首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 93 毫秒
1.
压缩空气储能是解决风电、光伏等波动性可再生能源消纳问题的有效手段之一。盐穴作为压缩空气储气库具有独特的技术和经济优势。研究压缩空气盐穴储气库的热力特性,对于压缩空气储能系统的设计和运行都具有重要的指导意义。本文对盐穴储气库的压缩空气注采全过程开展了数值模拟和热力特性分析。分析结果表明:由于盐穴储气库内的空气和该储气库壁面上的盐岩层存在对流换热,因此充、放气过程中盐穴储气库内平均温度的变化程度均小于绝热模型,充气过程中,盐穴储气库内空气的平均温升为6.1℃,放气过程中,盐穴储气库内空气的平均温降为7.2℃;充、放气过程中,盐穴储气库壁面上盐岩层内热影响区的深度为2.5 m,这不会对盐穴储气库的安全运行产生不良影响。  相似文献   

2.
为解决压缩空气储能系统热力学性能与经济学性能相互制约的问题,本文同时考虑热力学性能与经济学性能对系统进行优化.首先建立了系统的热力学模型和经济学模型,研究了关键节点参数对系统性能的影响规律,在此基础上以热力学评价指标能量效率和经济性评价指标单位能量成本为目标函数对系统进行多目标优化.研究结果表明:增大膨胀比、提高透平入口温度能够提高系统效率、降低发电成本;系统最佳运行工况条件下,能量效率可达55.12%,单位能量成本为396.60$/kW.  相似文献   

3.
压缩空气储能电站电价模型由容量电价和电量电价两部分组成,研究表明,当储能电站造价为8500元/kW时,每年的容量电价为1223元/kW;电量电价为0.2166元/kWh,约为当地燃煤标杆上网电价的55%。用本模型确定的电价测算的工程项目内部收益率为7.51%,回收期11.86年。当电站造价分别为8500元/kW、8000元/kW和7500元/kW时,对应的年容量电价分别为1223元/kW、1154元/kW和1085元/kW。储能电站运行小时为0时,项目投资内部收益率为7.1%;随着利用小时的增加,项目投资内部收益率会略有提高。研究结论可为政府主管部门制定压缩空气储能电站相关电价政策提供依据。  相似文献   

4.
[目的] 近年来,储能技术及储能产业发展受到的关注度持续升温。 [方法] 在此背景下,对压缩空气储能技术及其商业应用场景进行了分析与综述。通过梳理国内致力于压缩空气储能技术示范的研究团队及其技术特点,较为全面地反映了国内压缩空气储能技术的发展方向;在此基础上,介绍了已投运数十年的德国汉特福及美国阿拉巴马州两座商业化压缩空气储能电站的配置参数及运行经验,综述了近年来国内外针对多种新型压缩空气储能技术的示范进展状况。结合压缩空气储能技术梳理、商业化储能电站回顾及新型压缩空气储能技术示范进展综述三方面的工作,可为国内压缩空气储能技术发展及国家多部委大力推动的储能行业发展提供借鉴。最后,从电源侧储能、电网侧储能及用户侧储能三类应用场景分析了压缩空气储能技术的适应性及应用潜力。 [结果] 德国及美国两座商业化压缩空气储能电站数十年的可靠运行经验,检验了压缩空气储能电站长期运行的可靠性。与此同时,国内自500 kW至10 MW等多容量规模压缩空气储能示范工程的先后投建,表明此项储能技术在国内已实现由理论研究阶段向示范验证阶段的突破。 [结论] 在当下政策环境,用户侧峰谷电价政策是较为典型的储能应用场景边界条件,在压缩空气储能技术推广中可以重点考虑。  相似文献   

5.
先进压缩空气储能系统是一种具有广泛应用前景的储能技术,对其展开全生命周期能耗及二氧化碳排放研究,对促进储能技术发展和政策制定有指导意义。本工作以10 MW先进压缩空气储能系统为研究对象,建立了压缩空气储能系统的全生命周期模型,基于实际机组、国家标准及相关文献等对生命周期各阶段进行清单分析,获得了压缩空气储能系统的全生命周期能耗、能效及二氧化碳排放,并进行了敏感性分析。研究结果表明,系统全生命周期度电能耗和度电二氧化碳排放量分别为5.653 MJ和36.73 g,净能量效率为63.68%;运行阶段的能耗和二氧化碳排放占比最大,分别为99.16%和90.49%;系统运行效率、系统寿命及发电时间都是全生命周期二氧化碳排放的重要影响因素,而全生命周期能耗对系统运行效率的敏感性较大。  相似文献   

6.
压缩空气储能技术和抽水蓄能技术是两种最具潜力的电能规模化储存技术。构建了四套压缩空气储能方案,结合热力学第一定律对高压储罐内压缩空气的温度与压力参数的变化规律以及不同储能方案性能进行了比较。研究结果表明,高压储罐在与环境换热较差时,高压储罐的充气过程会经历较为明显的温升现象。200 m3储罐以1.0 kg/s流速充气至10 MPa时,温升幅度为22.46 ℃,储气过程的温升现象降低了储罐的空气容纳能力。在压缩空气储能系统性能方面,四套储能系统的热耗位于4 100 kJ/kW·h至4 200 kJ/kW·h之间,系统效率位于52.30%与56.33%之间。在储能系统效率与对外输出电能总量指标上,高压储罐与环境之间换热性能较好的储能系统均要优于换热条件较差的储能系统。  相似文献   

7.
本文设计了一种基于三元熔盐蓄热的非补燃式压缩空气储能系统方案,分析了压缩空气储能系统采用三元熔盐作为蓄热介质替代导热油的优势,应用热力系统仿真软件建模,完成了系统整体性能核算研究,合理匹配出60MW等级的非补燃式压缩空气储能系统蓄热设备进出口参数以及三元熔盐用量。本研究可为现有压缩空气储能技术的降本提效提供参考。  相似文献   

8.
目的  压缩空气储能作为一种长时储能方式,在削峰填谷、电网调峰、新能源消纳、辅助服务等方面具有广阔的应用空间,对于推动“碳中和、碳达峰”背景下加快推进构建以新能源为主体的新型电力系统具有重要意义。 方法  文章首先从压缩空气储能技术原理、技术分类对压缩空气储能的技术现状进行分析总结;根据已有技术,创造性地提出了中国能建压缩空气储能系统解决方案,即高压热水储热的“中温绝热压缩”技术路线以及低熔点熔盐+高压热水联合储热的“高温绝热压缩”技术路线,并介绍了系统集成及优化、主设备选型、储热介质、储气库、数字化网储协调等技术关键点。最后,围绕2条技术路线,分别介绍了相应的工程案例。 结果  研究表明,需要综合考虑压缩机系统、膨胀机系统、储热系统、储气系统等各系统的物质流、能量流耦合特点,开发适用于压缩空气储能用的压缩机、膨胀机、换热器等关键设备及地下储气库、网储协调等关键技术,进而提升电站转换效率。 结论  通过研究以期为后续开展压缩空气储能电站工程化提供科学参考。  相似文献   

9.
介绍了一种新型的大规模蓄能技术——压缩空气蓄能(Compressed Air Energy Storage,CAES),CAES系统响应快、容量大、成本低、寿命长,逐渐成为了全球第二大蓄能技术。根据CAES系统的容量不同,将CAES系统划分为大型CAES、小型CAES和微型CAES3种,并针对3种不同容量级的CAES,详细介绍了其组成及现状,对技术特点与难点和应用领域及场景进行了分析与概述。对CAES系统的研究方向与发展前景进行了展望。  相似文献   

10.
Compressed Air Energy Storage(CAES) has tremendous promotional value in the intermittent renewable energy supply systems. CAES has special requirements for compressor(e.g. heavy load, high pressure ratio, wide range). With advantages of higher efficiency and wider operation range, IGC(Integrally Geared Compressors) is selected to fulfill the special requirements of the large-scale CAES. To get a better aerodynamic performance, in this paper, based on the analysis of internal flow of centrifugal ...  相似文献   

11.
等温压缩空气储能(I CAES)无需补燃、能源利用率高且碳排放低,在大规模储能领域具有重要应用前景。在建立喷雾的I CAES系统的液气传热模型基础上,通过数值方法分析了喷雾流量对I CAES液气传热特性的影响规律。结果表明:采用喷雾方法能够有效抑制压缩和膨胀过程的温度变化、强化液气传热并实现理想I CAES过程;增大喷雾流量能够降低压缩功耗、提高膨胀做功并降低停机储气过程压损,可提高系统指示效率和储能效率。  相似文献   

12.
采用热经济学分析方法对超临界压缩空气蓄能系统与压缩空气蓄能系统(CAES)的经济性进行分析.系统输入电能以大工业110 kV低谷电价0.309 9元/(kW·h)和燃气价格为2元/m3为例进行计算,利用EES软件进行模拟.结果表明:超临界压缩空气蓄能系统较CAES更为经济有效,可以达到调节电网负荷的目的,且可以提高可再...  相似文献   

13.
提出一种新型恒压喷水压缩空气储能系统,利用废弃煤矿等地下洞穴,在水下布置尼龙布管储存压缩空气,形成以地下洞穴为下库,地面水池为上库的水力辅助恒压压缩空气储气体系;膨胀与压缩过程采用单级多缸随转式膨胀压缩两用机实现,导热油蓄能和放能过程采用共享设备原路返回方案。通过建立系统的热力学模型,分析了在空气入口处喷水控制压缩空气出口温度,以及由地下洞穴深度确定的压缩段出口空气压力,环境温度等因素对系统性能的影响。分析表明:在压缩机出口压力及温度为10 MPa和320℃、环境温度25℃、换热端差10℃和膨胀压缩两用机等熵效率0.85的工况条件下,储能系统转换效率达到66.6%。  相似文献   

14.
压缩空气储能是解决当前我国遇到的环境问题和能源问题的重要方式之一,其未来的发展方向至关重要。本文综述了不同压缩空气储能系统,通过能量循环效率公式分析了各系统的效率,简要介绍了等温压缩空气实现技术,并结合我国新能源利用率低的现状,提出了一种耦合可再生能源的等温压缩空气储能系统,该系统可作为未来我国压缩空气储能系统可持续的、清洁环保的发展方向。  相似文献   

15.
目的  储能是发展新能源、实现碳达峰碳中和目标的基础条件,其中抽水蓄能是最主要的储能方式,但是抽水蓄能依赖地理条件,需要占用大量自然资源,优良的厂址资源十分有限。为了缓解抽水蓄能厂址资源需求与自然资源稀缺的矛盾,提出了一种耦合抽水蓄能的压缩空气储能系统,并从研究思路、概念方案和工程可行性进行分析,从而为抽水蓄能产业发展提供创新解决方案。 方法  围绕提高能量密度,以减小水库容量、降低水库高度差为突破点,运用压缩空气排水的方法,将水泵水轮机替换为压缩机和膨胀机,下库改为封闭结构的承压容器。储能时,压缩机将空气压缩至高压充入下库,并推挤下库内的水至上库。释能时,水从上库返回下库,下库内的压缩空气被推挤出,并经膨胀机释放。这可使相同条件下抽水蓄能的能量转换量提高数倍。为了论证耦合抽水蓄能的压缩空气储能电站的储能效果,设置上、下库高度差300 m,按照低性能和高性能两套设备参数,对40 MW/200 MWh的概念方案进行热力学分析和储能效率计算。 结果  结果表明:在低性能参数条件下,储能效率65.68%,在高性能参数条件下,储能效率70.81%;能量密度1.67 kWh/m3 结论  耦合抽水蓄能的压缩空气储能系统可使水库容量或高度差大幅减小,大大降低厂址要求,并可使发展抽水蓄能受限的地区具备开发条件,且关键设备成熟,单位造价与常规抽水蓄能相近,技术经济上可行。  相似文献   

16.
A scroll expander was applied to the Micro‐Compressed Air Energy Storage system, and its energy conversion efficiency was investigated. In order to study the variation mechanism of the volume, mass, pressure and temperature of the air in different chambers, the mathematical model of the expansion process was developed on the base of the geometric model, mass conservation equation, ideal gas equation and energy conservation equation. Then, the mathematical model was implemented in Matlab, and the simulated energy conversion efficiency defined as the ratio between the output shaft power of the scroll expander and the input compressed air power was obtained. Furthermore, a test system was built in order to validate the mathematical model and study the improvement of the energy conversion efficiency. The prototypes of the scroll expander with different cross‐sectional areas of the intake port or the discharge port were fabricated and tested in the experiments. Results show that the simulated torque and energy conversion efficiency agree well with the experimental results. Also, there is a small deviation between the expansion process and the ideal isentropic process due to the gas leakage, intake and discharge loss. In addition, the air supply pressure and the cross‐sectional area ratio of the discharge port to the intake port are two important parameters for the improvement of the energy conversion efficiency. The experiments show that the energy conversion efficiency varies from 23% to 36% at the air supply pressure of 0.35 to 0.65 MPa, indicating that it is proportional to the air supply pressure. It can also be concluded from the experiments that when the air pressure is higher than 0.45 MPa, the ideal ratio range can be determined as 0.6‐0.8. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号