首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 234 毫秒
1.
陈向  廖德华 《金属矿山》2021,50(5):120-124
广东某含铜浮选金精矿的金品位为8.312 g/t、铜含量为5.18%,工业上采用全泥氰化、浸出渣浮选回收铜的工艺流程。矿石中较高的铜含量不仅消耗大量的氰化物,还影响了金的浸出效果。为了进一步提高金的浸出率、降低氰化物用量,采用加温常压化学预氧化浸铜—浸铜渣氰化浸金工艺回收试样中的铜和金,并在磁处理条件下,考察了磁场强度、磁化时间、起始硫酸浓度、NaCl浓度、浸出温度和浸出时间等因素对金、铜浸出率的影响。试验确定磁处理的最佳条件为:磁场强度150 kA/m,磁化时间50 min,磨矿细度-200目占88%,预氧化温度93 ℃,起始硫酸浓度0.77 mol/L,NaCl浓度0.76 mol/L,预氧化时间27 h。在此条件下进行氧化预处理浸铜及铜渣氰化浸金试验,固定搅拌强度为760 r/min,液固比为3∶1,氧气流量为160 mL/min,氰化钠用量为7 kg/t,铜和金的浸出率分别为85.76%、98.86%。较未进行磁处理的最佳指标(铜浸出率71.28%,金浸出率86.26%)相比,铜浸出率提高了14.48个百分点,金浸出率提高了12.60个百分点;此外,预氧化温度降低了2 ℃,预氧化时间减少了1 h,氰化钠用量减少了3 kg/t。研究结果表明磁处理能有效提高含铜金矿的铜、金浸出率,减少有毒氰化物的用量。  相似文献   

2.
方娴  吕兵超 《矿冶》2017,26(1):62-64
采用氰化浸出工艺处理某矿山含金硫精矿,研究了矿石细度、氰化钠用量、浸出时间对金浸出率的影响。试验结果表明,磨矿细度-38μm占90.65%、氰化钠用量5 kg/t、氰化时间24 h条件下,获得最佳的金浸出率为42.12%。在直接氰化最佳条件下,添加硝酸铅用量800 g/t,金浸出率可提高13%。  相似文献   

3.
某高硫难处理金精矿超细磨提金试验研究   总被引:1,自引:1,他引:0  
蔡创开 《矿冶工程》2020,40(6):108-110
针对某高硫难处理金精矿中金大部分被黄铁矿包裹、直接氰化浸出金浸出率低的问题,采用超细磨-碱预处理-氰化浸出工艺处理金精矿,通过条件优化可获得金浸出率84.50%,氰化钠耗量控制在3 kg/t以内,该工艺简单、流程短、安全环保。  相似文献   

4.
董颖博  林海 《金属矿山》2008,38(9):100-103
研究了搅拌磨湿法超细磨得金精矿(-20μm>97%)的氰化浸出工艺,探讨了影响金精矿氰化浸出的因素,并与常规滚动式球磨机湿法磨得金精矿氰化浸出指标进行对比。结果表明,通过优化氰化浸出各种因素,可大大缩短氰化浸出时间,氰化钠和碱石灰用量分别降低了1 kg/t、1.47 kg/t,金的浸出率提高了0.49个百分点,浸渣含金量降低了0.21 g/t,效果显著。  相似文献   

5.
某铜金精矿焙烧-酸浸-氰化综合回收金铜工艺研究   总被引:4,自引:2,他引:2  
谭希发 《矿冶工程》2011,31(1):47-50
对吉林某浮选铜金精矿进行了焙烧-酸浸-氰化浸出综合回收金、铜的试验研究。焙烧的最佳焙烧条件为:焙烧温度550 ℃, 焙烧时间1.5 h。焙砂硫酸浸出的最佳条件为:酸浸温度75 ℃, 酸浸时间4 h, 初酸浓度40 g/L, 液固比4。氰化浸金的最优条件为:氰化钠初始浓度3‰, 氰化时间24 h, 液固比2。试验结果表明, 该工艺技术指标较好, 金、铜浸出率分别为99.06%和97.63%。  相似文献   

6.
为了充分回收某高银金精矿中的银,进行了强化浸出试验。结果表明:提高贫液中氰化钠浓度,有利于提高金、银的浸出率;采用醋酸铅为助浸剂可降低氰化钠的用量;采用碳酸氢铵作为助浸剂,可加速银的溶解,提升银的浸出率;在试样磨至-0.037 mm占95%,加贫液调至浓度为33%,氰化钠浓度为0.9%,浸出过程pH=12,搅拌浸出48 h,联合助浸剂碳酸氢铵+醋酸铅用量为5 kg/t+1 kg/t的情况下,金浸出率达91.2%、银浸出率达86.2%。  相似文献   

7.
河台金矿浮选金精矿含铜 3 %~ 6%,为了就地产金 ,就金精矿中铜对氰化金浸出率与氰化钠耗量的影响进行了选矿试验研究。研究证明 ,金精矿中铜对金浸出率的影响很大 ,如何采取措施降低铜对氰化浸金的影响 ,减少氰化钠的消耗 ,是提高金浸出率的关键。由于氰渣中含铜量达 3 %以上 ,有必要进行回收。经过试验研究和生产实践 ,采用添加剂A来降低铜对氰化的影响 ,是提高氰化金浸出率、降低氰渣品位和氰化钠消耗的重要途径 ;同时采用药剂B、C、D回收氰渣中的铜 ,能获得较好的指标和效益  相似文献   

8.
鉴于缅甸某金矿性质及当地矿山实际情况,开展了尼尔森重选-尾矿氰化浸出试验条件研究。结果表明,当采用三段不同磨矿细度,三段尼尔森GRG重选流程,可得到金品位为292.91 g/t、回收率为59.86%的重砂精矿,以及金品位为6.45 g/t、回收率为40.14%重选尾矿,同时也节约了磨矿成本。重选尾矿氰化浸出较佳条件为磨矿细度-0.045 mm 78%、矿浆浓度40%、石灰用量1.5 kg/t、氰化钠用量4.0 kg/t、浸出20 h,金作业回收率为93.18%。采用尼尔森重选-尾矿氰化浸出联合流程,金的总回收率可达到97.26%。  相似文献   

9.
某浮选金精矿氰化浸出尾渣中Au品位1.58 g/t、Ag品位49.88 g/t,为了探索尾渣中目标矿物解离特征以及金、银未充分浸出的原因,对该浸渣开展了系统性工艺矿物学分析,结果表明,浸渣中裸露金含量占63.85%,这部分金在氰化浸出过程中属于可回收金;浸渣中有36.15%的金以包裹体形式存在,磨矿细度较粗是导致金金属流失的原因。在工艺矿物学研究基础上进行了浸出条件优化试验,确定适宜的金精矿浸出条件为:磨矿细度-0.037 mm粒级占95%、矿浆浓度50%、氰化钠浓度5 g/L、浸出时间36 h、溶氧度4.6 mg/L。在此条件下Au浸出率为99.30%,较现场生产提高1.73个百分点;银平均浸出率为64.41%,较现场生产提高24.41个百分点。  相似文献   

10.
介绍了采用“浮选-浮选精矿销售-浮选尾矿直接炭浆法氰化浸出”工艺方案综合回收中亚某矿山过渡带难选含铜金矿中的金和铜。该矿原矿石含金3.52g/t、银11.20g/t、铜0.54%、砷0.40%、硫1.54%,其中氧化物铜含量为0.22%,占总铜含量的40.74%,金、铜嵌布粒度微细,嵌布关系复杂,属于复杂难选含氧化铜金矿。针对该矿特点,通过引进氧化铜类捕收药剂体系,增加精选级数,按照便于现场技改的硫化物铜、氧化物铜混合浮选工艺进行金铜浮选回收,对浮选尾矿进行直接炭浆法氰化浸出回收金。最终可获得浮选精矿产率3.92%,含金48.50g/t,含铜8.45%的可销售精矿,浮选尾矿含铜0.21%,可氰化铜含量0.12%,浮选尾矿直接炭浸所需氰化钠用量为3.1kg/t,金浸出率74.71%,浮选+浸出金综合回收率88.26%,铜回收率62.16%。与现场原工艺“浮选-浮选精矿销售-浮选尾矿氨氰法抑铜浸金-氨氰尾浆炭浸”相比,浮选精矿产率接近,精矿金铜品位更优,金综合回收率提高了6.02%,铜回收率提高了9.24%。试验成果已作为现场技改依据。  相似文献   

11.
从某金精矿中回收金银铜铅锌的试验研究   总被引:5,自引:2,他引:5  
山西某复杂多金属硫化矿石采用混合浮选获得的金精矿含Au34.22g/t、Ag904.4g/t、Pb8.78%、Cu1.32%、Zn3.35%,混合精矿直接外销,但其铜、铅、锌基本不予计价,造成了有价金属的流失。采用浮选精矿氰化浸金—氰化渣铅、铜、锌依次优先浮选流程,获得金总回收率96.60%、银95.51%、铅85.39%、铜72.37%、锌83.51%,实现了高效综合回收该矿石中的有价元素,经济效益和社会效益显著。  相似文献   

12.
含铜铅复杂金精矿矿浆电解处理新工艺   总被引:3,自引:0,他引:3  
研究“矿浆电解-氰化提金-选矿回收铜”含铜铅复杂金精矿处理新工艺。结果表明,矿浆电解铅、铜和银的浸出率分别为95.05%,14.28%和75.66%,金全部留在渣中。矿浆电解渣氰化浸出,金浸出率95.30%,氰化钠用量按金精矿计由常规的14kg/t降至5.1kg/t。氰化渣浮选,铜、金和银的回收率分别为81.86%,40.1%和83.79%。浮选尾矿可以作为硫铁矿出售。新流程结构合理、综合回收用好,为我国复杂金矿的处理提供了一条环保、经济、高效的途径。  相似文献   

13.
西藏某石英脉金矿主要载金矿物为银金矿,嵌布粒度较细且不均匀,金品位3.22g/t,为主要回收元素,银品位19.50g/t,为可综合回收元素。针对矿石性质,采用浮选-浮选尾矿氰化浸出联合工艺流程对矿石中的金进行回收。经一粗一精二扫、中矿顺序返回的闭路浮选流程,可获得浮选金精矿含金95.81g/t、金回收率84.34%的指标;浮选尾矿进行氰化浸出,金作业浸出率为79.31%,对原矿回收率为12.42%。联合工艺最终获得金总回收率96.76%的指标。其中浮选金精矿中银品位为407.01g/t、金尾矿中银品位为5.97g/t、精矿银回收率为68.78%,氰化浸出作业中银作业浸出率为51.53%,对原矿浸出率为15.98%,银综合回收率为84.76%。  相似文献   

14.
杨宇 《金属矿山》2017,46(7):110-114
石煤提钒过程中,为提高钒浸出率,往往会在焙烧阶段添加添加剂,而PVC废塑料则是没有得到很好回收利用的大宗废弃物。针对这一状况,以PVC废塑料为添加剂,进行了石煤提钒工艺条件研究。结果表明:①在焙烧过程中加入与石煤质量比为10%的PVC废塑料,在升温速率为10 ℃/min,焙烧温度为800 ℃,焙烧时间为60 min,焙砂酸浸的硫酸体积浓度为15%,液固比为1.5 mL/g,浸出温度为95 ℃,浸出时间为4 h情况下,钒浸出率可达92.60%,与空白焙烧-酸浸工艺相比,钒浸出率提高了6.50个百分点。②石煤焙烧阶段加入10%的PVC废塑料后,石煤中各主要元素的浸出率有不同程度的提高,说明PVC的加入有助于破坏石煤的矿物结构,促进后续酸浸过程中钒的浸出,但并不给后续富集钒和沉钒工艺带来不利影响。因此,在石煤提钒焙烧过程中添加PVC废塑料,可改善钒的浸出效果,降低钒的浸出成本,实现PVC废塑料的综合利用,经济效益和环境效益显著。  相似文献   

15.
陈庆根 《矿冶工程》2019,39(5):106-110
针对含铜氧化金矿采用氨氰选择性浸出提金,考察了分段加药制度、硫酸铵用量、矿石粒度等对金浸出率及浸出液铜金比的影响。结果表明:当硫酸铵用量8.00 kg/t,氰化钠用量0.60 kg/t,石灰用量5.00 kg/t,矿浆浓度40.00%,磨矿细度-0.074 mm粒级含量不低于95.00%时,平均金、铜浸出率分别为86.66%和1.16%。工业试验连续运行70 d,氰化尾渣金品位约0.55 g/t,金吸附率99%,金解吸率99.2%,电积回收率99.5%,金精炼回收率99.5%,金锭纯度99.99%,产品金达到国标Au-1标准。  相似文献   

16.
某氧化型金矿石氰化浸出试验   总被引:2,自引:0,他引:2  
某氧化型金矿石金含量高达7.76 g/t,但浮选工艺回收效果极不理想。采用分段浸出工艺对磨矿细度、氰化钠用量、浸出时间等重要工艺技术条件进行了研究,还对影响金浸出的铜离子进行了预处理研究。结果表明,浸前氨水预处理有利于削弱铜对金浸出的负面影响,在试验确定的最佳工艺技术条件下,金浸出率达到了90.11%,达到了工业生产要求。  相似文献   

17.
某低品位多金属金矿中含有金、银、铅、铁等多种有价元素,有用矿物嵌布关系复杂且粒度较细,含量较低但综合利用价值较高。原矿在磨矿细度-0.074mm含量60%、捕收剂丁黄药和丁铵黑药用量分别为64g/t、13g/t的条件下进行混合浮选,获得金、银、铅混合精矿。混合精矿在pH值为11、矿浆浓度40%、氰化钠用量5kg/t、浸出时间36h的条件下进行氰化浸出获得金、银,对原矿金、银回收率分别为67.24%、38.30%。浸渣在抑制剂氧化钙用量1500g/t、捕收剂乙硫氮和丁铵黑药用量分别为40g/t、10g/t的条件下进行浮铅试验,获得了对原矿铅品位45.32%、回收率53.98%的铅精矿和对原矿回收率为3.16%、5.07%的金、银,金、银总回收率分别为70.40%、43.37%。混合浮选尾矿在磁场强度为111kA/m的条件下,通过一段粗选一段精选,获得了铁品位56.30%、回收率12.76%的铁精矿。采用此工艺综合回收了有价金属,获得了较好的选别指标,为该矿的开发利用提供了重要依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号