共查询到20条相似文献,搜索用时 15 毫秒
1.
Patrícia dos Santos Correa Elen Leal da Silva Renato Figueira da Silva Cláudio Radtke Berta Moreno Eva Chinarro Célia de Fraga Malfatti 《International Journal of Hydrogen Energy》2012
Literature describes the influence of morphological and structural electrocatalysts characteristics, on the catalytic activity toward ethanol electrooxidation. Thus, in this work Pt and ternary Pt–Sn–Ni alloys nanoparticles, supported on Vulcan carbon, were obtained by impregnation/reduction method. The aim of this work was to evaluate the influence of the decrease of platinum and increase of nickel content of the electrocatalysts obtained. The electrocatalysts were characterized by Rutherford backscattering spectroscopy, X-ray diffraction, transmission electronic microscopy, cyclic voltammetry and electrochemical impedance spectroscopy. The results obtained showed that it was possible to obtain Pt–Sn–Ni nanoparticles with a uniform size distribution in a narrow particle size range with a composition control. Moreover, the simultaneous addition of Sn and Ni to Pt did not affect reticular lattice a value, but the crystallite size decreases significantly. Besides, electrochemical results suggest that the substitution of platinum by nickel, in the electrocalatyst alloys studied, does not compromise the catalytic activity toward ethanol eletrooxidation. 相似文献
2.
《International Journal of Hydrogen Energy》2022,47(42):18285-18293
The development of ethanol oxidation reaction (EOR) catalysts with high performance is an emerging need of direct ethanol fuel cells (DEFCs). Rational design of support materials of platinum-based catalyst can significantly enhance its catalytic performance for EOR. Here, the highly porous nitrogen-doped carbon material (NC-E) from ZIF-8 was synthesized using a novel and simple method assisted by eutectic salts. Compared with the carbon material obtained from ZIF-8 by traditional calcination (NC-T) and carbon black, the NC-E with high surface area and hierarchical pore structure supported Pt–Sn catalyst exhibits improved electrochemical activity and stability. 相似文献
3.
The electrooxidation of methanol and ethanol was investigated in acidic media on the platinum–nickel nanoparticles carbon-ceramic modified electrode (Pt–Ni/CCE) via cyclic voltammetric analysis in the mixed 0.5 M methanol (or 0.15 M ethanol) and 0.1 M H2SO4 solutions. The Pt–Ni/CCE catalyst, which has excellent electrocatalytic activity for methanol and ethanol oxidation than the Pt–Ni particles glassy carbon modified electrode (Pt–Ni/GCE), Pt nanoparticles carbon-ceramic modified electrode (Pt/CCE) and smooth Pt electrode, shows great potential as less expensive electrocatalyst for these fuels oxidation. These results showed that the presence of Ni in the structure of catalyst and application of CCE as a substrate greatly enhance the electrocatalytic activity of Pt towards the oxidation of methanol and ethanol. Moreover, the presence of Ni contributes to reduce the amount of Pt in the anodic material of direct methanol or ethanol fuel cells, which remains one of the challenges to make the technology of direct alcohol fuel cells possible. On the other hand, the Pt–Ni/CCE catalyst has satisfactory stability and reproducibility for electrooxidation of methanol and ethanol when stored in ambient conditions or continues cycling making it more attractive for fuel cell applications. 相似文献
4.
Dan Chai Wei Wang Fengxia Wang Wangli Jing Pengde Wang Ziqiang Lei 《International Journal of Hydrogen Energy》2017,42(15):9775-9783
For reducing the Pt usage and driving down the cost of fuel cells, it is urgent to develop alternative Pt-free catalysts with high catalytic performance. In this study, an Ir3Sn–CeO2/C heterogeneous catalyst is designed as low-price, alternative Pt-free electrocatalyst towards ethanol oxidation reaction (EOR) in acidic conditions. Owing to the strong synergistic effect among Ir, Sn and CeO2 components, Ir3Sn–CeO2/C heterogeneous catalyst exhibits higher catalytic activity and stability for EOR in comparison with commercial Pt/C, as-prepared Ir/C and Ir3Sn/C. Additionally, kinetics and mechanisms of EOR are also investigated. It proves that ethanol electrooxidation on Ir3Sn–CeO2/C catalyst is a diffusion controlled irreversible process. Meanwhile, the H2SO4 and ethanol concentrations can affect the EOR activity. All results demonstrate Ir3Sn–CeO2/C heterogeneous catalyst is a promising Pt-free choice for EOR. 相似文献
5.
Low-temperature direct alcohol fuel cells fed with different kinds of alcohol (methanol, ethanol and 2-propanol) have been investigated by employing ternary electrocatalysts (Pt–Ru–Sn) as anode catalysts. Combinatorial chemistry has been applied to screen the 66-PtRuSn-anode arrays at the same time to reduce cost, time, and effort when we select the optimum composition of electrocatalysts for DAFCs (Direct Alcohol Fuel Cells). PtRuSn (80:20:0) showed the lowest onset potential for methanol electro-oxidation, PtRuSn (50:0:50) for ethanol, and PtRuSn (20:70:10) for 2-propanol in CV results respectively, and single cell performance test indicated that Ru is more suitable for direct methanol fuel cell system, Sn for direct ethanol fuel cell system, and 2-propanol could be applied as fuel with low platinum composition anode electrocatalyst. The single cell performance results and electrochemical results (CV) were well matched with the combinatorial electrochemical results. As a result, we could verify the availability of combinatorial chemistry by comparing the results of each extreme electrocatalysts compositions as follows: PtRuSn (80:20:0) for methanol, PtRuSn (50:0:50) for ethanol and PtRuSn (20:70:10) for 2-propanol. 相似文献
6.
In this study, the electrooxidation of ethanol on carbon supported Pt–Ru–Ni and Pt–Sn–Ni catalysts is electrochemically studied through cyclic voltammetry at 50 °C in direct ethanol fuel cells. All electrocatalysts are prepared using the ethylene glycol-reduction process and are chemically characterized by energy-dispersive X-ray analysis (EDX). For fuel cell evaluation, electrodes are prepared by the transfer-decal method. Nickel addition to the anode improves DEFC performance. When Pt75Ru15Ni10/C is used as an anode catalyst, the current density obtained in the fuel cell is greater than that of all other investigated catalysts. Tri-metallic catalytic mixtures have a higher performance relative to bi-metallic catalysts. These results are in agreement with CV results that display greater activity for PtRuNi at higher potentials. 相似文献
7.
《International Journal of Hydrogen Energy》2019,44(21):10616-10626
Several anodic catalysts based on Pt–Sn (3:1 mass ratio) and 20% total metal loading were prepared on different carbonaceous supports (functionalized and non-functionalized low-density nanofibers, graphite oxide, expanded graphite, graphene flakes and β-SiC), to identify an alternative for the traditional Carbon Vulcan XC-72 support for the electrochemical reforming of ethanol. Of the materials tested, Pt–Sn supported on non-functionalized low-density nanofibers (CNF LS) showed the highest electro-catalytic activity vs. the traditional support. This result was attributed to the combination of different properties such as high surface area and dispersion of the Pt–Sn nanoparticles, high electrochemical active surface area and high basicity. This anodic catalyst was chosen for the development of a Membrane Electrode Assembly (MEA) and tested for the electrochemical reforming of ethanol. A high activity was obtained (120 mA cm−2 at 1.4 V and 80 °C) for hydrogen production. In addition, the stability of the system and its subsequent regeneration were studied in view of its practical application. 相似文献
8.
Highly dispersed Pd nanoparticles with varying loadings (15–40 wt%) and (20 − x)%Pd–x%Sn (where x = 1, 2, 3 and 5) nanocomposites are obtained on graphene nanosheets (GNS) by a microwave-assisted ethylene glycol (EG) reduction method for methanol electrooxidation in alkaline solution. The electrocatalysts were characterized by XRD, SEM, TEM, cyclic voltammetry, and chronoamperometry. The study shows that the Pd nanoparticles on GNS are crystalline and follow the face centered cubic structure. Introduction of a small amount of Sn (1–5 wt%) shifts the characteristic diffraction peaks for Pd slightly to a lower angle. The electrocatalytic performance of the Pd/GNS electrodes has been observed to be the best with 20 wt% Pd loading; a higher or lower loading than 20 wt% Pd produces an electrode with relatively low catalytic activity. The apparent catalytic activity of this active electrode at E = −0.10 V is found to improve further by 79% and CO poisoning tolerance by 40% with introduction of 2 wt% Sn. Among the electrodes investigated, the 18%Pd–2%Sn/GNS exhibited the greatest electrocatalytic activity toward methanol electrooxidation. 相似文献
9.
Claudia A. Cortés-Escobedo Rosa de G. González-Huerta Ana M. Bolarín-Miró Félix Sánchez de Jesús Q. Zhu S.E. Canton Karina Suarez-Alcantara M. Tufiño-Velazquez 《International Journal of Hydrogen Energy》2014
Mixtures of powders of platinum with nickel or cobalt to obtain Ni0.75Pt0.25 or Co0.75Pt0.25 were mechanical alloyed by high energy ball milling. The results of crystal structure, morphology and electrocatalytic performance are presented for mechanically activated powders after 3 and 9 h of ball milling. Total solid solutions of Ni and Co with platinum were analyzed by X-ray diffraction after 3 h of ball milling. After 9 h of ball milling, in both cases, the total solid solution was accompanied by the appearance of NiO or CoO and ZrO associated with a redox reaction with the milling media. The presence of zirconium monoxide was confirmed by energy dispersive spectroscopy analysis. In both cases, an amorphization was detected. X ray absorption spectroscopy measurements showed changes in atomic and electronic environment of platinum, a reduction of the distance to the first coordination sphere and increased d-band vacancy vs pure Pt and Pt nanoparticles were observed for both studied systems. The electrocatalytic activity was determined using cyclic and linear voltammetry. The Co0.75Pt0.25 alloy milled for 9 h showed a higher electrochemical activity for the oxygen reduction reaction (ORR) compared with the other samples, including Pt-Etek. The degree of the ORR electrochemical activity was correlated with the presence of ZrO, which could affect the oxygen adsorption and improve the catalytic activity for the oxygen reduction reaction. 相似文献
10.
Feihui Li Yongqin Guo Mingxi Chen Haixia Qiu Xiying Sun Wei Wang Yu Liu Jianping Gao 《International Journal of Hydrogen Energy》2013
Pt–Cu bimetallic nanoparticles supported on reduced graphene oxide (Pt–Cu/RGO) were synthesized through the simple one-step reduction of H2PtCl6 and CuSO4 in the presence of graphene oxide (GO) at room-temperature. The Pt–Cu/RGO was characterized with UV–vis spectrophotometer, X-ray diffraction, transmission electron microscopy and X-ray photoelectron spectroscopy and its catalytic behavior for the direct oxidation of methanol was investigated. Compared to Pt/RGO and Pt/C catalysts, Pt–Cu/RGO hybrids exhibited markedly superior catalytic activity for the electrocatalytic oxidation of methanol and ethanol. This improved catalytic activity can be attributed to the dendritic structure of the Pt–Cu bimetallic nanoparticles. 相似文献
11.
12.
Li Qi Ying Yin Weiyu Shi Jianguo Liu Danmin Xing Fuqiang Liu Zhongjun Hou Jun Gu Pingwen Ming Zhigang Zou 《International Journal of Hydrogen Energy》2014
A one-step and fast microwave technique was developed to synthesize graphene-supported TiN nanoparticles (TiN–G) directly from graphene and dihydroxybis (ammonium lactato) titanium (IV). During the synthesis graphene served as a reductant and template to reduce the Ti-precursor into TiN and then uniformly disperse TiN nanoparticles on it. Pt/TiN–G catalyst was also successfully prepared with the portion of Pt nanoparticles was anchored at the interface of TiN and graphene. Electrochemical measurements showed that the Pt/TiN–G catalyst exhibited improved catalytic activity for methanol oxidation and enhanced CO tolerance than those of Pt/G catalyst, attributed to the formation of –OH groups on the surface of TiN. And the –OH attached TiN assisted the conversion of CO into CO2. 相似文献
13.
《International Journal of Hydrogen Energy》2020,45(41):21808-21815
In this research, three Pd decorated Ni and Co catalyst nanoparticle were synthesized on reduced graphene oxide (rGO) supports are synthesized through a facile solvothermal procedure. Borohydride oxidation reaction (BOR) activity and performance of prepared electrocatalysts respect to NaBH4 oxidation is evaluated by various electrochemical techniques in the three-electrode and the fuel cell configuration. Among the prepared catalysts, Pd10–Ni45–Co45/rGO exhibits the highest BOR activity. The cyclic voltammograms showed that the measured current at 0.5 V for the electrode of Pd10–Ni45–Co45/rGO is as much as 108 mA cm−2 higher than Pd10–Ni90/rGO and 185 mA cm−2 higher than Pd10Co90/rGO. X-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infrared (FT-IR) spectra were employed to study the morphology and crystal structure of the prepared catalyst. The results of DBFC test show that the Pd10–Ni45–Co45/rGO nanoparticles as anodic catalyst, enhanced power density to 50.4 mW cm−2 which is 10.5% and 45.2% higher than power density of DBFCs with Pd10–Ni90/rGO (45.6 mW cm−2) and Pd10Co90/rGO (34.7 mW cm−2) anode catalysts, respectively. These results indicate that the competency of operating procedure for assembling nickel alloys electrodes can improve the activity of the prepared catalysts for BOR considerably. 相似文献
14.
Six different carbon-supported Cu core Pt–Pd shell (Cu@Pt–Pd) catalysts have been successfully synthesized by the galvanic replacement of Cu atoms by Pt4+ and Pd2+ ions at room temperature and their electrocatalytic activity for methanol and ethanol oxidation have been evaluated in acid media. Cu@Pt–Pd core shell nanoparticles with a narrow size distribution and an average diameter in the range of 3.1–3.5 nm were generated onto the carbon support. The compositional and the structural analysis of the as-prepared materials pointed out that the nanoparticles are formed by a Cu rich core covered by a Pt–Pd rich shell due to the interdiffusion of the metals after the galvanic replacement reaction. The electrocatalytic properties of the Cu@Pt–Pd electrodes in the electro-oxidation of methanol and ethanol was found to be dependent on the electrochemical surface area, lattice strain of the surface, composition and thickness of the Pt–Pd shell surrounding the Cu core. The optimum catalyst composition to obtain the best performance for methanol and ethanol electro-oxidation was determined to be Pt0.59Pd0.324Cu0.167/C (6.2 wt.% Pt, 2.2 wt.% Pd and 0.7 wt.% Cu). This catalyst has a greatly enhanced mass activity, lower onset potential and poisoning rate, and higher turnover number in the MOR and EOR reactions compared to a commercial Pt0.51Ru0.49/C (20 wt.% Pt and 10 wt.% Ru). Consequently, this simple preparation method is a viable approach to making a highly active catalyst with low platinum content for application in direct alcohol fuel cells (DAFCs). 相似文献
15.
Carbon-supported bimetallic palladium–lead (Pd–Pb/C) catalysts with different amounts of lead are prepared using a co-reduction method. The catalysts are characterized by various techniques, which reveal the formation of an alloy nanoparticle structure. The electrochemical activities of the catalysts towards ethanol oxidation in alkaline media are examined by cyclic voltammetry, linear sweep voltammetry and chronoamperometry methods. The results show that the Pd–Pb(4:1)/C catalyst exhibits a better catalytic activity than the Pd/C catalyst. From carbon monoxide (CO) stripping results, the addition of lead also facilitates the oxidative removal of adsorbed CO. The promoting effect of lead is explained by a bi-functional mechanism and d-band theory. 相似文献
16.
Seyed Mohammad Mostashari Rahebeh Amiri Dehkharghani Faramarz Afshar-Taromi Majid Farsadrooh 《International Journal of Hydrogen Energy》2021,46(14):9406-9416
Direct Ethanol Fuel Cells (DEFCs) have fascinated remarkable attention on account of their high current density and being environmentally friendly. Developing efficient and durable catalysts with a simple and fast method is a great challenge in the practical applications of DEFCs. To this end, the bimetallic Pd–Ag with adjustable Pd:Ag ratios were synthesized via a simple and one-pot strategy on activated carbon as a support in this study. The Pd–Ag/C catalysts with different molar ratios were synthesized by simultaneous reduction of Pd and Ag ions in the presence of the ethanolic sodium hydroxide as a green reducing agent for the first time. Several different methods, including FE-SEM, HR-TEM, XRD, XPS EDX, ICP-OES, and BET were used to confirm the structure and morphology of the catalysts. The performance of catalysts was also examined in ethanol oxidation. Obtained results of electrochemical experiments revealed that the Pd3–Ag1/C catalyst had superior catalytic activity (2911.98 mAmg?1Pd), durability, and long-stability compared to the other catalysts. The excellent catalytic characteristic can be attributed to the synergistic effect between Pd and Ag. We presume that our simple method have the chance to be utilized as a proper method for the synthesis of fuel cell catalysts. 相似文献
17.
Raigenis da Paz Fiuza Marcos Aurélio da Silva Jaime Soares Boaventura 《International Journal of Hydrogen Energy》2010
Electrocatalysts based on Fe–Ni alloys were prepared by means of modified Pechini and physical mixture methods and using on a composite of Yttria Stabilized Zirconia (YSZ) and Gadolinia-Doped Ceria (GDC) as support. The former method was based on the formation a polymeric precursor that was subsequently calcined; the later method was based on the mixture of NiO and the support. The resulting composites had 35 wt.% metal load and 65 wt.% support (70 wt.% YSZ and 30 wt.% GDC mixture) (cermets). The samples were then characterized by Temperature-Programmed Reduction (TPR) and X-Ray Diffraction (XRD) and evaluated in the ethanol steam reforming at 650 °C for 6 h in the temperature range of 300–900 °C. The XRD results showed that the bimetallic sample calcined at 800 °C formed a mixed oxide (NiFe2O4) with a spinel structure, which, after reduction in hydrogen, formed Ni–Fe alloys. The presence of Ni was observed to decrease the final reduction temperature of the NiFe2O4 species. The addition of iron to the nickel anchored to YSZ–GDC increased the hydrogen production and inhibited carbon deposition. The resulting bimetallic 30Fe5Ni sample reached an ethanol conversion of about 95% and a hydrogen yield up to 48% at 750 °C. In general, ethanol conversion and hydrogen production were independent of the metal content in the electrocatalyst. However, the substitution of nickel for iron significantly reduced carbon deposition on the electrocatalyst: 74, 31, and 9 wt.% in the 35Ni, 20Fe15Ni, and 30Fe5Ni samples, respectively. 相似文献
18.
D. González-Quijano W.J. Pech-Rodríguez J.I. Escalante-García G. Vargas-Gutiérrez F.J. Rodríguez-Varela 《International Journal of Hydrogen Energy》2014
In this work, Pt–Sn/C electrocatalysts with nominal Pt:Sn ratio of 1:1 (at.%) were synthesized by a polyol/alcohol process. The effect of different ethylene glycol:ethanol:water (EG:EtOH:H2O) volume ratios on the physicochemical characteristics (i.e., Pt:Sn ratio and SnOx formation) of the Pt–Sn/C alloys was evaluated. In some cases, no water was used for the synthesis. Afterwards, the electrocatalytic activity of the alloys for the Ethanol and the Ethylene Glycol Oxidation Reaction (EOR and EGOR, respectively) was studied. XRD characterization showed that the degree of alloying calculated by using Vegard's law ranges from about 15% (synthesis in the presence of water) to roughly 49% (synthesis in the absence of water). The average particle size was calculated with the Scherrer equation to be within 1.8–4.7 nm, smaller sizes obtained in the absence of water. The chemical analysis by EDS indicated the formation of oxides regardless of the presence or not of water during the synthesis. The oxides were attributed to the presence of SnOx phases in the materials. The electrochemical characterization showed that the synthesis conditions have an important effect on the electrocatalytic activity of the Pt–Sn/C materials for the EOR and the EGOR. As a result, the alloys synthesized in the absence of H2O delivered a higher performance for both reactions. 相似文献
19.
S. Karthikeyan A. Prathima 《Energy Sources, Part A: Recovery, Utilization, and Environmental Effects》2016,38(21):3195-3201
The present work is dedicated to study of diesel–biodiesel–ethanol blends in a diesel engine using addition of various concentrations of carbon nanowires. Algae oil from microalgae has the potential to become a sustainable fuel source as biodiesel. The Neochloris oleoabundans algal oil was extracted by mechanical extraction method. The transesterification reaction of algal oil with methanol and base catalyst was used for the production of biodiesel. Experimental investigation results were studied for various parameters, such as exhaust emission of carbon monoxide, hydrocarbon, oxides of nitrogen gases, smoke, and carbon dioxide. 相似文献
20.
Rongfang Wang Ziyue Liu Yanjiao Ma Hui Wang Vladimir Linkov Shan Ji 《International Journal of Hydrogen Energy》2013
To enhance the performance of heterostructure electrocatalysts for fuel cell and other applications, carbon-supported Pt decorating PdSn–SnO2 nanoparticles are prepared and characterized by X-ray diffraction, X-ray photoelectron spectroscopy and transmission electron microscopy. The electrochemical results show higher ethanol oxidation activity of heterostructured catalysts than that of Pt@PdSn/C, PtSn/C and PdSn–SnO2/C catalysts. This result demonstrates significant potential for utilizing heterostructure-core synthesis in the preparation of novel core–shell catalysts. 相似文献