首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 974 毫秒
1.
The proposed autonomous hybrid charging station in this paper is energized by a photovoltaic (PV) system, which should provide electric vehicles (EVs), and water electrolyzer (WE) with electricity. The WE operates by using electricity to produce and store hydrogen to feed hydrogen vehicles (HVs). Moreover, a fuel cell (FC) is allocated to the system, which uses the stored hydrogen to regenerate electricity the PV system is beyond reach. A supplementary diesel generator is also installed in the charging station to avoid power shortage as a conservative measurement. The hydrogen and electric demand of the station is accompanied by uncertainties, which should be taken into account in designing the charging station. Therefore, information-gap decision theory (IGDT) is employed to deal with the uncertainties. This approach provides the investor with three different strategies of risk-averse strategy (RAS), risk-neutral strategy (RNS), and risk-seeker strategy (RSS), which can help the investor with making a better decision. The outcome of the simulation proved that in RAS if the investor decides to invest 13.9% more capital, based on the robustness function, the charging station withstands the 9.6% deviation of uncertain parameters’ fraction error. However, should the investor decide to take risks in the construction of the charging station, by paying 13.9% less, the system is 10.7% fragile to the information-gap of uncertainties. Besides, the rated power of the PV system reaches from 1612 kW in RNS to 1731 kW in RAS while it decreased to 1479 kW in RSS.  相似文献   

2.
In this article, a robust optimization approach for designing an off-grid solar-powered charging station is proposed to provide electric vehicles (EVs) with electricity and hydrogen vehicles (HV) with hydrogen. A water electrolyzer (WE) is installed in the system to produce and store hydrogen, which is used by the HVs and fuel cell (FC). During the inaccessibility of the photovoltaic (PV) system to feed the EVs, the FC runs on hydrogen to regenerate electricity. Besides, in case the PV system and FC have power shortage to meet the demand of EVs, a diesel generator contributes to electricity production. There are uncertainties involved in the power profile of the PV system as well as the hydrogen and electric demands of the charging station. The novelty of this paper is to integrate robust optimization as a powerful nonstochastic framework into the mixed-integer linear programming (MILP) of the deterministic model to deal with the uncertainties. The technical and economic results prove that the construction of the charging station by considering the highs level of robustness against the negative impacts of uncertainties leads to higher capacities of the PV system and diesel generator. Consequently, the total annualized cost increases from $ 287,256 in deterministic mode to $ 326,757 in robust mode, by 13.75%.  相似文献   

3.
A comprehensive thermoeconomic analysis is presented for a novel integrated solar hydrogen energy system for standalone operation. The proposed system includes a solar PVT module (photovoltaic thermal), a FC (Fuel cell) and a battery to meet the electrical load demand and domestic hot water over a year. The PVT component works as a primary energy source converting solar energy into electricity and heat. The excess electrical energy and hot water produced by PVT are consumed for producing hydrogen, which can be stored. The generated hydrogen is fed to the fuel cell to produce electricity and water to satisfy the demand. The proposed system is convenient for different seasons of the year because in all time, produced power satisfy the demand. The first and second laws of thermodynamics are used to evaluate the performance of each component and the overall system. Economic assessment of this system is also conducted considering the net present cost, and the system performance is optimized based on this parameter. The overall electrical efficiency of the system is obtained as 9% and the levelized cost of electricity is determined as $ 0.286/kWh. For a steady operation of system, integrating a battery system is convenient when solar energy is not available for a short term. When there is a longer-term shortage of solar radiation, up to 8 days, the electricity can be supplied by utilizing the hydrogen storage system.  相似文献   

4.
In order to mitigate greenhouse gas emissions and improve energy efficiency, sustainable energy systems such as multi-energy microgrids (MEMGs) with the high penetration of renewable energy resources (RES) and satisfying different energy needs of consumers have received significant attention in recent years. MEMGs, by relying on renewable resources and energy storage systems along with energy conversion systems, play an essential role in sustainability of energy supply. However, renewable energies are uncertain due to the intermittent nature of solar and wind energy sources. Thus, optimal operation of the MEMGs with the consideration of the uncertainties of RES is necessary to achieve sustainability. In this paper, risk constrained scheduling of a MEMG is carried out with the presence of the PV, wind, biomass, electric vehicles (EVs) and hydrogen vehicles (HVs) charging stations, combined heat and power (CHP), boiler, hydrogen electrolyzer (HE), cryptocurrency miners (CMs), electrical, thermal and hydrogen storage systems, responsive demands. From the trading and business model side, the proposed MEMG optimized operation relies on bilateral contracts between producers and consumers and pool electricity markets. A two-stage stochastic programming method is used for considering the uncertainties of electrical, thermal and hydrogen demands, EV and HV charging stations load, CM load, PV and wind power, and the price of electricity purchased from the pool market. The proposed mixed integer linear programming (MILP) model is solved using the CPLEX solver in GAMS which guarantees to achieve a globally optimal solution. The results show that due to the certain prices of bilateral contracts, the possibility of transaction by bilateral contracts decreases the risk metric CVaR by 50.42%. The simulation results demonstrate that risk of high operation costs while considering flexibility sources, such as storages and demand response (DR) programs, is decreased by 5.45% and 4.6%, respectively. As far as operation costs are concerned, results reveal that using renewable resources decreases operation costs by 34.47%. Moreover, the operation cost is reduced by 5.94% and 4.57% in the presence of storage units and DR programs, respectively. In the same way, storages and DR programs decrease cost of purchased electricity by 13.47% and 14.46%, respectively.  相似文献   

5.
The layout of electric vehicles charging stations and hydrogen refueling stations (HRSs) is more and more necessary with the development of electric vehicles (EVs) and progress in hydrogen energy storage technology. Due to the high costs of HRSs and the low demand for hydrogen, it is difficult for independent HRSs to make a profit. This study focuses on the dynamic planning of energy supply stations on highways in the medium and long term, considering the growth of EV charging demand and the change in the proportion of hydrogen fuel cell vehicles (HFCVs). Based on the perspective of renewable energy generators (REGs), this study seeks the dynamic optimal configuration and comprehensive benefits of adding HRS and battery to existing EVCS considering the travel rules of new energy vehicles (NEVs). The results show that (1) It is profitable for REGs to invest in HRSs; (2) The economy of investment in batteries by REGs depends on the source-load matching. It is feasible only when the output of renewable energy is difficult to meet the demand. (3) The business model of REGs producing hydrogen on-site and supplying both electricity and hydrogen is feasible.  相似文献   

6.
This paper investigates the optimal planning of microgrids including the hydrogen energy system through mixed-integer linear programming model. A real case study is analyzed by extending the only microgrid lab facility in Austria. The case study considers the hydrogen production via electrolysis, seasonal storage and fueling station for meeting the hydrogen fuel demand of fuel cell vehicles, busses and trucks. The optimization is performed relative to two different reference cases which satisfy the mobility demand by diesel fuel and utility electricity based hydrogen fuel production respectively. The key results indicate that the low emission hydrogen mobility framework is achieved by high share of renewable energy sources and seasonal hydrogen storage in the microgrid. The investment optimization scenarios provide at least 66% and at most 99% carbon emission savings at increased costs of 30% and 100% respectively relative to the costs of the diesel reference case (current situation).  相似文献   

7.
This paper describes the size optimization of a hybrid photovoltaic/fuel cell grid linked power system including hydrogen storage. The overall objective is the optimal sizing of a hybrid power system to satisfy the load demand of a university laboratory with an unreliable grid, with low energy cost and minimal carbon emissions. The aim is to shift from grid linked diesel power system to a clean and sustainable energy system. The optimum design architecture was established by adopting the energy-balance methods of HOMER (hybrid optimization model for electric renewables). Analysis of hourly simulations was performed to decide the optimal size, cost and performance of the hybrid system, using 22-years monthly averaged solar radiation data collected for Ambrose Alli University, Ekpoma (Lat. 6°44.3ʹN, Long. 6°4.8ʹE). The results showed that a hybrid system comprising 54.7 kW photovoltaic array, 7 kW fuel cell system, 14 kW power inverter and 3 kW electrolyzer with 8 kg hydrogen storage tank can sustainably augment the erratic grid with a very high renewable fraction of 96.7% at $0.0418/kWh. When compared with the conventional usage of grid/diesel generator system; energy cost saving of more than 88% and a return on investment of 41.3% with present worth of $308,965 can be derived in less than 3 years. The application of the optimally sized hybrid system would possibly help mitigate the rural-to-urban drift and resolve the electricity problems hindering the economic growth in Nigeria. Moreover, the hybrid system can alleviate CO2 emissions from other power generation sources to make the environment cleaner and more eco-friendly.  相似文献   

8.
The objective of this paper is to develop a methodology to determine how many houses could be fueled from the solar energy captured by a number of solar Stirling modules (with a fixed dish area per module) and also to determine the minimum necessary area of the fuel cell to ensure the amount of power needed to meet daily energy use requirements. The detailed method includes the effect of the fuel cell efficiency function on the power consumption of the user. Experimental data from our laboratory are used to determine the fuel cell efficiency as a function of the electric current density for a specific power demand. As an illustrative example, the analysis is applied to a residential area having a specific electrical demand. Using the developed method, the number of houses that could be fueled directly by the stored hydrogen is determined, and also the minim fuel cell area required.  相似文献   

9.
A technico-economic analysis based on integrated modeling, simulation, and optimization approach is used in this study to design an off grid hybrid solar PV/Fuel Cell power system. The main objective is to optimize the design and develop dispatch control strategies of the standalone hybrid renewable power system to meet the desired electric load of a residential community located in a desert region. The effects of temperature and dust accumulation on the solar PV panels on the design and performance of the hybrid power system in a desert region is investigated. The goal of the proposed off-grid hybrid renewable energy system is to increase the penetration of renewable energy in the energy mix, reduce the greenhouse gas emissions from fossil fuel combustion, and lower the cost of energy from the power systems. Simulation, modeling, optimization and dispatch control strategies were used in this study to determine the performance and the cost of the proposed hybrid renewable power system. The simulation results show that the distributed power generation using solar PV and Fuel Cell energy systems integrated with an electrolyzer for hydrogen production and using cycle charging dispatch control strategy (the fuel cell will operate to meet the AC primary load and the surplus of electrical power is used to run the electrolyzer) offers the best performance. The hybrid power system was designed to meet the energy demand of 4500 kWh/day of the residential community (150 houses). The total power production from the distributed hybrid energy system was 52% from the solar PV, and 48% from the fuel cell. From the total electricity generated from the photovoltaic hydrogen fuel cell hybrid system, 80.70% is used to meet all the AC load of the residential community with negligible unmet AC primary load (0.08%), 14.08% is the input DC power for the electrolyzer for hydrogen production, 3.30% are the losses in the DC/AC inverter, and 1.84% is the excess power (dumped energy). The proposed off-grid hybrid renewable power system has 40.2% renewable fraction, is economically viable with a levelized cost of energy of 145 $/MWh and is environmentally friendly (zero carbon dioxide emissions during the electricity generation from the solar PV and Fuel Cell hybrid power system).  相似文献   

10.
Reliable hydrogen fueling stations will be required for the successful commercialization of fuel cell vehicles. An evolving hydrogen fueling station has been in operation in Irvine, California since 2003, with nearly five years of operation in its current form. The usage of the station has increased from just 1000 kg dispensed in 2007 to over 8000 kg dispensed in 2011 due to greater numbers of fuel cell vehicles in the area. The station regularly operates beyond its design capacity of 25 kg/day and enables fuel cell vehicles to exceed future carbon reduction goals today. Current limitations include a cost of hydrogen of $15 per kg, net electrical consumption of 5 kWh per kg dispensed, and a need for faster back-to-back vehicle refueling.  相似文献   

11.
This study introduces a novel framework of an electricity and hydrogen supply system integrating with a photovoltaic power station for a residential area. The non-residential parts including the power grid and non-residential vehicles are added to ensure power balance and bring benefits, respectively. The optimal operational strategy of the proposed framework with considering uncertainties is proposed. The objective function minimizes the expected operational cost (EOC) by reducing the imported electricity from the power grid and increasing exported electricity/hydrogen to non-residential vehicles. Additionally, the demand response program (DRP) is applied in the residential load to achieve operational cost reduction. The uncertainties are modeled via various scenarios by using scenario-based stochastic optimization method. Notably, existing research for similar frameworks both lacks the consideration of uncertainties and DRP, and fails to distinguish the residential and non-residential vehicles with different charging behaviors. The results indicate that 1) The feasibility of the proposed framework is validated which can ensure the power balance of the residential area and reduce the operational cost. 2) The EOC is reduced when considering DRP.  相似文献   

12.
Direct steam generating parabolic trough power plant is an important technology to match future electric energy demand. One of the problems related to its emergence is energy storage. Solar-to-hydrogen is a promising technology for solar energy storage. Electrolysis is among the most processes of hydrogen production recently investigated. High temperature steam electrolysis is a clean process to efficiently produce hydrogen. In this paper, steam electrolysis process using solar energy is used to produce hydrogen. A heat recovery steam generator generates high temperature steam thanks to the molten carbonate fuel cell's waste heat. The analytical study investigates the energy efficiency of solar power plant, molten carbonate fuel cell and electrolyser. The impact of waste heat utilization on electricity and hydrogen generation is analysed. The results of calculations done with MATLAB software show that fuel cell produces 7.73 MWth of thermal energy at design conditions. 73.37 tonnes of hydrogen and 14.26 GWh of electricity are yearly produced. The annual energy efficiency of electrolyser is 70% while the annual mean electric efficiency of solar power plant is 18.30%.The proposed configuration based on the yearly electricity production and hydrogen generation has presented a good performance.  相似文献   

13.
To satisfy the growing refueling demand of hydrogen fuel cell vehicles (HFCVs) with carbon-free hydrogen supply, this paper proposes an integrated planning method of green hydrogen supply chain. First, the k-shorted path method is introduced to analyze HFCV refueling load considering vehicle travel habits and routing diversity. Second, based on it, a two-stage integrated planning model is established to minimize the total investment and operation cost. The construction of hydrogen refueling stations, electrolysis-based hydrogen generation stations and hydrogen pipelines are coordinated with their operating constraints, constituting the green hydrogen supply chain, in which hydrogen storage is also an important part for consideration to address variable renewable power. Then, the proposed model is reformulated as a mixed integer linear programing (MILP) problem solved efficiently. Finally, the case studies are carried out on an urban area in Xi'an China to verify the validity and correctness of the proposed method. The results show that the integrated planning can realize synergy benefits. The influence of electricity prices and k values is also discussed.  相似文献   

14.
This paper presents techno-economic modelling results of a nationwide hydrogen fuel supply chain (HFSC) that includes renewable hydrogen production, transportation, and dispensing systems for fuel cell electric buses (FCEBs) in Ireland. Hydrogen is generated by electrolysers located at each existing Irish wind farm using curtailed or available wind electricity. Additional electricity is supplied by on-site photovoltaic (PV) arrays and stored using lithium-ion batteries. At each wind farm, sizing of the electrolyser, PV array and battery is optimised system design to obtain the minimum levelised cost of hydrogen (LCOH). Results show the average electrolyser capacity factor is 64% after the integration of wind farm-based electrolysers with PV arrays and batteries. A location-allocation algorithm in a geographic information system (GIS) environment optimises the distributed hydrogen supply chain from each wind farm to a hypothetical hydrogen refuelling station in the nearest city. Results show that hydrogen produced, transported, and dispensed using this system can meet the entire current bus fuel demand for all the studied cities, at a potential LCOH of 5–10 €/kg by using available wind electricity. At this LCOH, the future operational cost of FCEBs in Belfast, Cork and Dublin can be competitive with public buses fuelled by diesel, especially under carbon taxes more reflective of the environmental impact of fossil fuels.  相似文献   

15.
Power generation and its storage using solar energy and hydrogen energy systems is a promising approach to overcome serious challenges associated with fossil fuel-based power plants. In this study, an exergoeconomic model is developed to analyze a direct steam solar tower-hydrogen gas turbine power plant under different operating conditions. An on-grid solar power plant integrated with a hydrogen storage system composed of an electrolyser, hydrogen gas turbine and fuel cell is considered. When solar energy is not available, electrical power is generated by the gas turbine and the fuel cell utilizing the hydrogen produced by the electrolyser. The effects of different working parameters on the cycle performance during charging and discharging processes are investigated using thermodynamic analysis. The results indicate that increasing the solar irradiation by 36%, leads to 13% increase in the exergy efficiency of the cycle. Moreover, the mass flow rate of the heat transfer fluid in solar system has a considerable effect on the exergy cost of output power. Solar tower has the highest exergy destruction and capital investment cost. The highest exergoeconomic factor for the integrated cycle is 60.94%. The steam turbine and PEM electrolyser have the highest share of exergoeconomic factor i.e., 80.4% and 50%, respectively.  相似文献   

16.
Battery electric vehicles (BEVs) and fuel cell electric vehicles (FCEVs) have been identified as two electromobility options which can help to achieve GHG emission reduction targets in the transport sector. However, both options will also impact the future energy system characterized by integration of various demand sectors and increasing intermittent power generation. The objective of this paper is to examine the optimal mix of both propulsion systems and to analyze the cost for renewable fuel supply. We propose a generic approach for dimensioning of fast charging and hydrogen refueling stations and optimization of the fuel supply system. The model is applied in a case study for passenger cars on German highways. The results indicate that a parallel build-up of stations for both technologies does not increase the overall costs. Moreover, the technology combination is also an optimal solution from the system perspective due to synergetic use of hydrogen but limited efficiency losses. Hence, BEVs and FCEVs should jointly contribute to the decarbonization of the future energy system.  相似文献   

17.
Hydrogen refuelling stations are important for achieving sustainable hydrogen economy in low carbon transport and fuel cell electric vehicles. The solution presented in this paper provides us with a technology for producing carbon dioxide free hydrogen, which is an approach that goes beyond the existing large-scale hydrogen production technologies that use fossil fuel reforming. Hence, the main goal of this work was to design a hydrogen refuelling station to secure the autonomy of a hydrogen powered bicycle. The bicycle hydrogen system is equipped with a proton exchange membrane fuel cell stack of 300 W, a DC/DC converter, and a metal hydride storage tank of 350 NL of hydrogen. The hydrogen power system was made of readily available commercial components. The hydrogen station was designed as an off-grid system in which the installed proton exchange membrane electrolyzer is supplied with electric energy by direct conversion using photovoltaic cells. With the hydrogen flow rate of 2000 cc min−1 the hydrogen station is expected to supply at least 5 bicycles to be used in 20 km long city tourist routes.  相似文献   

18.
Hydrogen as a storage medium in renewable energy systems has been the subject of various studies in recent years. Such a system consists of a long-term and a short-term storage system. In a battery, energy is stored for short term whereas the electrolyser, H2-tank and fuel cell combination is used for long-term energy storage to increase the reliability of supply. The same purpose can be achieved by introducing a diesel generator instead of long-term storage. The advantage of such a system is that it needs low investment cost. However, the main disadvantage is that it needs to supply fuel for the operation of the generator. The advantage of hydrogen-based long-term storage over a diesel generator is that it does not need any supply of fuel. In photovoltaic–wind–diesel hybrid systems, the surplus energy during the good season is not stored.In the present study, the possible sites for renewable applications are specified depending on the seasonal renewable energy variation and fuel cost at the site of application. The critical fuel cost is calculated depending on the seasonal solar and wind energy difference. The actual fuel cost at the site of application is compared with critical fuel cost. To find out the actual fuel cost at the location of application, the transportation cost is also included. If the actual fuel cost is higher than the critical fuel cost, the location is cost-effective for hydrogen-based storage. Otherwise, the site is suitable for a diesel-generator backup system. It is found that at present hydrogen storage is not cost-effective compare to a diesel-generator-based system. In the near future when the target cost of the electrolyser and the fuel cell is achieved, the scope of the hydrogen-based storage system will also increase and it will also be cost competitive with diesel-generator system for remote applications.  相似文献   

19.
CNR–ITAE is developing several hydrogen and fuel cell demonstration and research projects, each intended to be part of a larger strategy for hydrogen communities settling in small Sicilian islands. These projects involve vehicle design, hydrogen production from renewable energy sources and methane, as well as implementation strategies to develop a hydrogen and renewable energy economy. These zero emission lightweight vehicles feature regenerative braking and advanced power electronics to increase efficiency. Moreover, to achieve a very easy-to-use technology, a very simple interface between driver and the system is under development, including fault-recovery strategies and GPS positioning for car-rental fleets. Also marine applications have been included, with tests on PEFC applied on passenger ships and luxury yacht as power system for on-board loads. In marine application, it is under study also an electrolysis hydrogen generator system using seawater as hydrogen carrier. For stationary and automotive applications, the project includes a hydrogen refuelling station powered by renewable energy (wind or/and solar) and test on fuel processors fed with methane, in order to make the power generation self-sufficient, as well as to test the technology and increase public awareness toward clean energy sources.  相似文献   

20.
This paper investigates the performance of a hydrogen refueling system that consists of a polymer electrolyte membrane electrolyzer integrated with photovoltaic arrays, and an electrochemical compressor to increase the hydrogen pressure. The energetic and exergetic performance of the hydrogen refueling station is analyzed at different working conditions. The exergy cost of hydrogen production is studied in three different case scenarios; that consist of i) off-grid station with the photovoltaic system and a battery bank to supply the required electric power, ii) on-grid station but the required power is supplied by the electric grid only when solar energy is not available and iii) on-grid station without energy storage. The efficiency of the station significantly increases when the electric grid empowers the system. The maximum energy and exergy efficiencies of the photovoltaic system at solar irradiation of 850 W m-2 are 13.57% and 14.51%, respectively. The exergy cost of hydrogen production in the on-grid station with energy storage is almost 30% higher than the off-grid station. Moreover, the exergy cost of hydrogen in the on-grid station without energy storage is almost 4 times higher than the off-grid station and the energy and exergy efficiencies are considerably higher.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号