首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The catalytic effect of MoS2 and MoO2 on the hydrogen absorption/desorption kinetics of MgH2 has been investigated. It is shown that MoS2 has a superior catalytic effect over MoO2 on improving the hydrogen kinetic properties of MgH2. DTA results indicated that the desorption temperature decreased from 662.10 K of the pure MgH2 to 650.07 K of the MgH2 with MoO2 and 640.34 K of that with MoS2. Based on the Kissinger plot, the activation energy of the hydrogen desorption process is estimated to be 101.34 ± 4.32 kJ mol−1 of the MgH2 with MoO2 and 87.19 ± 4.48 kJ mol−1 of that with MoS2, indicating that the dehydriding process energy barrier of MgH2 can be reduced. The enhancement of the hydriding/dehydriding kinetics of MgH2 is attributed to the presence of MgS and Mo or MgO and Mo which catalyze the hydrogen absorption/desorption behavior of MgH2. The detailed comparisons between MoS2 and MoO2 suggest that S anion has superior properties than O anion on catalyzing the hydriding/dehydriding kinetics of MgH2.  相似文献   

2.
In the present work, the hydrogen storage properties of MgH2-X wt.% FeCl3 (X = 5, 10, 15 and 20) are investigated experimentally. It is found that the MgH2 + 10 wt.% FeCl3 sample exhibits the best comprehensive hydrogen storage properties, in terms of the onset dehydrogenation temperature, the hydrogen amounts de/reabsorbed as well as the relative de/rehydrogenation rates. The onset dehydrogenation temperature of the 10 wt.% FeCl3-doped MgH2 sample is reduced by about 90 °C compared to the as-milled MgH2, and the sorption kinetics measurements indicate that the FeCl3-doped sample displays an average dehydrogenation rate 5–6 times faster than that of the undoped MgH2 sample. Higher levels of doping introduce negative effects, such as lower capacity and slower absorption/desorption rates compared to samples with lower FeCl3 doping levels. The apparent activation energy for hydrogen desorption is decreased from 166 kJ•mol−1 for as-milled MgH2 to 130 kJ•mol−1 by the addition of 10 wt.% FeCl3. It is believed that the improvement of the MgH2 sorption properties in the MgH2/FeCl3 composite is due to the catalytic effects of the in-situ generated Fe species and MgCl2 that are formed during the heating process.  相似文献   

3.
In this study, a low-cost biomass charcoal (BC)-based nickel catalyst (Ni/BC) was introduced into the MgH2 system by ball-milling. The study demonstrated that the Ni/BC catalyst significantly improved the hydrogen desorption and absorption kinetics of MgH2. The MgH2 + 10 wt% Ni/BC-3 composite starts to release hydrogen at 187.8 °C, which is 162.2 °C lower than the initial dehydrogenation temperature of pure MgH2. Besides, 6.04 wt% dehydrogenation can be achieved within 3.5 min at 300 °C. After the dehydrogenation is completed, MgH2 + 10 wt% Ni/BC-3 can start to absorb hydrogen even at 30 °C, which achieved the absorption of 5 wt% H2 in 60 min under the condition of 3 MPa hydrogen pressure and 125 °C. The apparent activation energies of dehydrogenation and hydrogen absorption of MgH2 + 10 wt% Ni/BC-3 composites were 82.49 kJ/mol and 23.87 kJ/mol lower than those of pure MgH2, respectively, which indicated that the carbon layer wrapped around MgH2 effectively improved the cycle stability of hydrogen storage materials. Moreover, MgH2 + 10 wt% Ni/BC-3 can still maintain 99% hydrogen storage capacity after 20 cycles. XRD, EDS, SEM and TEM revealed that the Ni/BC catalyst evenly distributed around MgH2 formed Mg2Ni/Mg2NiH4 in situ, which act as a “hydrogen pump” to boost the diffusion of hydrogen along with the Mg/MgH2 interface. Meanwhile, the carbon layer with fantastic conductivity enormously accelerated the electron transfer. Consequently, there is no denying that the synergistic effect extremely facilitated the hydrogen absorption and desorption kinetic performance of MgH2.  相似文献   

4.
This paper reports the catalytic effects of mischmetal (Mm) and mischmetal oxide (Mm-oxide) on improving the dehydrogenation and rehydrogenation behaviour of magnesium hydride (MgH2). It has been found that 5 wt.% is the optimum catalyst (Mm/Mm-oxide) concentration for MgH2. The Mm and Mm-oxide catalyzed MgH2 exhibits hydrogen desorption at significantly lower temperature and also fast rehydrogenation kinetics compared to ball-milled MgH2 under identical conditions of temperature and pressure. The onset desorption temperature for MgH2 catalyzed with Mm and Mm-oxide are 323 °C and 305 °C, respectively. Whereas the onset desorption temperature for the ball-milled MgH2 is 381 °C. Thus, there is a lowering of onset desorption temperature by 58 °C for Mm and by 76 °C for Mm-oxide. The dehydrogenation activation energy of Mm-oxide catalyzed MgH2 is 66 kJ/mol. It is 35 kJ/mol lower than ball-milled MgH2. Additionally, the Mm-oxide catalyzed dehydrogenated Mg exhibits faster rehydrogenation kinetics. It has been noticed that in the first 10 min, the Mm-oxide catalyzed Mg (dehydrogenated MgH2) has absorbed up to 4.75 wt.% H2 at 315 °C under 15 atmosphere hydrogen pressure. The activation energy determined for the rehydrogenation of Mm-oxide catalyzed Mg is ∼62 kJ/mol, whereas that for the ball-milled Mg alone is ∼91 kJ/mol. Thus, there is a decrease in absorption activation energy by ∼29 kJ/mol for the Mm-oxide catalyzed Mg. In addition, Mm-oxide is the native mixture of CeO2 and La2O3 which makes the duo a better catalyst than CeO2, which is known to be an effective catalyst for MgH2. This takes place due to the synergistic effect of CeO2 and La2O3. It can thus be said that Mm-oxide is an effective catalyst for improving the hydrogen sorption behaviour of MgH2.  相似文献   

5.
Herein, a novel flower-like Ni MOF with good thermostability is introduced into MgH2 for the first time, and which demonstrates excellent catalytic activity on improving hydrogen storage performance of MgH2. The peak dehydrogenation temperature of MgH2-5 wt.% Ni MOF is 78 °C lower than that of pure MgH2. Besides, MgH2-5 wt.% Ni MOF shows faster de/hydrogenation kinetics, releasing 6.4 wt% hydrogen at 300 °C within 600 s and restoring about 5.7 wt% hydrogen at 150 °C after dehydrogenation. The apparent activation energy for de/hydrogenation reactions are calculated to be 107.8 and 42.8 kJ/mol H2 respectively, which are much lower than that of MgH2 doped with other MOFs. In addition, the catalytic mechanism of flower-like Ni MOF is investigated in depth, through XRD, XPS and TEM methods. The high catalytic activity of flower-like Ni MOF can be attributed to the combining effect of in-situ generated Mg2Ni/Mg2NiH4, MgO nanoparticles, amorphous C and remaining layered Ni MOF. This research extends the knowledge of elaborating efficient catalysts via MOFs in hydrogen storage materials.  相似文献   

6.
The chain-like carbon nanotubes (CNTs) decorated with CoFeB (CoFeB/CNTs) prepared by oxidation-reduction method is introduced into MgH2 to facilitate its hydrogen storage performance. The addition of CoFeB/CNTs enables MgH2 to start desorbing hydrogen at only 177 °C. Whereas pure MgH2 starts hydrogen desorption at 310 °C. The dehydrogenation apparent activation energy of MgH2 in CoFeB/CNTs doped-MgH2 composite is only 83.2 kJ/mol, and this is about 59.5 kJ/mol lower than that of pure MgH2. In addition, the completely dehydrogenated MgH2−10 wt% CoFeB/CNTs sample can start to absorb hydrogen at only 30 °C. At 150 °C and 5 MPa H2, the MgH2 in CoFeB/CNTs doped-MgH2 composite can absorb 6.2 wt% H2 in 10 min. The cycling kinetics can remain rather stable up to 20 cycles, and the hydrogen storage capacity retention rate is 98.5%. The in situ formation of Co3MgC, Fe, CoFe and B caused by the introduction of CoFeB/CNTs can provide active and nucleation sites for the dehydrogenation/rehydrogenation reactions of MgH2. Moreover, CNTs can provide hydrogen diffusion pathways while also enhancing the thermal conductivity of the sample. All of these can facilitate the dehydrogenation/rehydrogenation performance and cyclic stability of MgH2.  相似文献   

7.
MgH2 is considered as a promising hydrogen storage material for on-board applications. In order to improve hydrogen storage properties of MgH2, the amorphous TiMgVNi3-doped MgH2 is prepared by ball milling under hydrogen atmosphere. It is found that the catalytic (Ti,V)H2 and Mg2NiH4 nanoparticles are in situ formed after activation. As a result, the amorphous TiMgVNi3-doped MgH2 exhibits enhanced dehydrogenation kinetics (the activation energy for hydrogen desorption is 94.4 kJ mol?1 H2) and superior cycle durability (the capacity retention rate is up to 92% after 50 cycles). These results demonstrate that the in situ formation of highly dispersed catalytic nanoparticles from an amorphous phase is an effective pathway to enhance hydrogen storage properties of MgH2.  相似文献   

8.
In a previous paper, it was demonstrated that a MgH2–NaAlH4 composite system had improved dehydrogenation performance compared with as-milled pure NaAlH4 and pure MgH2 alone. The purpose of the present study was to investigate the hydrogen storage properties of the MgH2–NaAlH4 composite in the presence of TiF3. 10 wt.% TiF3 was added to the MgH2–NaAlH4 mixture, and its catalytic effects were investigated. The reaction mechanism and the hydrogen storage properties were studied by X-ray diffraction, thermogravimetric analysis, differential scanning calorimetry (DSC), temperature-programmed-desorption and isothermal sorption measurements. The DSC results show that MgH2–NaAlH4 composite milled with 10 wt.% TiF3 had lower dehydrogenation temperatures, by 100, 73, 30, and 25 °C, respectively, for each step in the four-step dehydrogenation process compared to the neat MgH2–NaAlH4 composite. Kinetic desorption results show that the MgH2–NaAlH4–TiF3 composite released about 2.4 wt.% hydrogen within 10 min at 300 °C, while the neat MgH2–NaAlH4 sample only released less than 1.0 wt.% hydrogen under the same conditions. From the Kissinger plot, the apparent activation energy, EA, for the decomposition of MgH2, NaMgH3, and NaH in the MgH2–NaAlH4–TiF3 composite was reduced to 71, 104, and 124 kJ/mol, respectively, compared with 148, 142, and 138 kJ/mol in the neat MgH2–NaAlH4 composite. The high catalytic activity of TiF3 is associated with in situ formation of a microcrystalline intermetallic Ti–Al phase from TiF3 and NaAlH4 during ball milling or the dehydrogenation process. Once formed, the Ti–Al phase acts as a real catalyst in the MgH2–NaAlH4–TiF3 composite system.  相似文献   

9.
In the present investigation, we have reported the synergistic effect of Fe nanoparticles and hollow carbon spheres composite on the hydrogen storage properties of MgH2. The onset desorption temperature for MgH2 catalyzed with hollow carbon spheres and Fe nanoparticle (MgH2-Fe-HCS) system has been observed to be 225.9 °C with a hydrogen storage capacity of 5.60 wt %. It could be able to absorb 5.60 wt % hydrogen within 55 s and desorb 5.50 wt % hydrogen within 12 min under 20 atm H2 pressure at 300 °C. The desorption activation energy of MgH2-Fe-HCS has been found to be 84.9 kJ/mol, whereas the desorption activation energies for as received MgH2, Hollow carbon sphere catalyzed MgH2 and Fe catalyzed MgH2 are found to be 130 kJ/mol, 103 kJ/mol, and 94.2 kJ/mol respectively. MgH2-Fe-HCS composite lowered the change in enthalpy of hydrogen desorption from MgH2 by 20.02 kJ/mol as compared to pristine MgH2. MgH2-Fe-HCS shows better cyclability up to 24 cycles of hydrogenation and dehydrogenation of MgH2. The mechanism for the better catalytic action of Fe and HCS on MgH2 has also been discussed.  相似文献   

10.
Magnesium hydride is a leading hydrogen storage material with high hydrogen content, however, suffers with sluggish kinetics. Several methods have been adopted to improve its kinetics, out of which, the addition of catalyst is an impressive way. Carbon materials have shown their promises as catalyst for several hydrogen storage materials. The present work is devoted to investigating the catalytic effects of exfoliated graphite and graphene nanoballs on dehydrogenation kinetics of MgH2. The lowest onset temperature of 282 °C is observed for graphene nanoballs modified MgH2 system. Exfoliated graphite mixed MgH2 desorbed hydrogen at onset temperature 301 °C which is also less than the dehydrogenation temperature of pure MgH2 (410 °C). The dehydrogenation kinetics has significantly improved by the addition of these catalysts as compared to the pure MgH2. The activation energy for the hydrogen desorption of MgH2 was reduced from 170 (pure MgH2) to 136 ± 2 and 140 ± 2 kJ/mol by the addition of exfoliated graphite and graphene nanoballs, respectively. The XRD results confirmed the presence of MgH2 after milling with exfoliated graphite and graphene nanoballs that indicates that there are no reactions during the milling thus both the additives are effective to improve the dehydrogenation as a catalyst.  相似文献   

11.
In this study, some transition metal sulfides (TiS2, NbS2, MoS2, MnS, CoS2 and CuS) are used as catalyst to enhance the hydrogen storage behaviors of MgH2. The MgH2-sulfide composites with different sulfides addition are prepared by ball-milling. The phase composition and hydrogen storage properties are studied in detail. The results confirm that all these sulfides can significantly increase the hydrogen desorption and absorption kinetics of MgH2. The MgH2–TiS2 has the best hydrogenation and dehydrogenation kinetics, followed by the MgH2–NbS2, MgH2–MnS, MgH2–MoS2, MgH2–CoS2, MgH2–CuS and MgH2. Also, the onset dehydrogenation temperature of the MgH2–TiS2 is about 204 °C, which is lower about 126 °C than that of the MgH2. The dehydrogenation activation energy can be reduced to 50.8 kJ mol?1 when doping TiS2 in MgH2. The beneficial catalytic effects of the sulfides can be ascribed to the in-situ formation of MgS, TiH2, NbH, Mo, Mn, Mg2CoH5 and MgCu2 phases.  相似文献   

12.
In the present study, the catalytic effect of Ni and ZrO2 nanoparticles on the hydrogen absorption and desorption properties of MgH2 has been investigated. The MgH2 nanocomposites were prepared by high-energy ball-milling. The morphology, phase structure, thermal behavior, and hydrogen storage properties of the materials were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), temperature-programmed desorption (TPD), differential scanning calorimetry (DSC), and the pressure-composition temperature (PCT) methods. ZrO2 and Ni nanoparticles were homogenously dispersed into the MgH2 matrix. The calculated apparent activation energy for dehydrogenation was 63.4 kJ/mol, which was decreased by 80.1 kJ/mol compared to that of as-milled MgH2. As a result, MgH2+5 wt.%Ni+5 wt.%ZrO2 demonstrated improved dehydrogenation and hydrogenation kinetics at 310 °C. The MgH2+5 wt.%Ni+5 wt.%ZrO2 sample released about 6.83 wt.% and absorbed about 6.10 wt.% in less than 30 min. Therefore, the co-catalysis of Ni and ZrO2 significantly enhances the hydrogenation and dehydrogenation properties of MgH2.  相似文献   

13.
Fluorographene (FG), which inherits the properties of graphene and fluorographite (FGi), was successfully fabricated through a simple sonochemical exfoliation route in N-methyl-2-pyrrolidone (NMP) and then MgH2-FG composite was prepared by ball milling. The dehydrogenation and rehydrogenation performances of MgH2-FG composite were investigated systematically comparing with as-received MgH2 and MgH2-G composite. It is found that the as-prepared FG exhibited a significant catalytic effect on the dehydrogenation and rehydrogenation properties of MgH2. The MgH2-FG composite can uptake 6.0 wt% H2 in 5 min and release 5.9 wt% H2 within 50 min at 300 °C, while the as-received MgH2 uptakes only 2.0 wt% H2 in 60 min and hardly releases hydrogen at the same condition. The hydrogen storage cycling kinetics in the first 10 cycles remains almost the same, indicating the excellent reversibility of the MgH2-FG composite. SEM analysis shows that the particle size of MgH2-FG composite was ∼200 nm, much smaller than that of as-received MgH2 (∼20 μm). TEM observations show that MgH2 particles were embedded in FG layers during ball milling. The dehydrogenation apparent activation energy for the MgH2 is reduced from 186.3 kJ mol−1 (as-received MgH2) to 156.2 kJ mol−1 (MgH2-FG composite). The catalytic mechanism has been proposed that F atoms in FG serve as charge-transfer sites and accelerate the rate of hydrogen incorporation and dissociation, consequently enhance the dehydrogenation and rehydrogenation properties of MgH2-FG composite. Furthermore, the FG can inhibit the sintering and agglomeration of MgH2 particle, thus it improves the cycling dehydrogenation and rehydrogenation of MgH2-FG composite.  相似文献   

14.
In this study, the hydrogen storage properties of MgH2 with the addition of K2TiF6 were investigated for the first time. The temperature-programmed desorption results showed that the addition of 10 wt% K2TiF6 to the MgH2 exhibited a lower onset desorption temperature of 245 °C, which was a decrease of about 105 °C and 205 °C compared with the as-milled and as-received MgH2, respectively. The dehydrogenation and rehydrogenation kinetics of 10 wt% K2TiF6-doped MgH2 were also significantly improved compared to the un-doped MgH2. The results of the Arrhenius plot showed that the activation energy for the hydrogen desorption of MgH2 was reduced from 164 kJ/mol to 132 kJ/mol after the addition of 10 wt% K2TiF6. Meanwhile, the X-ray diffraction analysis showed the formation of a new phase of potassium hydride and titanium hydride together with magnesium fluoride and titanium in the doped MgH2 after the dehydrogenation and rehydrogenation process. It is reasonable to conclude that the K2TiF6 additive doped with MgH2 played a catalytic role through the formation of active species of KH, TiH2, MgF2 and Ti during the ball milling or heating process. It is therefore proposed that this newly developed product works as a real catalyst for improving the hydrogen sorption properties of MgH2.  相似文献   

15.
MgH2 has been extensively regarded as a low-cost hydrogen storage material with high gravimetric hydrogen capacity of approximately 7.6 wt%. However, the hydrogen release and absorption kinetics in MgH2 still needs further improving. For the first time, the catalytic impacts of a new dual-cation metal fluoride K2TaF7 upon the hydrogen storage characteristics of MgH2 have been investigated in this work. With only 1 wt% K2TaF7 dopant, the initial dehydrogenation temperature of MgH2 was lowered by about 130 °C, releasing more than 7.3 wt% hydrogen totally. The desorption activation energy of MgH2 + 1 wt% K2TaF7 composite was decreased to 107.2 ± 1.2 kJ mol?1. Besides, at 190 °C, the dehydrogenated MgH2 + 1 wt% K2TaF7 sample could absorb 6.56 wt% H2, while pristine MgH2 re-absorbed only 3.45 wt% H2. Further studies revealed that K2TaF7 could react with MgH2 during dehydrogenation and produce symbiotic hydrides KMgH3 and TaH0.8, which could play the role of hydrogen pumps during hydrogen release and uptake. The cooperative catalysis between the hydrogen pump effect and the active interface in the multi-hydride area significantly enhanced the reversible hydrogen storage in the MgH2+1 wt% K2TaF7 composite. This study provides new thinking for novel catalysts to elevate the hydrogen storage performance of MgH2.  相似文献   

16.
Extensive researches are being conducted to improve the high dehydrogenation temperature and sluggish hydrogen release rate of magnesium hydride (MgH2) for better industrial application. In this study, LiNbO3, a catalyst composed of alkali metal Li and transition metal Nb, was prepared through a direct one-step hydrothermal synthesis, which remarkably improved the hydrogen storage performance of MgH2. With the addition of 6 wt% LiNbO3 in MgH2, the initial dehydrogenation temperature decreases from 300 °C to 228 °C, representing a drop of almost 72 °C compared to milled MgH2. Additionally, the MgH2-6 wt.% LiNbO3 composite can quickly release 5.45 wt% of H2 within 13 min at 250 °C, and absorbed about 3.5 wt% of H2 within 30 min at 100 °C. It is also note that LiNbO3 shows better catalytic effect compared to solely adding Li2O or Nb2O5. Furthermore, the activation energy of MgH2-6 wt.% LiNbO3 decreased by 44.37% compared to milled MgH2. The enhanced hydrogen storage performance of MgH2 is attributed to the in situ formation of Nb-based oxides in the presence of LiNbO3, which creates a multielement and multivalent chemical environment.  相似文献   

17.
The hydrogen storage performances of MgH2 improved by the addition of Ni and SAPO-34 were studied in detail. The mixture of MgH2 with Ni and SAPO-34 was a physical reaction as shown by the X-ray diffraction (XRD) results. The SAPO-34 and Ni were uniformly distributed on the surface of MgH2. The thermodynamic and kinetic properties of 90MgH2/5Ni/5SAPO-34 were investigated by differential scanning calorimetry (DSC) and pressure-composition-isothermal (PCI) methods. The results showed that the dehydrogenation activation energy of 90MgH2/5Ni/5SAPO-34 decreased by 64.3 kJ/mol compared with that of MgH2. In addition, the relationship between the value of dehydrogenation heat and hydrogen content was also investigated by in-situ calorimetry. The enthalpy value of each sample in the dehydrogenation processes were calculated by in-situ calorimetry measurement. The dehydrogenation enthalpies of as-milled MgH2 and 90MgH2/5Ni/5SAPO-34 were 63.2 kJ/mol H2 and 53.6 kJ/mol H2, respectively. Thus, the co-doping of Ni and SAPO-34 contributed significantly to decrease the thermodynamic stability and improve the hydrogen sorption kinetic properties of MgH2.  相似文献   

18.
In this paper, the best performance of the MgH2 destabilized system with different ratios of Cd (1:1, 2:1, 3:1 and 4:1) have been studied for the first time. Remarkable enhancements on the onset dehydrogenation temperature, as well as the isothermal de/rehydrogenation kinetics were shown by the 4MgH2 + Cd composite. In order to improve the hydrogen storage properties of the 4MgH2 + Cd, TiF3 was added and its catalytic effects were investigated. Temperature programmed dehydrogenation result had revealed that the onset dehydrogenation temperature was improved once the 10 wt% TiF3 was incorporated into the 4MgH2 + Cd system. The absorption and desorption kinetics were also improved compared to the un-doped 4MgH2 + Cd composite system. The scanning electron microscope result had displayed that the 4MgH2 + Cd + 10 wt% TiF3 had the smallest particle size compared to the pure and the ball-milled MgH2, as well as the 4MgH2 + Cd composite system. The X-ray diffraction results had demonstrated the formation of an intermediate compound, Mg3Cd, which was formed during the heating process. For the TiF3-doped sample, it is reasonable to conclude that the in-situ formed TiH2 and F-containing species play a synergetic role to encourage interactions between the MgH2 and the Cd and thus further ameliorate the performances of the hydrogen storage of 4MgH2 + Cd composite system.  相似文献   

19.
Magnesium hydride (MgH2) is the best candidate material to store hydrogen in the solid-state form owing to its advantages such as good reversibility, high hydrogen storage capacity (7.6 wt%), low raw material cost and abundance in the earth. Nevertheless, slow desorption/absorption kinetics and high thermodynamic stability are two issues that have constrained the commercialization of MgH2 as a solid-state hydrogen storage material. So, to boost the desorption/absorption kinetics and to alter the thermodynamics of MgH2, hafnium tetrachloride (HfCl4) was used as a catalyst in this study. Different percentages of HfCl4 (5, 10, 15 and 20 wt%) were added to MgH2 and their catalytic influences on the hydrogen storage properties of MgH2 were investigated. Results showed that the 15 wt% HfCl4-doped MgH2 sample was the best composite to enhance the hydrogen storage performance of MgH2. The onset decomposition temperature of the 15 wt% HfCl4-doped MgH2 composite was decreased by ~75 °C compared to as-milled MgH2. Meanwhile, the desorption/absorption kinetic measurements showed an improvement compared to the undoped MgH2. From the Kissinger analysis, the apparent dehydrogenation activation energy was 167.0 kJ/mol for undoped MgH2 and 102.0 kJ/mol for 15 wt% HfCl4-doped MgH2. This shows that the HfCl4 addition reduced the activation energy of the hydrogen decomposition of MgH2. The desorption enthalpy change calculated by the van't Hoff equation showed that the addition of HfCl4 to MgH2 did not affect the thermodynamic properties. Scanning electron microscopy showed that the size of the MgH2 particles decreased and there was less agglomeration after the addition of HfCl4. It is believed that the decrease in the particle size and in-situ generated MgCl2 and Hf-containing species had synergistic catalytic effects on enhancing the hydrogen storage properties of the HfCl4-doped MgH2 composite.  相似文献   

20.
The catalytic effect of Na3AlF6 on the dehydrogenation properties of the MgH2 with X wt% (X = 5, 10, 20 and 50) have been investigated by ball milling technique. Based on the temperature-programme-desorption result, the addition of 10 wt% Na3AlF6 to the MgH2 has demonstrated the best dehydrogenation properties performance. The dehydrogenation temperature of the un-doped MgH2 has experienced a reduction for about 60 °C after doped with 10 wt% Na3AlF6. The dehydrogenation kinetics also has been improved with the addition of 10 wt% Na3AlF6. Based on the Kissinger analysis, it was observed that the apparent activation energy of MgH2 desorption is remarkably decreased from 158 kJ/mol to 129 kJ/mol with the addition of 10 wt% Na3AlF6. Meanwhile, the formations of new species, the NaMgF3, the NaF and the AlF3 in the doped composite after the de/rehydrogenation processes are found in the X-ray diffraction analysis. These new species are expected to act as the active species that probably contributes to enhance the dehydrogenation properties of MgH2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号