首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
    
This experimental study focused on the inhibition of ultrafine water mist on hydrogen explosion inside the closed vessel. The inhibition law and mechanism were studied through changes of explosion intensity, flame propagation velocity and temperature under different mist concentrations. Results indicate that flame propagation and pressure rise inside the closed vessel were corresponding. Explosion intensity was reduced after adding mist, which was mainly manifested in the reductions of explosion pressure and flame propagation velocity. Flame was accelerated to extinguish and the inhibition effect was enhanced with increasing mist concentration. However, the explosion prussure did not present obvious reduction as the mist concentration reached a certain value. Besides, it indicates that the absoption heat effect of ultrafine water mist was an important factor on hydrogen explosion inhibition by the reductions of flame temperature and propagation velocity. The inhibition effect was mainly attributed to the combination effect of physical and chemical inhibitions.  相似文献   

2.
    
The primary purpose of this paper is to reveal the mechanism of suppressing hydrogen cloud explosion by micron-size water mist. On the basis of experimentally obtaining the characteristics of flame behavior and explosion pressure by changing equivalence ratio and water mist density, the physical and chemical mechanism of suppressing hydrogen cloud explosion is analyzed. The results indicated that with the increase of micron-size water mist density, the explosion-related parameters (including mean flame front speed, peak explosion pressure, peak rate of pressure rise and positive pressure impulse) of ER = 0.8 and ER = 1.0 decrease monotonously, the explosion-related parameters of ER = 2.0 increases firstly and then decreases which peak value is appeared at 26.73 g/m3. A considerable part of micron-size water mist is difficult to be completely evaporated in the reaction region, the temperature of combustion products region will be reduced due to subsequent continuous evaporation. In addition, the gasified micron-size water mist mainly interacts with H radicals through the elementary reactions of R3, R38 and R84. Due to incompletely evaporated micron-size water mist, the mist-induced turbulence is generated, which is the reason of enhancing hydrogen cloud explosion at lower micron-size water mist density of ER = 2.0.  相似文献   

3.
    
The effects of porous materials with different thickness and obstacle layout on the explosion of 10%H2/90%CH4 at stoichiometric condition were studied. Three kinds of porous materials with different thickness were selected in the experiment, which are 1 cm, 2 cm and 3 cm respectively. Three kinds of obstacle layout were designed, which are symmetrical distribution, ipsilateral distribution and staggered distribution. Results show that porous materials with different thickness can promote or inhibit the explosion flame and overpressure when the obstacles are symmetrically distributed. The quenching failure of 1 cm thick porous material is similar to the action of mesh obstacles, which accelerates the flame to break through the bondage of porous material and continue to propagate, with a maximum speed of 87.74 m/s. When the thickness of porous material is 2 cm and 3 cm, the solid structure increases, the energy absorption increases, the flame impact porous materials quench, and the overpressure peak decreases. The greater the thickness of porous material, the better the attenuation effect, and the maximum overpressure attenuation can reach 59.71%. The change of obstacle layout has an important impact on the flame propagation structure. Compared with the ipsilateral distribution and staggered distribution, when the obstacles are symmetrically distributed, the vortex dynamic induced flame turbulence area is larger, the flame combustion rate is increased, and the explosion hazard is greater.  相似文献   

4.
In order to investigate the fire suppression effectiveness of water mist with metal chloride additives, ultrafine water mists of these salts with diameters about 10μm were introduced into CH4 /air non-premixed flame in the cup burner. Results showed that these droplets hard to make itself to the flame front under the cup burner flow conditions functioned as a carrier of the vaporized solid particles or its decomposed materials. The metal chloride improved fire suppression efficacy of water mist which were affected by the type and concentration of metal chloride. On a mass basis, there is a fire suppression effectiveness relationship of MgCl2 相似文献   

5.
In this paper, experiments were performed to investigate the coupling effects of venting and nitrogen addition ratio (χ) on flame behavior and pressure evolution during hydrogen–air deflagration within and outside a 1-m-high vertical duct with a vent on its top. Experimental results reveal that χ has significant effects on the pressure–time histories in the duct. Helmholtz oscillations of the internal overpressure were observed in all tests, and acoustic type oscillations appears in the tests only for χ = 25% and 30%. For a certain χ, the maximum overpressure (Pmax) increased with the distance to the vent, i.e., the highest overall explosion overpressure was attained near the duct bottom; however, the difference in Pmax between various measuring points decreases with an increase in χ. In all tests, a pressure peak in the duct was observed shortly after external explosion. The maximum internal and external overpressure decreased as χ was increased.  相似文献   

6.
细水雾抑制熄灭固体火的机理   总被引:1,自引:0,他引:1  
利用三维激光粒子动态分析仪对细水雾喷嘴的雾场特性进行了测量,选择两种典型固体可燃物作为燃料,研究细水雾抑制熄灭固体火的过程,重点考察细水雾扑灭固体火的灭火机理.实验结果表明,细水雾扑灭固体火主要依赖细水雾对燃料表面的冷却吸热.相同灭火条件下,表面碳化型固体比非碳化型固体可燃物更容易被细水雾扑灭,但是前者在明火熄灭后,表面及内部残余炭仍能够维持较长的氧化燃烧,因此需要用更多的冷却时间来阻止复燃.细水雾通量对固体灭火时间的影响满足边际效用递减规律,并存在一个最佳值,即可利用最小细水雾通量获得最大灭火效率.  相似文献   

7.
    
Explosion characteristics of the stoichiometric hydrogen/methane/air mixtures with different hydrogen fractions (λ) and different turbulent intensities (u'rms) in a fan-jet-stirred spherical explosion vessel. From the experimental results, it could be clearly found that both the maximum explosion overpressure (pmax) and the maximum rise rate of overpressure rose with the increase of u'rms, but the major reasons to such rising were not totally the same. In turbulence, with the increase of λ, pmax declined but (dp/dt)max rose, and such behaviours were mainly attributed to the completion on the variations between propagation speed and adiabatic explosion pressure. The explosion duration (tc) was also measured, it rose with the increase of u'rms and/or λ for the enhancement on propagation albeit such enhancement was attributed to different mechanism for different influence factors. The variations of deflagration index (KG) indicated that the hazardous level of stoichiometric hydrogen/methane mixtures would become more hazardous in the presence of turbulence. Furthermore, the heat loss during the explosion also was calculated and analysed. The results reported in this article could provide more basic but important information to practical utilizations of hydrogen/methane blended fuels, especially on the safety protection strategies.  相似文献   

8.
Hydrogen enriched with compressed natural gas is an efficient and environment-friendly gaseous fuel. However, the safety issues of mixture and the method to control or weaken their combustion are highly concerned. To explore the inhibition effect of halogenated fire suppressants on the mixture, the effect of HFC-227ea on the laminar premixed methane/air flames, with different fractions of H2, have been studied. Burning velocities have been measured with constant-volume combustion chamber and kinetically modelled a recently assembled kinetic mechanism. The fractions of H2 influence the enhancement and inhibition effect of HFC-227ea, and it is less effective with the lean mixture. In stoichiometric condition, HFC-227ea showed good inhibition effect on the mixture flames. The HFC-227ea increased the burning velocities of CH4-0% H2-air and CH4-10% H2-air flames at leanest condition, whereas the increased burning velocity arising from HFC-227ea not occurred as the addition of H2 above 20%. Experimental results coincided well with numerical results, however the agreement was poor for the leanest flames at low agent loading. Lastly, kinetic mechanism analysis was used to interpret the combustion enhancement and inhibition effect of hydrogen-doped methane flame by HFC-227ea.  相似文献   

9.
受限空间中细水雾灭火的准稳态模型   总被引:4,自引:0,他引:4  
通过受限空间中大量细水雾灭火实验,总结出预测细水雾系统灭火效果的准稳态模型。该模型是针对细水雾扑灭有障碍火的情况而发展的,火焰的熄灭主要是由于燃料燃烧耗氧和细水雾汽化稀释造成氧气浓度的降低而导致的,忽略了细水雾与火焰的直接作用,模型基于能量守衡,要求输入以下参数:火源功率、受限空间的几何结构、通风口面积和细水雾施加流量,通过模型预测出稳态时受限空间的温度和氧气浓度,进而可以确定临界火源的尺度(功率大小),同时能准确预测较大功率范围火的熄灭时间。  相似文献   

10.
船舶机舱水雾灭火相似模型分析与设计   总被引:3,自引:0,他引:3  
以某型3000吨级船舶机舱为原型,根据对船舶机舱火灾蔓延规律的相似理论分析,建立了小尺度船舶火灾模拟实验舱的相似物理模型;确定了船舶机舱细水雾模拟的相似准则关系,并建立了模拟机舱细水雾灭火系统相似物理模型;依据IMO相关细水雾灭火系统有效性评估的实验场景设置和相似模型设计,采用FDS(4.0)对模拟实验舱内细水雾灭火系统进行了数值模拟的实验研究.实验结果表明,在忽略热辐射作用的条件下,对细水雾灭火系统采用相似理论分析,并建立的相似缩比模型可以较好的模拟原型舱室细水雾灭火过程与规律.  相似文献   

11.
    
Turbulent combustion evolutions of stoichiometric H2/CH4/air mixtures were experimentally studied within a spherical constant-volume combustion vessel. A series of initial turbulent ambience (with the range of turbulence intensity from 0 to 1.309 m/s) and a series of hydrogen volumetric fraction (with the range from 0.3 to 0.9) were taken as the variables to studied the influences of turbulence intensity and the fuel composition on the turbulent combustion evolutions. The evolutions of explosion overpressure were studied upon the variations of maximal pressure, the influences of turbulence intensity mainly located at heat loss while the influences of fuel composition mainly located at adiabatic explosion. Subsequently, the evolutions of burnt mass were discussed, the competition between pressure rising and temperature rising induced by the heat release during combustion was considered as major influence mechanism. Then, the nexus between burning velocity and the related burnt mass rate were discussed, the variations regulations of maximal burning velocity brought by turbulence intensity and hydrogen volumetric fraction were analysed. Finally, the nexus between maximum burning velocity and heat loss was discussed.  相似文献   

12.
    
This study experimentally and numerically determined the effect of FM-200 on H2/air explosion. Firstly, the explosion pressure was investigated to evaluate the suppression efficiency. The results indicated that the effect of FM-200 on H2/air explosion was quite different for various equivalence ratios. FM-200 could enhance the explosion at lean mixture, but suppress the explosion at rich mixture. Then, the burning velocity, heat production and temperature free radicals were investigated. The results also demonstrated that FM-200 exhibited stronger suppression effect in rich explosion. In addition, the increase of free radicals indicated the enhancement effect of FM-200 at lean explosion. Last, the analysis of sensitivity and reaction path was performed to understand the suppression kinetics. It was shown that R1466 and R1468 could suppress explosion at Φ = 1.3 and 1.6, however, they changed into promoting explosion at Φ = 0.8 and 1.0. Moreover, the reaction path analysis indicated that CHF:CF2→CHF:O→CO could enhance explosion at Φ = 0.8. For CHF:CF2→CH2F→HF, it played an important role in scavenging H to suppress explosion at Φ = 1.6. Furthermore, it was indicated that there was a competition between the enhancement and suppression effect at Φ = 1.3.  相似文献   

13.
    
Accidents involving hydrogen explosions occur frequently, yet systematic methods of explosion suppression have not been investigated and applied. Therefore, this paper studied the deflagration characteristics in hydrogen with the addition of propane in the tube filled with mesh aluminium alloys (MAAs). The effects of different propane contents and different filling densities (the mass of MAAs per unit volume in a vessel) on the explosion suppression of the premixed gas are examined. The results show that propane and MAAs can effectively suppress the hydrogen-air explosion. However, MAAs have multiple suppression/promotion effects on the propane-hydrogen explosion. Based on the mathematical model, the dominant effect of MAAs changes abruptly toward the promoting effect when the hydrogen content exceeds 72.26% of the premixed gas stoichiometric concentration. It is also found that an increase in filling density would have a beneficial effect on explosion suppression. The study results provide references for preventing hydrogen and hydrogenated hydrocarbon fuels explosions and optimizing the performance of MAAs.  相似文献   

14.
Experiments were conducted on the vented explosion of hydrogen–air mixtures from a 150-cm-long duct to a cylindrical vessel with a vent at the center of its side wall to investigate the effects of vent burst pressure and an obstacle in duct on the process of explosion venting. Turbulent pressure oscillation owing to a pressure wave moving back and forth in a duct and vessel was observed for unvented explosions. For explosion venting from duct to vessel, flame acceleration in duct much increases the explosion overpressure in vessel. The maximum explosion in duct is always higher than that in vessel, and both of them increase with an increase in the vent cover thickness. An obstacle installed in duct significantly affected the explosion overpressure, which first increased and then decreased with an increase in the blockage ratio. Three pressure peaks were distinguished in the external pressure-time histories, which were resulted form different pressure waves formed outside the vessel.  相似文献   

15.
    
In order to study the influence of nitrogen on the deflagration characteristics of premixed hydrogen/methane, the explosion parameters of premixed hydrogen/methane within various volume ratios and different dilution ratios were studied by using a spherical flame method at room temperature and pressure. The results are as follows: The addition of nitrogen makes the upper limit of explosion of hydrogen/methane premixed gas drop, and the lower limit rises. For explosion hazard (F-number), hydrogen/methane premixed fuel with a hydrogen addition ratio of 10% has the lowest risk, and nitrogen has a greater impact on the dangerous degree of hydrogen and methane premixed gas whose hydrogen addition ratio does not exceed 30%. In terms of flame structure, the spherical flame was affected by buoyancy instability as the percentage of nitrogen dilution increased, but the buoyancy instability gradually decreased as the percentage of hydrogen addition increased. The addition of diluent gas reduces the spreading speed of the stretching flame and reduces the stretching rate in the initial stage of flame development. The laminar flame propagation velocity calculated by the experiment in this paper is consistent with the laminar flow velocity of the hydrogen/methane premixed gas calculated by GRI Mech 3.0. Considering the explosion parameters such as flammability limit, laminar combustion rate and deflagration index, when hydrogen is added to 70%, it is the turning point of hydrogen/methane premixed fuel.  相似文献   

16.
    
Hydrogen has been utilized in FCV and leakage can cause safety issues. In this study, the vehicle is simplified as a cuboid enclosure with obstacles. The influence of obstacle locations on the hydrogen diffusion behavior is investigated with the iso-surfaces of 1% and 4% volume fraction of hydrogen. The time of the iso-surface of 4% volume fraction to reach the ceiling and the sidewalls without any obstacles is 1.42 and 1.25 times of that with an obstacle, respectively. Both height and the width of the flammable zone in the enclosure with an obstacle are greater than that without obstacles. The distance between the obstacle and the leakage affects significantly the hydrogen diffusion and the influence of the obstacle on the hydrogen diffusion strengthens with the decrease of the distance. Yet as the distance keeps same, the obstacle position relative to the leakage has no significant effect on hydrogen diffusion, and it makes little effect difference whether the obstacle is located in front of leakage or side of leakage.  相似文献   

17.
    
The development and application of hydrogen energy in power generation, automobiles, and energy storage industries are expected to effectively solve the problems of energy waste and pollution. However, because of the inherent characteristics of hydrogen, it is difficult to maintain high safety during production, transportation, storage, and utilization. Therefore, to ensure the safe and reliable utilization of hydrogen, its characteristics relevant to leakage and diffusion, ignition, and explosion must be analyzed. Through an analysis of literature, in combination with our practical survey analysis, this paper reviews the key issues concerning hydrogen safety, including hydrogen incident investigation, hydrogen leakage and diffusion, hydrogen ignition, and explosion.  相似文献   

18.
    
A series of experiments were performed on the fan-shaped water mist interaction with the horizontal under-expanded hydrogen jet flames. The effects of various water mist pressures and horizontal release positions were focused on flame length, temperature, and radiant heat flux. The results show that, water mist causes the flame to be tilted and the tilt angle of the flame increases with the water mist pressure, and the horizontal length of the flame is shortened. It is also found that water mist may lead to the radiation and temperature enhancement on the axis and downstream of the action position of water mist and flame, which is closely related to the configuration of water mist. However, this situation disappears and the temperature and radiation decrease with the increase of water mist pressure.  相似文献   

19.
含NaCl添加剂细水雾对不同燃料池火灭火性能的实验研究   总被引:20,自引:0,他引:20  
为了提高普通细水雾的灭火有效性,克服不足之处,研究了含NaCl灭火添加剂的细水雾与油池火相互作用的过程。重点研究了不同质量分数、不同工作压力、不同燃料条件下,细水雾的灭火有效性。研究结果表明,向细水雾中加入NaCl,显影响其灭火性能。细水雾的灭火对间与加入的NaCl质量分数间呈现出“W”形的关系曲线;细水雾喷头工作压力和燃料性质也影响细水雾的灭火性能:工作压力越高,平均熄灭时间越短;在相同的实验条件下,含NaCl添加剂的细水雾熄灭煤油火的时间小于酒精火的时间。含添加剂细水雾的灭火有效性,存在着细水雾与灭火添加剂的最优质量分数配比关系。  相似文献   

20.
An experimental study on the combustion characteristics of nitrogen diluted hydrogen was conducted in a constant volume combustion vessel over a wide range of equivalence ratios and dilution ratios at elevated pressures and temperatures. The explosion characteristics such as the explosion pressure, the combustion duration, the maximum rate of pressure rise, the deflagration index and the normalized mass burning rate were derived. The result shows that a short combustion duration and higher normalized mass burning rate were presented with the increase of equivalence ratio. With the increase of initial temperature, the explosion pressure, the maximum rate of pressure rise and the deflagration index were decreased, and a shorter combustion duration and higher normalized mass burning rate were presented. With the increase of initial pressure, the explosion pressure, the maximum rate of pressure rise and the deflagration index increase, a shorter combustion duration and higher normalized mass burning rate were presented. Nitrogen dilution significantly reduces the normalized mass burning rate and the deflagration index and thus the potential of explosion hazards.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号