共查询到20条相似文献,搜索用时 0 毫秒
1.
Several commercial bcc steels with various combinations of ferritic, pearlitic, bainitic and martensitic microstructures were tensile tested in gaseous hydrogen (10 MPa) at room temperature. 相似文献
2.
Cryogenic and Tempered (CT) treatments were performed on commercial TRIP 780 steels in order to reduce the hydrogen embrittlement (HE) susceptibility. The HE behavior was assessed immediately after cathodically hydrogen charging on both CT treated and untreated samples. Slow strain-rate tensile (SSRT) tests were conducted to evaluate their HE performance. It is shown that samples with CT treatments behave higher resistance to HE comparing with their untreated counterparts. Meanwhile, microstructure characterization and magnetization measurements were adopted to reveal the evolution of retained austenite (Ar) and its stabilization due to CT treatment. Moreover, hydrogen-induced cracking (HIC) accompanied with martensite phase transformation in TRIP steel was studied by electron backscattering diffraction (EBSD) technique and it was proved that cracks initiated from the fresh untempered martensite inherited from phase transformation of unstable Ar upon straining. Finally, results in this study demonstrate the relationship between Ar stability and HE susceptibility, and provide a possible solution to reduce HE susceptibility in TRIP steels. 相似文献
3.
4.
Lin Zhang Zhiyuan Li Jinyang Zheng Yongzhi Zhao Ping Xu Chilou Zhou Xiao Li 《International Journal of Hydrogen Energy》2013
The hydrogen transport behavior together with hydrogen embrittlement (HE) in hydrogen-charged type 304 and 316 stainless steels during deformation was investigated by combined tension and outgassing experiments. The specimens were thermally hydrogen-charged in 30 MPa hydrogen at 473 K for 48 h. HE of hydrogen-charged type 304 steel decreases with increasing prestrain and almost no HE is observed in hydrogen-charged type 316 steel. Prior strain-induced α′ martensite formed by the prestrain at 208 K has little relation with HE, while dynamic α′ martensite formed during deformation after the prestrain shows obvious HE. The differences in hydrogen diffusivity and solubility between α′ martensite and austenite (γ) induce hydrogen diffusion from dynamic α′ martensite and then its accumulation at the boundary between the α′-rich and γ-rich zones, resulting in crack initiation at the boundary between the α′-rich and γ-rich zones. 相似文献
5.
A Cu alloyed (18Cr–10Ni–3Cu) and a Cu free (18Cr–12.7Ni) austenitic stainless steel were tensile tested in gaseous hydrogen atmosphere at 20 °C and −50 °C. Depending on the test temperature, the Cu alloyed steel was extremely embrittled whereas the Cu free steel was only slightly embrittled. Austenite stability and inherent deformation mode are two main criteria for the resistance of austenitic stainless steels against hydrogen environment embrittlement. Based on the well known austenite stability criteria, the austenite stability of both steels should be very similar. Interrupted tensile tests show that martensite formation upon plastic deformation was much more severe in the Cu alloyed steel proving that the influence of Cu on austenite stability is overestimated in the empirical stability equations. When tested in high pressure H2, replacing Ni by Cu resulted in a fundamental change in fracture mode atmosphere, i.e. Ni cannot be replaced by Cu to reduce the costs of SS without compromising the resistance to hydrogen environment embrittlement. 相似文献
6.
7.
《International Journal of Hydrogen Energy》2019,44(45):25076-25090
Two stable austenitic steels, 20Cr-11Ni-5Mn-0.3N (wt%) stainless steel (STS) and 18Mn-1.5Al-0.6C (wt%) twinning-induced plasticity steel (TWIP), were investigated to understand the effect of grain size on hydrogen embrittlement (HE). Grain refinement promoted HE in the STS but suppressed HE in the TWIP. These opposite effects occurred because the steel composition affected deformation mechanism. Cr-N pair enhanced short-range ordering (SRO) in STS, which promoted planar slip and delayed mechanical twinning. In contrast, TWIP exhibited mechanical twinning which was more active in coarser grains. Final dislocation density after tensile deformation was increased by grain refinement in STS, but was decreased in TWIP. The damaging effects of hydrogen on strain energy at interfaces and on interfacial bonding strength were controlled by dislocation density; therefore, increase in dislocation density led to increase in susceptibility to HE. 相似文献
8.
T. Kanezaki C. Narazaki Y. Mine S. Matsuoka Y. Murakami 《International Journal of Hydrogen Energy》2008
The effect of hydrogen on fatigue crack growth behavior of three stainless steels has been investigated from the viewpoint of microscopic fatigue mechanisms, martensitic transformation and hydrogen content. Fatigue crack growth rates in the hydrogen-charged SUS304 and SUS316 were accelerated with respect to crack growth rates in uncharged specimens. The crack growth rate in the hydrogen-charged SUS316L was only slightly higher than that in the uncharged SUS316L. Martensitic transformation on the fatigue fracture surfaces was detected using X-ray diffraction both in the hydrogen-charged and uncharged specimens of SUS304, SUS316 and SUS316L. Materials with increased tendency for martensitic transformation also showed increased acceleration in fatigue crack growth rate due to hydrogen. It was concluded that martensitic transformation in the vicinity of the fatigue crack tip increased the local diffusion of hydrogen thus increasing crack growth rate. 相似文献
9.
Shihan Li Changfeng Chen Yinong Liu Haobo Yu Xiaolin Wang 《International Journal of Hydrogen Energy》2018,43(34):16728-16736
This study investigated the effect of thermally induced surface martensite layer on hydrogen embrittlement of Fe-16Mn-0.4C-2Mo (wt.%) (16Mn) and Fe-25Mn-0.4C-2Mo (wt.%) (25Mn) steels through slow strain rate stress corrosion cracking testing and proof ring testing in wet H2S environment. The 16Mn steel had a surface layer of less than 150 μm in depth containing ε-martensite, α′-martensite and austenitic twins. The martensite layer is found to reduce the hydrogen embrittlement resistance of the steel. In comparison, the 25Mn steel developed a full α′-martensite surface layer, which exhibited practically nil effect on the hydrogen embrittlement resistance of the steel. The ε-martensite provides much larger interface areas with the mechanical twins of the austenite in the 16Mn steel than the α′-martensite/austenite interfaces in the 25Mn steel. These interfaces are hydrogen trapping sites and are prone to initiate surface cracks, as observed in the scanning electron microscope. The formation of the cracks is attributed to hydrogen concentration at the ε-martensite and austenitic twin interfaces, which accelerates material fracture. 相似文献
10.
Yoji Mine Nobuaki Horita Zenji Horita Kazuki Takashima 《International Journal of Hydrogen Energy》2017,42(22):15415-15425
Micro-tensile tests were performed on high-pressure-torsion-processed specimens of type 304 steel with grain sizes in the range of 0.1–0.5 μm to clarify the effect of ultrafine grain refinement on the hydrogen embrittlement (HE) of metastable austenitic steel. The ultrafine-grained (UFG) specimens with average grain sizes < ~0.4 μm exhibited a limited uniform elongation followed by a steady-stress regime in the stress–strain curves, which was attributed to a martensitic transformation. A high yield stress and a moderate elongation to failure were attained for the UFG specimens with an average grain size of ~0.5 μm in the uncharged state. Hall–Petch relationships well hold between the yield stress and the average grain size for each uncharged and hydrogen-charged specimen. Hydrogen charging increased the friction stress by 40% but did not change the Hall–Petch coefficient. Hydrogen-induced ductility loss was mitigated by ultrafine grain refinement. Ductility loss due to hydrogen charging manifested in the local deformation after a martensitic transformation. This indicates that hydrogen does not significantly affect the martensitic transformation, but shortens the subsequent local deformation process. 相似文献
11.
《International Journal of Hydrogen Energy》2021,46(70):34983-34997
In this work, the hydrogen embrittlement (HE) characteristics of 1400 MPa bolt steels with three different vanadium contents of 0, 0.17 wt% and 0.34 wt% were evaluated. The characteristics of the microstructure and dislocation density of the experimental steels were analyzed, and their effects on HE were also discussed. The results showed that with increasing V content, the HE resistance of the experimental steels was improved, and the experimental steel with the highest V content possessed the best HE resistance. The V-precipitates of steels with V contents of 0.17 wt% and 0.34 wt% were reversible hydrogen traps, and the inhibitory effect of V-precipitates on hydrogen-dislocation interactions improved HE resistance. In addition, a lower dislocation density and finer martensitic structure were also beneficial for hindering hydrogen-induced cracking (HIC). 相似文献
12.
Hydrogen embrittlement of Cr-Mn-N-austenitic stainless steels 总被引:1,自引:0,他引:1
Cr-Mn-N austenitic steels show a unique combination of properties, i.e. high strength, high ductility, non magnetic and good corrosion resistance at costs being much lower compared to Cr-Ni austenitic steels. Hydrogen environment embrittlement (HEE) was investigated by slow displacement tensile testing in hydrogen atmosphere at 10 MPa and −50 °C. The fracture appearance of stable Cr-Mn-N austenitic steels with lower Mn contents (12Mn-0.7N) was transgranular whereas higher Mn contents (18Mn-0.7N) resulted in twin boundary fracture. This change in fracture morphology was related to a modest change in macroscopic ductility. Such fracture behaviour is similar to what is known from metastable Cr-Ni austenitic steels, therefore, Mn and/or N cannot be used to replace Ni in stable austenitic high HEE resistant steels. 相似文献
13.
T. Depover D. Pérez Escobar E. Wallaert Z. Zermout K. Verbeken 《International Journal of Hydrogen Energy》2014
The present work investigates the influence of hydrogen on the mechanical properties of four multiphase high strength steels by means of tensile tests on notched samples. This was done by performing mechanical tests on both hydrogen charged and uncharged specimens at a cross-head displacement speed of 5 mm/min. A considerable hydrogen influence was observed, as the ductility dropped by 8–60%. In order to demonstrate the influence of diffusible hydrogen, some parameters in the experimental set-up were varied. After tensile tests, fractography was performed. It was found that hydrogen charging caused a change from ductile to transgranular cleavage failure near the notch with a transition zone to a fracture surface with ductile features near the centre. 相似文献
14.
《International Journal of Hydrogen Energy》2019,44(47):26036-26048
The effects of internal hydrogen and environmental hydrogen on the hydrogen embrittlement of 304 austenitic stainless steels (ASSs) with varying degrees of pre-strain were investigated by a tensile test under cathodic hydrogen-charged, gaseous hydrogen and hydrogen-charged and gaseous hydrogen combined conditions. The internal hydrogen embrittlement of the 304 ASSs increased with increasing pre-strain, while the hydrogen embrittlement caused by the environment hydrogen increased and then decreased with increasing pre-strain. The hydrogen embrittlement mechanisms caused by the internal hydrogen or environmental hydrogen were different. The cracks caused by internal hydrogen or environmental hydrogen are mainly initiated in grain interior or at grain boundary, respectively. Under the coupling condition of internal hydrogen and environmental hydrogen, the hydrogen embrittlement of 304 ASSs was the strongest and increased with increasing pre-strain. Environmental hydrogen was dominant for low levels of pre-deformed specimens. Internal hydrogen was dominant for high levels of pre-deformed specimen. 相似文献
15.
《International Journal of Hydrogen Energy》2019,44(29):15634-15643
The aim of this paper is to study the effect of the displacement rate on the fracture toughness under internal hydrogen of two different structural steels grades used in energy applications. To this end, steel specimens were pre-charged with gaseous hydrogen at 19.5 MPa and 450 °C for 21 h and then fracture toughness tests were carried out in air at room temperature. Permeation experiments were also conducted to obtain the hydrogen diffusion coefficients of the steels. It was observed that the lower the displacement rate and the higher the steel yield strength, the stronger the reduction in fracture toughness due to the presence of internal hydrogen. A change in the fracture micromechanism was also detected. All these findings were justified in terms of hydrogen diffusion and accumulation in the crack front region in the different steel specimens. 相似文献
16.
《International Journal of Hydrogen Energy》2022,47(71):30707-30721
This research work aimed to determine the hydrogen gas pressure effect on the mechanical properties of an experimental X-120 microalloyed steel, subjected to heat treatments and quenched in different mediums. The steel in its as-received condition was reheated at 900 °C and quenched in spray water (900QSW), pressurized air (900QPA), and emulsion of water-oil medium (900QWO) which produces complex microstructures formed by martensite–bainite–acicular ferrite; otherwise, reheated at 820 °C and quenched in oil media (820QO) which produces a banded martensite-polygonal ferrite microstructure. To determine the hydrogen embrittlement susceptibility, in-situ tension tests were developed at 1, 4, and 7 MPa of hydrogen gas pressure. The results showed that as hydrogen gas pressure increases, the mechanical properties reduce in all quenched conditions, being the most susceptible condition the 820QO sample which presented the higher embrittlement index; on the contrary, the less susceptible condition was the 900QPA sample. 相似文献
17.
In this study, oxygen argon plasma (OArP) treatment was introduced as a new method for controlling hydrogen uptake in austenitic stainless steels during cathodic protection. It was determined that a 5-min treatment with OArP did not affect the nanomechanical properties of the material or the dislocation nucleation process, but it greatly inhibited the effect of hydrogen when the surfaces were in situ electrochemically hydrogen charged. Moreover, the cyclic voltammetry and X-ray photoelectron spectroscopy tests showed that the applied treatment influenced the composition of the surface oxide which in turn influences the hydrogen uptake from the surface. 相似文献
18.
《International Journal of Hydrogen Energy》2019,44(13):7014-7031
Austenite stainless steels (ASSs) may suffer from both cold deformation and sensitization prior to hydrogen exposure. There is scant data in literature on the combined effect of prior deformation and sensitization on the hydrogen embrittlement (HE) of ASSs. The present study investigated the combined effects of tensile plastic prestrain (PS) and 650 °C sensitization (ST) on the HE of 304 steel by hydrogen pre-charging and tensile testing. The results are explained by terms of pre-existing α′ martensite content. PS higher than 10% can enhance HE significantly by inducing severe α′ transformation prior to hydrogen exposure. Prior ST also enhances HE, but submitting the prestrained and α′-containing 304 steel to short-time ST can diminish the enhancement of HE by prestraining, as ST can cause the reversion of α′ to austenite, reducing pre-existing α′ content. It is inadvisable to make 304 steel be sensitized/welded firstly and deformed subsequently, even if the ST time is short such as what happens during welding, because this treating sequence can induce more α′ than prestraining alone, enhancing HE more significantly. Apparent hydrogen diffusivity can be related quantitatively to pre-existing α′ content, proving directly that α′ platelets can act as diffusion “highways” in ASSs. It is indicated that pre-existing α′ can enhance subsequently the HE of ASSs is because it can lead to a large amount of hydrogen entering the ASSs during hydrogen exposure by acting as diffusion “highways”. HE is enhanced by increasing hydrogen amount rather than by pre-existing α′ itself. 相似文献
19.
Hyung-Jun Cho Kyung-Shik Kim Han-Seop Noh Sung-Joon Kim 《International Journal of Hydrogen Energy》2021,46(42):22195-22207
The effect of cold rolling on hydrogen embrittlement in stable 18Cr–1Mn–11Ni-0.15 N austenitic stainless steels was investigated. Alloy plates were cold-rolled to 15% or 30% reduction, then pre-charged with hydrogen and subjected to tensile testing with slow strain rate. Hydrogen-induced degradation of tensile elongation became increasingly severe with the increase in the degree of cold rolling. During cold rolling, deformation twins with various orientations were actively generated, and twins with specific orientations were vulnerable to hydrogen-induced cracking. Cold rolling also increased the density of defects, and thereby facilitated penetration of hydrogen into the steels. The combination of cracks generated at the twin boundaries, and the promoted hydrogen diffusion caused severe hydrogen embrittlement in the cold-rolled steels. 相似文献
20.
Koichi Takasawa Ryo IkedaNoboru Ishikawa Ryoji Ishigaki 《International Journal of Hydrogen Energy》2012
The tensile properties of several high-strength low-alloy steels in a 45 MPa hydrogen atmosphere at ambient temperature were examined with respect to the effects of grain size and dislocation density on hydrogen environment embrittlement. Grain size was measured using an optical microscope and dislocation density was determined by X-ray diffractometry. Both grain refinement and a reduction in dislocation density are effective in reducing the susceptibility to embrittlement. The steel that has high dislocation density or large grain size inclines to show a smooth intergranular fracture surface. Given only the grain size and dislocation density, a simple approximation of the embrittlement property of high-strength steel could be obtained. This method could be useful in selecting candidate materials in advance of the mechanical tests in high-pressure hydrogen gas. 相似文献