.58 V @ 10 mA cm−2) and ultra-stability (160 h @ 10 mA cm−2 or 120 h @50 mA cm−2) in alkaline media. The synergetic electronic interactions, enhanced mass and charge transfers at the heterointerfaces facilitate HER and OER processes. Combined with a silicon PV cell, this Ni–S–P bifunctional catalyst also exhibits highly efficient solar-driven water splitting with a solar-to-hydrogen conversion efficiency of 12.5%.  相似文献   

6.
Design, synthesize and application of metal-oxide based bifunctional electrocatalysts with sustainability and efficient activity in water splitting is significant among the wide spread researches in energy applications. Herein, bifunctional electrocatalysts composed of NiFe2O4 dispersed on N-doped graphene has been prepared by in-situ polymerization and characterized for further bifunctional catalytic performances. The electrocatalyst exhibited bespoken performances as cathode in HER as well as anode in OER at alkaline electrolyte. The nanocomposite N-doped graphene/NiFe2O4 (NGNF) exhibited low overpotential of 184 mV in HER and 340 mV in OER for attaining the current density of 10 mA/cm2 which is far better than their pristine counterparts. Similarly its Tafel slopes were found to be 82.9 mV/dec and 93.2 mV/dec for HER and OER. As an electrocatalyst NGNF outperformed pure nickel ferrite and graphene/NiFe2O4 (GNF) as bifunctional electrocatalyst with low overpotential and Tafel slopes. This indicates the impact of graphene and N-doping on graphene in the activity of pure NF. The graphene in the composite and the N-dopants provoked the catalytic activity and tuned the electron transfer and interaction with the electrolyte. Thus, herein we endow with strategies of preparing highly efficient bifunctional electrocatalysts by coupling spinel oxides and N-doped graphene for HER and OER.  相似文献   

7.
An ongoing challenge still lies in the exploration of proficient electrocatalysts from earth-abundant non-precious metals instead of noble metal-based catalysts for clean hydrogen energy through large-Scale electrochemical water splitting. However, developing a non-precious transition metals based, stable electrocatalyst for cathodic hydrogen evolution reaction (HER) and anodic oxygen evolution reaction (OER) is important challenge for modern energy conversion technology. In this report Vanadium doped bimetallic nickel-iron nanoarray, fabricated by carbon supported architecture through carbonization process for electrochemical water splitting. Three types of catalysts were prepared in different molar ratio of Ni/Fe. The electrocatalytic performance demonstrated that the catalyst with equal mole ratio (0.06:0.06) of Ni/Fe possess high catalytic activity for both OER and HER in alkaline and acidic medium. Besides, our findings revealed that the doping of vanadium could play a strong synergetic effect with Ni/Fe, which provide a small overpotential of 90 mV and 210 mV at 10 mA cm?2 for HER and OER respectively compared to the other two catalyst counterparts. Also, the catalyst with 1:1 (Ni/Fe) molar ratio showed a high current density of 208 mA cm?2 for HER at 0.5 M H2SO4 and 579 mA cm?2 for OER at 1 M KOH solution, the both current densities are much higher than the other two catalysts (different Ni/Fe ratio). In addition, the presented catalysts showed extremely good durability, reflecting in more than 20 h of consistent Chronoamprometry study at fixed overpotential η = 250 mV without any visible voltage elevation. Similarly, the (Ni/Fe) equal ratio catalyst showed better corrosion potential 0.209 V vs Ag/AgCl and lower current density 0.594 × 10?12 A cm?2 in high alkaline medium. The V-doping, MOF/GO surface defects are significantly increased the corrosion potential of the V-NixFey-MOF/GO electrocatalyst. Besides, the water electrolyzed products were analysed by gas chromatography to get clear insights on the formed H2 and O2 products.  相似文献   

8.
An attractive approach to obtain effective and stable electrode for water electrolysis is to directly deposit the electrocatalyst on current collector surface. Herein, we show the influence of electrochemical activation of carbon cloth substrate on the morphology and electrocatalytic properties of bifunctional electrodes for both hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). A simple one-step electrodeposition technique was applied to directly grow mixed Co-based films on electrochemically activated carbon cloth (EACC) surface. The produced films are composed of metallic Co, and largely amorphous CoO/Co(OH)2 phases. Variation of Co2+ concentration in the solution for electrodeposition enabled tuning the composition of mixed films in order to achieve the optimal HER and OER electrocatalytic performance in 0.1 M KOH. The synthesized electrodes require the overpotentials of 195 mV for HER and 340 mV for OER to deliver the current density of 10 mA/cm2. The results indicate that the facile oxidation of carbon cloth prior to the electrodeposition decreases the overpotential at 10 mA/cm2 by 150 and 60 mV for HER and OER respectively, thus opening the perspective of improving the activity of carbon-based self-supported composite electrocatalytic electrodes for advanced energy conversion processes.  相似文献   

9.
Herein, we fabricated bifunctional, noble metal-free, highly efficient nickel/nickel oxide on reduced graphene oxide (Ni/NiO@rGO) by chemical synthesis approach for electrochemical water splitting reaction. Its structural and morphological characterization using thermogravimetric analysis (TGA), transmission electron microscopy (TEM), field emission scanning electron microscope (FESEM), energy dispersive analysis of X-ray (EDAX) and X-ray diffraction (XRD) represents, Ni/NiO@rGO is having Ni/NiO NPs ∼10 nm (±2 nm) on graphene oxide with face-centered cubic (FCC) crystal structure. Moreover, the presence of Ni/NiO (2.26%), O (6.56%), N (0.74%) and C (90.44%) from EDAX analysis further confirms the formation of Ni/NiO@rGO and it also supported by FTIR studies. This nanocatalyst is examined further for electrocatalytic water splitting reactions (HER and OER). It demonstrated low overpotential 582 mV to achieve current density at 10 mA cm−2 and smaller Tafel slope of 63 mV dec−1 obtained in 0.5 M H2SO4 towards HER. Also, at the other end at onset potential of 1.6 V vs. RHE towards OER. It demonstrated low overpotential 480 mV to achieve current density at 10 mA cm−2 and smaller Tafel slope of 41 mV dec−1 in 0.5 M KOH towards OER observed. Hydrogen fuel is eco-friendly to the environment and noteworthy performance of earth-saving reactions.  相似文献   

10.
Binder-free NiFe-based electrocatalyst with aligned pore channels has been prepared by freeze casting and served as a bifunctional catalytic electrode for oxygen and hydrogen evolution reaction (OER and HER). The synergistic effects between Ni and Fe result in the high electrocatalytic performance of porous NiFe electrodes. In 1.0 M KOH, porous Ni7Fe3 attains 100 mA cm−2 at an overpotential of 388 mV with a Tafel slope of 35.8 mV dec−1 for OER, and porous Ni9Fe1 exhibits a low overpotential of 347 mV at 100 mA cm−2 with a Tafel slope of 121.0 mV dec−1 for HER. The Ni9Fe1//Ni9Fe1 requires a low cell voltage of 1.69 V to deliver 10 mA cm−2 current density for overall water splitting. The excellent durability at a high current density of porous NiFe electrodes has been confirmed during OER, HER and overall water splitting. The fine electrocatalytic performances of the porous NiFe-based electrodes owing to the three-dimensionally well-connected scaffolds, aligned pore channels, and bimetallic synergy, offering excellent charge/ion transfer efficiency and sizeable active surface area. Freeze casting can be applied to design and synthesize various three-dimensionally porous non-precious metal-based electrocatalysts with controllable multiphase for energy conversion and storage.  相似文献   

11.
Developing an effective and low-cost bifunctional electrocatalyst for both OER and HER to achieve overall water splitting is remaining a challenge to meet the needs of sustainable development. Herein, an electroless plating method was employed to autogenous growth of ultrathin Ni–Fe2B nanosheet arrays on nickel foam (NF), in which the whole liquid phase reduction reaction took no more than 20 min and did not require any other treatments such as calcination. In 1.0 M KOH electrolyte, the resulted Ni–Fe2B ultrathin nanosheet displayed a low overpotential of 250 mV for OER and 115 mV for HER to deliver a current density of 10 mA cm?2, and both OER and HER activities remained stable after 26 h stability testing. Further, the couple electrodes composed of Ni–Fe2B could afford a current density of 10 mA cm?2 towards overall water splitting at a cell voltage of 1.64 V in 1.0 M KOH and along with excellent stability for 26 h. The outstanding electrocatalytic activities can be attributed to the synergistic effect of electron-coupling across Ni and Fe atoms and active sites exposed by large surface area. The effective combination of low cost and high electrocatalytic activity brings about a promising prospect for Ni–Fe2B nanosheet arrays in the field of overall water splitting.  相似文献   

12.
To achieve high activity and stability for both hydrogen and oxygen evolution reactions through the non-precious-metal based electrocatalysts is still facing the great challenge. Herein, we demonstrate a facile strategy to prepare CoP nanoparticles (NPs) loaded on N, P dual-doped carbon (NPC) electrocatalysts with high concentration N and P dopants through a pyrolysis-deposition-phosphidation process. The great bifunctional electrocatalytic activity for both HER (the overpotential of 98 mV and 86 mV at 10 mA cm−2 in both 0.5 M H2SO4 and 1 M KOH electrolytes, respectively) and OER (the overpotential of 300 mV at 10  mA cm−2 in 1 M KOH electrolyte) were achieved. When CoP@NPC hybrid was used as two electrodes in the 1 M KOH electrolyte system for overall water splitting, the needed cell potential for achieving the current density of 10 mA cm−2 is 1.6 V, and it also showed superior stability for HER and OER after 10 h’ test with almost negligible decay. Experimental results revealed that the P atoms in CoP were the active sites for HER and the CoP@NPC hybrid showed excellent bifunctional electrocatalytic properties due to the synergistic effects between the high catalytic activity of CoP NPs and NPC, in which the doping of N and P in carbon led to a stronger polarization between Co and P in CoP, promoting the charge transfer from Co to P in CoP, enhancing the catalytic activity of P sites and Co sites in CoP for HER and OER, respectively. Specifically, the improvements could result from the changed charge state, the increased active specific surface area, and the facilitated reaction kinetics by N, P co-doping and admixture. This work provides a high-efficient, low-cost and stable electrocatalyst for overall water splitting, and throws light on rational designing high performance electrocatalysts.  相似文献   

13.
The metal-free carbonaceous catalysts are one of the promising candidates for efficient electrocatalytic hydrogen production. Aiming at demonstrating the high electrocatalytic activity of the hydrogen evolution reaction (HER), we synthesized the biomass rice husk-derived corrugated graphene (RH-CG) nanosheets via the KOH activation. The 700 °C-activated RH-CG nanosheets exhibited the large specific surface area as well as the high electrical conductivity. When using the RH-CG nanosheets as a HER electrocatalyst in 0.5 M H2SO4, the excellent HER activities with a small overpotential (9 mV at 10 mA/cm2) and a small Tafel slope (31 mV/dec) were achieved. The results provide a new strategy for materializing the superb biomass-derived electrocatalyst for highly efficient hydrogen production.  相似文献   

14.
The layered MoS2 nanostructures have been widely used in the electrochemical hydrogen evolution reaction (HER), but rarely applied in overall water splitting application for their ignorable oxygen evolution reaction (OER) activity. To address this issue, a novel self-standing and bifunctional electrocatalyst, consisting of Co-doped MoS2 nanosheets anchored on carbon fiber paper, has been prepared via hydrothermal method. Taking advantage of conductive substrate of carbon fiber paper, sufficient-exposed active edges of MoS2 sheets, and metallic character caused by Co-doping, our electrode exhibits high-efficient bifunctional activities for the overall water splitting in alkaline electrolyte (1 M KOH), which can produce a current density of 20 mA cm−2 at an overpotential of 197 mV for HER and 235 mV for OER.  相似文献   

15.
Developing highly active, stable and sustainable electrocatalysts for overall water splitting is of great importance to generate renewable H2 for fuel cells. Herein, we report the synthesis of electrocatalytically active, nickel foam-supported, spherical core-shell Fe-poly(tetraphenylporphyrin)/Ni-poly(tetraphenylporphyrin) microparticles (FeTPP@NiTPP/NF). We also show that FeTPP@NiTPP/NF exhibits efficient bifunctional electrocatalytic properties toward both the oxygen evolution reaction (OER) and the hydrogen evolution reaction (HER). Electrochemical tests in KOH solution (1 M) reveal that FeTPP@NiTPP/NF electrocatalyzes the OER with 100 mA cm−2 at an overpotential of 302 mV and the HER with 10 mA cm−2 at an overpotential of 170 mV. Notably also, its catalytic performance for OER is better than that of RuO2, the benchmark OER catalyst. Although its catalytic activity for HER is slightly lower than that of Pt/C (the benchmark HER electrocatalyst), it shows greater stability than the latter during the reaction. The material also exhibits electrocatalytic activity for overall water splitting reaction at a current density of 10 mA cm−2 with a cell voltage of 1.58 V, along with a good recovery property. Additionally, the work demonstrates a new synthetic strategy to an efficient, noble metal-free-coordinated covalent organic framework (COF)-based, bifunctional electrocatalyst for water splitting.  相似文献   

16.
It is great important to develop and explore a non-precious bifunctional electrocatalyst with high efficiency and good stability for Hydrogen Evolution Reaction (HER) and Oxygen Evolution Reaction (OER) in alkaline electrolyte. Herein, a three-dimensional (3D) needle-like MoS2/NiS heterostructure supported on Nickel Foam (NF) (MoS2/NiS/NF) is synthesized by a simple hydrothermal method for the first time, which can act as a good bifunctional electrocatalyst for overall water splitting. As expected, the optimal MoS2/NiS/NF exhibits excellent catalytic performance with a low overpotential of 87 and 216 mV at 10 mA cm−2 for HER and OER in 1 M KOH electrolyte, respectively, accompanied by good cycle stability. Furthermore, the MoS2/NiS/NF as bifunctional electrocatalyst in an electrolyzer shows high efficiency with a cell voltage of 1.5 V at 10 mA cm−2, as well as superior durability. The present work may open a new direction to design and develop a non-precious bifunctional electrocatalyst with excellent catalytic activity for water splitting in the future.  相似文献   

17.
Transition metal phosphides have been known as promising electrocatalysts for hydrogen evolution and oxygen evolution reactions (HER and OER) due to their high catalytic activity. In this work, the FeCoP nanoparticles decorated on N-doped electrospun carbon nanofibers (FeCoP@NCNFs) was successfully synthesized through depositing Fe, Co-based Prussian blue analogue Co3[Fe(CN)6]2·10H2O (FeCo-PBA) onto the electrospun PVP/PAN nanofibers via layer-by-layer approach, followed by carbonization and phosphorization treatments. Benefiting from the high electrical conductivity, abundant catalytic active sites and the synergistic effect between FeCoP nanoparticles and N-doped carbon nanofibers network, the obtained FeCoP@NCNFs displays good bifunctional electrocatalytic activity. In 1 M KOH, the FeCoP@NCNFs achieves 10 mA cm?2 at an overpotential of 290, 226 mV for OER and HER, respectively. Moreover, it demands overpotential of 196 mV to achieve 10 mA cm?2 for HER in 0.5 M H2SO4. The FeCoP@NCNFs is used as both anode and cathode for overall water splitting, it requires a low voltage of 1.65 V to achieve a current density of 10 mA cm?2 and maintains outstanding stability over 10 h. Herein, a strategy for preparing bifunctional electrocatalysts of compositing transition metal phosphides with carbon nanofibers is proposed, and the application of metal-organic framework in electrocatalytic field is further extended.  相似文献   

18.
Constructing efficient bifunctional electrocatalysts for both cathode and anode is of great importance for obtaining green hydrogen by water splitting. Herein, sulfuration of hierarchical Mn-doped NiCo LDH heterostructures (Mn–NiCoS2/NF) is constructed as a bifunctional electrocatalyst for oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) via a facile hydrothermal-annealing strategy. Mn–NiCoS2/NF shows an overpotential of 310 mV at 50 mA cm−2 for OER and 100 mV at 10 mA cm−2 for HER in 1.0 M KOH. Moreover, only 1.496 V@10 mA cm−2 is required for overall water splitting by using Mn–NiCoS2/NF as catalyst dual electrodes in a two-electrode system. The excellent performance of Mn–NiCoS2/NF should be attributed to the ameliorative energy barriers of adsorption/desorption for HO/H2O through the modification of electronic structure of NiCo basal plane by Mn-doping and the acceleration of water dissociation steps via rich delocalized electron inside sulfur vacancies. The construction of hierarchical Mn–NiCoS2/NF heterostructures provides new prospects and visions into developing efficient-advanced electrocatalysts for overall water splitting.  相似文献   

19.
An electrocatalyst based on a unique three-dimensional (3D) N-doped porous carbon sheet networks embedded with CoP2 nanoparticles (CoP2@3D-NPC) was synthesized by a facile pyrolysis process as well as an in-situ phosphatization method. The improved CoP2@3D-NPC hybrid materials show excellent electrocatalytic activity toward HER and OER. This material provides a low overpotential of 126 mV at 10 mA cm−2 in 0.5 M H2SO4 and 167 mV at 20 mA cm−2 in 1.0 M KOH for HER with a small Tafel slope value of 59 mV dec−1, respectively. Besides, it is also active for the OER under alkaline conditions. Such a prominent property of the CoP2@3D-NPC electrocatalyst could be attributed to its excellent electrical conductivity of 3D carbon substrate, strong synergistic effect between CoP2 nanoparticles and carbon nanosheet as well as extra active sites created by the N-doped structure.  相似文献   

20.
In realm of renewable energy, development of an efficient and durable electrocatalyst for H2 production through electrochemical hydrogen evolution reaction (HER) is indispensable. Herein, we demonstrate a simple preparation of carbon-supported nanoporous Pd with surface coated Pt (CS–PdPt) by a simple galvanic replacement reaction (GRR). The phase purity and porosity have been confirmed by XRD, HRTEM, and N2 sorption techniques. As HER electrocatalyst, CS-PdPt showed a low overpotential of 26 mV in 0.5 M H2SO4 at current density of 10 mA cm−2, which is lower than the commercial Pt/C electrode. The CS-PdPt catalyst exhibits an overpotential of 46 mV in 1 M KOH, and 50 mV in neutral buffer (1 M PBS) at 10 mA cm−2. The CS-PdPt furnished with small Tafel values of 33, 88, and 107 mV dec−1 in acidic, alkaline, and neutral medium, respectively. Accelerated durability test at 100 mV s−1 for 1000 cycles demonstrated a negligible change in HER activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号