首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The objective of this study is to socially and economically investigate installation of wind turbines in Iran in order to produce hydrogen using its electricity. Due to adequate condition of wind blow in Manjil, Zabol, and Ardebil, these cities were chosen as the case studies and sample society. To scrutinize the acceptance of wind power among the sample members, first, data was gathered through questionnaires and analyzed by Partial Least Squares (PLS) approach to Structural Equations Modeling (SEM). The results showed that the first hypothesis (H1), positive effect of financial condition of households on wind power acceptance, was rejected with the coefficient of 1.184. On the other hand, the second hypothesis (H2) was approved with a meaningful coefficient of 3.159, that is, the social awareness of wind energy has a positive effect on its acceptance as an electricity generating source. Costs and Incomes Chart was utilized to estimate the payback period of investing in the wind power site project. Five wind turbines with different nominal capacities were tested and the results showed that the payback period for Manjil is shorter than that of others’ in a way that for turbines with 5, 30, 50, 60 and 100 kW nominal capacity is 3.1, 2.4, 2.3, 1.9, 2.6 years respectively. Finally, Hummer H25.0–60 KW wind turbine was selected due to its payback time which was less than other turbines to estimate the amount of hydrogen produced. The results showed that with installing one set of this turbine in Manjil, Zabol, and Ardebil 7.12, 5.82 and 5.72 ton hydrogen per year will be produced, respectively.  相似文献   

2.
Renewable and carbon free energy relates to the sustainable development of human beings while hydrogen production by renewables and hydrogen underground storage ensure the stable and economic renewable energy supply. A hybrid energy system combining hydrogen production by offshore wind power with hydrogen storage in depleted oil reservoirs was constructed along with a mathematical model where the Weibull distribution, Wind turbine power function, Faraday's law, continuity equation, Darcy's law, state equation of real gas, Net Present Value (NPV) and the concept of leveling were adopted to clarify the system characteristics. For the case of a depleted oil field in the Bohai Bay, China, the annual hydrogen production, annual levelized cost of hydrogen and payback period are 2.62 × 106 m³, CNY 34.6/kgH2 and 7 years, respectively. Sensitivity analysis found that the wind speed impacted significantly on system NPV and LCOH, followed by hydrogen price and stratum pressure.  相似文献   

3.
The paper attempts the assessment of a part of design and erection activities in wind energy field, in western Romania, from Electromontaj S.A. one new 100 % private company.So I shall refer to achievements of construction and erection:First the 3 MW demonstrative wind farm in Banat Mountain, and second the programmes for erection of experimental small wind turbines for operation in isolated settlements, in the power range 0,5–10 KW, and erection PV/Wind Turbines/Battery Systems, in small villages where are many lonely houses, who haven't electricity, for first time in our country.  相似文献   

4.
Hydrogen as an energy carrier can play a significant role in reducing environmental emissions if it is produced from renewable energy resources. This research aims to assess hydrogen production from wind energy considering environmental, economic, and technical aspect for the East Azerbaijan province of Iran. The economic assessment is performed by calculation of payback period, levelized cost of hydrogen, and levelized cost of electricity. Since uncertainty in the power output of wind turbines may affect the payback period, all calculations are performed for four different turbine degradation rates. While it is common in the literature to choose the wind turbine based on a single criterion, this study implements Multi-Criteria Decision-Making (MCDM) techniques for this purpose. The results of Step-wise Weight Assessment Ratio Analysis illustrates that economic issue is the most important criterion for this research. The results of Weighted Aggregated Sum Product Assessment shows that Vestas V52 is the most suitable wind turbine for Ahar and Sarab cities, while Eovent EVA120 H-Darrieus is a better choice for other stations. The most suitable location for wind power generation is found to be Ahar, where it is estimated to annually generate 2914.8 kWh of electricity at the price of 0.045 $/kWh, and 47.2 tons of hydrogen at the price of 1.38 $/kg, which result in 583 tons of CO2 emission reduction.  相似文献   

5.
Wind resource assessment of the Jordanian southern region   总被引:1,自引:0,他引:1  
Eyad S. Hrayshat   《Renewable Energy》2007,32(11):1948-1960
Wind data in terms of annual, seasonal and diurnal variations at Queira, which is located in the southern part of Jordan was studied and analyzed. For this purpose, long-term wind speed data for a period of 12 years (1990–2001) was used. The analysis showed that the seasonal and diurnal pattern of wind speed matches the electricity load pattern of the location. Higher winds of the order of 6 m/s and more were observed during both the summer months of the year (May–August) and peak hours (1100–1500) of the day. The wind duration availability is discussed as the number of hours during which the wind remained in certain wind speed intervals. The possibility of electricity generation from wind power at Queira was carried out using three different wind energy systems of sizes 100, 22 kW rated power, and a wind farm consisting of 25 small wind turbines; each of 4 kW rated power with hub heights of 20, 30, and 40 m. The energy production analysis showed higher production from the wind farm with a 20 m hub height than the production from the other two wind turbines. Similarly, the cost analysis showed that the lowest generation costs of 1 kWh were obtained for the wind farm compared to the other two wind turbines. The possibility of water pumping using the wind farm was also investigated. The results showed that water pumping using wind turbines is an appropriate alternative for the photovoltaic water pumping in the region.  相似文献   

6.
So far, the biggest photovoltaic park in Belgium has been injecting all its energy into the electric distribution grid through a power purchase agreement with an electricity supplier. Due to decreasing and volatile wholesale electricity prices, the industrial partners/owners of the photovoltaic park are considering hydrogen storage in an attempt to increase the value proposition of their renewable energy installation. A major objective of the present work is to show how the utilization factor of the electrolyzer is affected by the design of the power supply system when the latter consists only of renewable energy sources instead of using the electric grid. Different hybrid designs were developed, by combining the existing photovoltaic source with wind power and state-of-the-art energy storage technologies (Vanadium Redox Flow or Lithium NMC). Finally, four scenarios were investigated, all considering a 1 MW PEM electrolyzer: A) 15 MW PV, B) 15 MW PV, 2MW Wind, C) 15 MW PV, 2 MW Wind, Battery, D) 15 MW PV, 15 MW Wind. The utilization factor was found as follows, for each scenario respectively: A) 41,5%, B) 65,5%, C) 66,0–86,0%, D) 82,0%. Furthermore, the analysis was extended to include economic evaluations (i.e. payback period, accumulated profit), specifically concerning scenario B and C. The results of this study lead to a number of conclusions such as: i) The utilization of the electrolyzer is limited when its power supply is intermittent. ii) Compared to PV, wind power makes larger contribution to the increase of the utilization factor, iii) 100% utilization can be achieved only if an energy storage system co-exists. iv) With a utilization factor at 65,5% scenario B can deliver a payback period in less than 8 years, if hydrogen is sold above 5€/kg. An analytic overview of all conclusions is presented in the last section of the paper.  相似文献   

7.
The aim of this study was to predict the wind energy content over the campus area of Izmir Institute of Technology. The wind data were collected at 10 and 30 m mast heights for a period of 16 months. Mean wind speeds were 7.03 and 8.14 m/s at 10 and 30 m mast heights, respectively. The ‘WAsP’ and ‘WindPRO’ softwares were used for the wind statistics and energy calculations. Suitable sites were selected according to the created wind power and energy maps. Wind turbines with nominal powers between 600 and 1500 kW were established for annual energy production calculations and best fitted ones were used for the micrositting.  相似文献   

8.
An evaluation of wind energy potential at Kati Bandar,Pakistan   总被引:1,自引:0,他引:1  
As a developing nation of energy-starved people, Pakistan urgently needs new sources of affordable, clean energy. Wind energy is potentially attractive because of its low environmental impact and sustainability. This work aims to investigate the wind power production potential of sites in south-eastern Pakistan. Wind speed data measured over a one-year period at a typical site on the south-east coast of Pakistan are presented. Frequency distributions of wind speed and wind power densities at three heights, seasonal variations of speed, and estimates of power likely to be produced by commercial turbines are included. The site investigated is found to be a class 4 wind power site with annual average wind speed of 7.16 m/s and power density of 414 W/m2 at 50 m height. The site is, therefore, likely to be suitable for wind farms as well as small, stand-alone systems.  相似文献   

9.
The transition to a low carbon energy portfolio necessitates a reduction in the demand of fossil-fuel and an increase in renewable energy generation and penetration. Wind energy in particular is ubiquitous, yet the stochastic nature of wind energy hinders its wide-spread adoption into the electric grid. Numerous techniques (improved wind forecasting, improved wind turbine design and improved power electronics) have been proposed to increase the penetration of wind energy, yet only a few have addressed the challenges of wind intermittency, grid stability and flexibility simultaneously. The problem of excess wind energy results in wind curtailment and has plagued large scale wind integration. NREL's HOMER software is used to show that a strong negative correlation exists between the cycles to failure of a storage device and the excess wind energy on the system. A 1 MJ magnesium-diboride superconducting magnetic energy storage (SMES) system is designed to alleviate momentary interruptions (lasting from a few milli-seconds to a few minutes) in wind turbines. The simulation results establish the efficacy of SMES coupled with wind turbines improve output power quality and show that a 1 MJ SMES alleviated momentary interruptions for ∼50 s in 3 MW wind turbines. These studies suggest that SMES when coupled to wind turbines could be ideal storage devices that improve wind power quality and electric grid stability.  相似文献   

10.
With wind energy penetration rate increasing, wind energy curtailment turns severe in some wind farms nowadays and new wind farm construction trends to aggregate this situation. Therefore the need for massive energy storage technology such as “Power to gas” is growing. In this study, a model of integrating curtailed wind energy with hydrogen energy storage is established based on real time data in term of 10 min avg. throughout a whole year in a wind farm. Two wind/hydrogen production scenarios via water electrolysis are given and the influence exerted on payback period by electrolyser power and hydrogen price is talked in tandem as well as the model validity is specified in the conclusion section. Our results further stress the importance of hydrogen energy storage technology on addressing wind energy curtailment and disclose some regularities from an economical perspective.  相似文献   

11.
Nowadays, wind energy plays a key role as a sustainable source of energy and wind turbines are a relevant source of power for many countries world-wide. In such a context, this paper investigates the technical and economic feasibility of small wind turbines for five of the main European Union countries (France, Germany, Italy, Spain and The Netherlands). Ten commercial turbines with rated power from 2.5 kW to 200 kW are evaluated considering their installation and operative conditions. Several parameters most affecting wind turbine performances are evaluated and the estimation of the annual cash flows during the expected plant life-time are determined as a function of both the installation location (wind speed probability distribution, national incentive scheme and tax level) and the wind turbine characteristics (rated power curve, maintenance, installation and shipping costs). The obtained data are presented and discussed through a parametric analysis based on the Net Present Value capital budget approach, showing the conditions making these systems profitable or non-profitable and explaining the relative motivations. Moreover, the analysis outcomes are further investigated highlighting the dependence of the turbine profitability from the considered parameters, including a comparative analysis among the five analyzed European countries.  相似文献   

12.
Nova Scotia, Canada's community feed-in tariff (COMFIT) scheme is the world's first feed-in tariff program specifically targeting locally-based renewable energy projects. This study investigated selected turbine capacities to optimize electricity production, based on actual wind profiles for three sites in Nova Scotia, Canada (i.e., Sydney, Caribou Point, and Greenwood). The turbine capacities evaluated are also eligible under the current COMFIT-large scheme in Nova Scotia, including 100 kW, 900 kW and 2.0 MW turbines. A capital budgeting model was developed and then used to evaluate investment decisions on wind power production. Wind duration curves suggest that Caribou Point had the highest average wind speeds but for shorter durations. By comparison, Sydney and Greenwood had lower average wind speeds but with longer durations. Electricity production cost was lowest for the 2.0 MW turbine in Caribou Point ($0.07 per kWh), and highest for the 100 kW turbine located in Greenwood ($0.49 per kWh). The most financially viable wind power project was the 2.0 MW turbine assumed to operate at 80 m hub height in Caribou Point, with NPV=$251,586, and BCR=1.51. Wind power production for the remaining two sites was generally not financially feasible for the turbine capacities considered. The impact of promoting local economic development from wind power projects was higher in a scenario under which wind turbines were clustered at a single site with the highest wind resources than generating a similar level of electricity by distributing the wind turbines across multiple locations.  相似文献   

13.
In this study, the hydrogen production potential and costs by using wind/electrolysis system in P?narba??-Kayseri were considered. In order to evaluate costs and quantities of produced hydrogen, for three different hub heights (50 m, 80 m and 100 m) and two different electrolyzer cases, such as one electrolyzer with rated power of 120 kW (Case-I) and three electrolyzers with rated power of 40 kW (Case-II) were investigated. Levelised cost of electricity method was used in order to determine the cost analysis of wind energy and hydrogen production. The results of calculations brought out that the electricity costs of the wind turbines and hydrogen production costs of the electrolyzers are decreased with the increase of turbine hub height. The maximum hydrogen production quantity was obtained 14192 kgH2/year and minimum hydrogen cost was obtained 8.5 $/kgH2 at 100 m hub height in the Case-II.  相似文献   

14.
Jonas Pagh Jensen 《风能》2019,22(2):316-326
Wind power is one of the fastest growing renewable energy sources. The wind turbines have an expected design lifetime in the range of 20 to 25 years after which decommissioning is expected. The trend in the wind turbine industry is that the turbines increase in size—especially when considering offshore wind turbines in the 7 to 8 MW size range. Life cycle assessments show that the materials used for manufacturing the turbines accounts for 70 to 80% of the environmental impact, so ensuring optimal recycling at the end‐of‐service‐life is of economic and environmental interest and in line with the principles of transitioning towards a circular economy. The decommissioning and recycling process is analysed in this paper, with special considerations given to the environmental aspects of a theoretical 100% recyclability scenario. This includes cradle‐to‐gate life‐cycle inventory analysis of the materials, embedded energy, and CO2‐equivalent emissions. The findings show that established recycling methods are present for most of the materials and that recycling of a 60 MW wind park at end‐of‐service‐life provides environmental benefits as well as lowering the natural resource use and securing resources for use in the future. The saved energy is estimated to approximately 81 TJ. The reduction in emissions related to the recycling of wind turbine material totals approximately 7351 ton CO2.  相似文献   

15.
Wind resource analysis was carried out for two major islands in the Fiji. Wind data from July 1993 to June 2005 from NASA data base was analysed. Annual seasonal variation in wind speed, direction and power density were analysed for various locations. The average yearly wind speed for Fiji is between 5 and 6 m/s with average power density of 160 W/m2. Site specific validation showed no significant relationship between NASA and experimental data. The wind resource at Laucala Bay has a power density of 131 W/m2 at 55 m. The expected annual energy produced from a 275 kW GEV Vergnet wind turbine is 344 MWh. The capacity factor of the turbine is expected to be 14.3% with an overall efficiency of 37%. The electricity generated would cost $FJ 0.27 per kWh. The system will payback its worth in 12.2 years.  相似文献   

16.
Kutubdia is one of the coastal islands in Bangladesh. The wind speed data at the wind monitoring station of Bangladesh Meteorological Department (BMD), Kutubdia, located in a built-up area, appears to be low, but at another location, near the seashore, Bangladesh Centre for Advanced Studies (BCAS) finds that the wind energy availability should be reasonably high. Considering the surface roughness, obstacle condition and terrain information of the island, a micro-scale prediction has been done using (100×100 m2) grid cells in the Wind Atlas Analysis and Application Program (WAsP) to develop monthly and annual wind atlas and also a wind resource map which shows that at 50 m height, the annual wind speed over Kutubdia coast varies from 5.1 to 5.8 m/s. Southern and Eastern sides of Kutubdia appear to be promising for wind electricity generation using large turbines where wind power density at a height of 50 m or higher is found to be above 200 W/m2 annually over the year September 1996 to August 1997. It is found that at 30 m height, the coast side of Kutubdia should be sustainable for small turbines.  相似文献   

17.
This paper analyses the wind speed of some major cities in province of Yazd which is located in central part of Iran. Also, the feasibility study of implementing wind turbines to take advantage of wind power is reviewed and then the subject of wind speed and wind potential at different stations is considered. This paper utilized wind speed data over a period of almost 13 years between 1992 and 2005 from 11 stations, to assess the wind power potential at these sites. In this paper, the hourly measured wind speed data at 10 m, 20 m and 40 m height for Yazd province have been statically analyzed to determine the potential of wind power generation. Extrapolation of the 10 m data, using the Power Law, has been used to determine the wind data at heights of 20 m and 40 m. The results showed that most of the stations have annual average wind speed of less than 4.5 m/s which is considered as unacceptable for installation of the wind turbines. City of Herat has higher wind energy potential with annual wind speed average of 5.05 m/s and 6.86 m/s, respectively, at height of 10 m and 40 m above ground level (AGL). This site is a good candidate for remote area wind energy applications. But some more information is required, because the collected data for Herat is only for 2004. Cities of Aghda with 3.96 m/s, Gariz with 3.95 m/s, and Maybod with 3.83 m/s annual wind speed average at height of 10 m above ground level are also able to harness wind by installing small wind turbines. The Tabas and Bafgh sites wind speed data indicated that the two sites have lower annual wind speed averages between 1.56 m/s and 2.22 m/s at 10 m height. The monthly and annual wind speeds at different heights have been studied to ensure optimum selection of wind turbine installation for different stations in Yazd.  相似文献   

18.
During the operation of the German test field for small Wind Energy Conversion Systems (WECS) on the island of Pellworm five wind turbines were tested following recommendations of the International Energy Agency (IEA) expert group. Possible errors in the estimation of a tested wind turbine's total energy output at a potential installation site are investigated. Different wind speed frequency distributions (the measured one, the Rayleigh and the two-parameter Weibull distribution) are used to calculate the total energy output. The differences between the various distributions are mostly below 10 per cent. An improvement of the energy output estimate by a Weibull-instead of a Rayleigh distribution was not found. It is also shown that the use of the recommended 10 min averages or any other average overestimates the WECS' efficiency, up to 14 per cent on average depending on turbulence intensity. Wind power instead of wind speed is the appropriate parameter for power performance testing. Spectra of wind power and electrical power output show three areas of different correlation. A resistance length for wind turbines is shown to be dependent on the WECS operation status.  相似文献   

19.
This study examines the effect of different wind turbine classes on the electricity production of wind farms in three areas of Australia, which present low, low to medium, and medium to high wind potential: Gingin, Armidale, and Gold Coast Seaway. Wind turbine classes determine the suitability of installing a wind turbine in a particulate site. Wind turbine data from six different manufacturers have been used. For each manufacturer, at lest two wind turbines with identical rated power (in the range of 1.5 MW–3 MW) and different wind turbine classes (IEC I, IEC II and/or IEC III) are compared. The results show the superiority of wind turbines that are designed for lower wind speeds (higher IEC class) in all three locations, in terms of energy production. This improvement is higher for the locations with lower and medium wind potential (Gingin and Armidale), and varies from 5% to 55%. Moreover, this study investigates the economical feasibility of a 30 MW wind farm, for all combinations of site locations and wind turbine models.  相似文献   

20.
It is likely that intermittent renewable sources such as wind and solar will provide the greatest opportunity for future large-scale hydrogen production. Here, on-shore wind is examined. Global wind energy is estimated by placing one 2 MW turbine/km2 over the surface of the earth. Wind energy production is based on monthly mean wind speed data. Wind turbines are grouped to form arrays that are linked to local hydrogen generation and transmission networks. Hydrogen generation is done via low-pressure electrolysis and transmission via high-pressure gas pipelines. The wind/hydrogen system is considered within a global energy system that must not only provide hydrogen, but also energy for electricity consumption at the local generation site. The technical potential of the hydrogen produced is estimated to be 116 EJ. Uneven distribution of the hydrogen-rich sites results in the need to export much of the hydrogen produced to energy-poor regions. To overcome system losses, a combined wind/HVDC/hydrogen system is considered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号