首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Liquid hydrogen is increasingly being used as a delivery and storage medium for stations that provide compressed gaseous hydrogen for fuel cell electric vehicles. In efforts to provide scientific justification for separation distances for liquid hydrogen infrastructure in fire codes, the dispersion characteristics of cryogenic hydrogen jets (50–64 K) from high aspect ratio nozzles have been measured at 3 and 5 barabs stagnation pressures. These nozzles are more characteristic of unintended leaks, which would be expected to be cracks, rather than conventional round nozzles. Spontaneous Raman scattering was used to measure the concentration and temperature field along the major and minor axes. Within the field of interrogation, the axis-switching phenomena was not observed, but rather a self-similar Gaussian-profile flow regime similar to room temperature or cryogenic hydrogen releases through round nozzles. The concentration decay rate and half-widths for the planar cryogenic jets were found to be nominally equivalent to that of round nozzle cryogenic hydrogen jets indicating a similar flammable envelope. The results from these experiments will be used to validate models for cryogenic hydrogen dispersion that will be used for simulations of alternative scenarios and quantitative risk assessment.  相似文献   

2.
Knowledge of the concentration field and flammability envelope from small-scale leaks is important for the safe use of hydrogen. These small-scale leaks may occur from leaky fittings or o-ring seals on liquid hydrogen-based systems. The present study focuses on steady-state leaks with large amounts of pressure drop along the leak path such that hydrogen enters the atmosphere at near atmospheric pressure (i.e. Very low Mach number). A three-stage buoyant turbulent entrainment model is developed to predict the properties (trajectory, hydrogen concentration and temperature) of a jet emanating from the leak. Atmospheric hydrogen properties (temperature and quality) at the leak plane depend on the storage pressure and whether the leak occurs from the saturated vapor space or saturated liquid space. In the first stage of the entrainment model ambient temperature air (295 K) mixes with the leaking hydrogen (20-30 K) over a short distance creating an ideal gas mixture at low temperature (∼65 K). During this process states of hydrogen and air are determined from equilibrium thermodynamics using models developed by NIST. In the second stage of the model (also relatively short in distance) the radial distribution of hydrogen concentration and velocity in the jet develops into a Gaussian profile characteristic of free jets. The third and by far the longest stage is the part of the jet trajectory where flow is fully developed. Results show that flammability envelopes for cold hydrogen jets are generally larger than those of ambient temperature jets. While trajectories for ambient temperature jets depend solely on the leak densimetric Froude number, results from the present study show that cold jet trajectories depend on the Froude number and the initial jet density ratio. Furthermore, the flammability envelope is influenced by the hydrogen concentration in the jet at the beginning of fully developed flow.  相似文献   

3.
The thermal hazards from ignited under-expanded cryogenic releases are not yet fully understood and reliable predictive tools are missing. This study aims at validation of a CFD model to simulate flame length and radiative heat flux for cryogenic hydrogen jet fires. The simulation results are compared against the experimental data by Sandia National Laboratories on cryogenic hydrogen fires from storage with pressure up to 5 bar abs and temperature in the range 48–82 K. The release source is modelled using the Ulster's notional nozzle theory. The problem is considered as steady-state. Three turbulence models were applied, and their performance was compared. The realizable k-ε model showed the best agreement with experimental flame length and radiative heat flux. Therefore, it has been employed in the CFD model along with Eddy Dissipation Concept for combustion and Discrete Ordinates (DO) model for radiation. A parametric study has been conducted to assess the effect of selected numerical and physical parameters on the simulations capability to reproduce experimental data. DO model discretisation is shown to strongly affect simulations, indicating 10 × 10 as minimum number of angular divisions to provide a convergence. The simulations have shown sensitivity to experimental parameters such as humidity and exhaust system volumetric flow rate, highlighting the importance of accurate and extended publication of experimental data to conduct precise numerical studies. The simulations correctly reproduced the radiative heat flux from cryogenic hydrogen jet fire at different locations.  相似文献   

4.
Comparison of Computational Fluid Dynamics (CFD) predictions with measurements is presented for cryo-compressed hydrogen vertical jets. The stagnation conditions of the experiments are characteristic of unintended leaks from pipe systems that connect cryogenic hydrogen storage tanks and could be encountered at a fuel cell refueling station. Jets with pressure up to 5 bar and temperatures just above the saturation liquid temperature were examined. Comparisons are made to the centerline mass fraction and temperature decay rates, the radial profiles of mass fraction and the contours of volume fraction. Two notional nozzle approaches are tested to model the under-expanded jet that was formed in the tests with pressures above 2 bar. In both approaches the mass and momentum balance from the throat to the notional nozzle are solved, while the temperature at the notional nozzle was assumed equal to the nozzle temperature in the first approach and was calculated by an energy balance in the second approach. The two approaches gave identical results. Satisfactory agreement with the measurements was found in terms of centerline mass fraction and temperature. However, for test with 3 and 4 bar release the concentration was overpredicted. Furthermore, a wider radial spread was observed in the predictions possibly revealing higher degree of diffusion using the k-ε turbulence model. An integral model for cryogenic jets was also developed and provided good results. Finally, a test simulation was performed with an ambient temperature jet and compared to the cold jet showing that warm jets decay faster than cold jets.  相似文献   

5.
It has been suggested that separation or safety distances for pressurised hydrogen storage can be reduced by the inclusion of walls or barriers between the hydrogen storage and vulnerable plant or other items. Various NFPA codes [1] suggest the use of 60° inclined fire barriers for protection against jet flames in preference to vertical ones. Work by Sandia National Laboratories [2] included experiments and modeling aimed at characterisation of the effectiveness of barrier walls at reducing hazards.This paper describes a series of experiments performed in order to compare the performance of 60° barriers with that of 90° barriers. Their relative efficiency at giving protection from thermal radiation and blast overpressure was measured together with the propensity for the thermal radiation and blast overpressure to be reflected back to the source of the leak.The work was primarily focused on compressed H2 storage for stationary fuel cell systems, which may be physically separated from a fuel cell system or could be on board such a system. Different orifice sizes were used to simulate different size leaks; all releases were made from storage at 200 bar.Overall conclusions on barrier performance were made based on the recorded measurements.  相似文献   

6.
The possibility of using a risk based approach for the safe installation and siting of stationary fuel cell systems depends upon the availability of normative data and guidance on potential hazards, and the probabilities of their occurrence. Such guidance data is readily available for most common hydrocarbon fuels. For hydrogen, however, data is still required on the hazards associated with different release scenarios. This data can then be related to the probability of different types of scenarios, from historical fault data, to allow safety distances to be defined and controlled using different techniques. Some data on releases has started to appear but this data generally relates to hydrogen vehicle refuelling systems that are designed for larger throughput, higher pressures, and the general use of larger pipe diameters than are likely to be used for small fuel cell systems.The aim of this paper is to report on work that is providing data for informing safety distances for high-pressure components/fuel cell systems and associated fuel storage. Using high-pressure release scenarios, the extent of the clouds, jets and, following ignition, fires and explosions were investigated.  相似文献   

7.
In the present work performed within the framework of the SUSANA EC-project, we address the release and dispersion modeling of hydrogen stored at cryogenic temperatures and high pressures. Due to the high storage pressures the resulting jets are under-expanded. Due to the low temperatures the choked conditions can be two-phase. For the release modeling the homogeneous equilibrium model (HEM) was used combined with NIST equation of state for hydrogen. For the dispersion modeling the 3d CFD methodology was used combined with a) a notional nozzle approach to bridge the expansion to atmospheric pressure region that exists near the nozzle, b) the ideal gas assumption for hydrogen and air and c) the standard (buoyancy included) k–ε turbulence model. Predicted release choked mass fluxes are compared against 37 experiments from literature. Predicted steady state hydrogen concentrations along the jet axis are compared against five dispersion experiments from literature as well as the Chen and Rodi correlation and the behavior of the proposed release and dispersion modeling approaches is assessed.  相似文献   

8.
Underexpanded, cryogenic hydrogen and methane jets were measured using laser Raman scattering diagnostic. The jets were released from 1 mm to 1.25 mm orifices for the stagnation pressure ranges of 2–6 bar and temperature ranges of 37–46 K (hydrogen) and 112–189 K (methane). Raman signals are inherently small, thus a denoising algorithm was developed to substantially reduce the noise hindering the statistical analysis of the data. The time-averaged concentration and temperature data were plotted to show a hyperbolic decay law along the jet centerline and a Gaussian distribution in the radial direction. The concentration fluctuations of the cryogenic jets are similar to those of warm jets, the centerline RMS mass fraction decays similarly to the mean mass fraction, and the highest radial concentration fluctuations appear in the shear layer. Thus, the self-similar characteristics of the cryogenic jets are comparable with room-temperature jets for the present test conditions.  相似文献   

9.
The operational flexibility of cryogenic batch distillation may propel its application in the Isotope Separation System of the fusion reactor. The batch distillation, unlike continuous distillation, is not a steady-state process. In order to obtain improved separation efficiency, a reasonable dynamic model of batch distillation should be developed. In this paper, dynamic simulations of the batch distillation separation process of a hydrogen-deuterium mixture were performed utilizing Aspen Plus and Aspen Dynamics. The validity of the established simulation model was firstly verified by our experimental results. Following that, two dynamic control structures, i.e., composition control and temperature control, were added to improve the recovery efficiency of batch distillation light component products. In comparison with the distillation without dynamic control structure, the distillation with composition control and temperature control can improve the H2 recovery ratio by 5.45% and 5.09%, respectively.  相似文献   

10.
Hydrogen jet flames resulting from ignition of unintended releases can be extensive in length and pose significant radiation and impingement hazards. Depending on the leak diameter and source pressure, the resulting consequence distances can be unacceptably large. One possible mitigation strategy to reduce exposure to jet flames is to incorporate barriers around hydrogen storage and delivery equipment. While reducing the extent of unacceptable consequences, the walls may introduce other hazards if not properly configured. An experimental and modeling program has been performed at Sandia National Laboratories to better characterize the effectiveness of barrier walls to reduce hazards. This paper describes the experimental and modeling program and presents results obtained for various barrier configurations. The experimental measurements include flame deflection using standard and infrared video and high-speed movies (500 fps) to study initial flame propagation from the ignition source. Measurements of the ignition overpressure, wall deflection, radiative heat flux, and wall and gas temperature were also made at strategic locations. The modeling effort includes three-dimensional calculations of jet flame deflection by the barriers, computations of the thermal radiation field around barriers, predicted overpressure from ignition, and the computation of the concentration field from deflected unignited hydrogen releases. The various barrier designs are evaluated in terms of their mitigation effectiveness for the associated hazards present. The results show that barrier walls are effective at deflecting jet flames in a desired direction and can help attenuate the effects of ignition overpressure and flame radiative heat flux.  相似文献   

11.
This work demonstrates a new method to enable cryogenic atom probe tomography (cryo-APT) for the investigation of hydrogen in a high-strength steel, specifically to detect hydrogen localised to V–Mo–Nb carbides finely dispersed in the matrix. Prior cryogenic experiments required highly customised atom probe instrumentation to enable samples to be kept at cryogenic temperatures throughout the vacuum transfer process. Here we use an alternative approach without modification of the atom probe instrument itself, whilst still achieving hydrogen mapping. Additionally, we use this method to investigate the roles of solvent and solutes within the charging electrolyte, and we demonstrate that deuterated solute is not required when using heavy water as solvent, expanding the range of electrolytes that can be utilised in APT hydrogen charging experiments. This work reduces the experimental requirements for cryo-APT and makes the technique accessible to all APT equipped laboratories.  相似文献   

12.
Hydrogen jet flames resulting from ignition of unintended releases can be extensive in length and pose significant radiation and impingement hazards. Depending on the leak diameter and source pressure, the resulting consequence distances can be unacceptably large. One possible mitigation strategy to reduce exposure to jet flames is to incorporate barriers around hydrogen storage and delivery equipment. An experimental and modeling program has been performed at Sandia National Laboratories to better characterize the effectiveness of barrier walls to reduce hazards. This paper describes the experimental and modeling program and presents results obtained for various barrier configurations. The experimental measurements include flame deflection using standard and infrared video and high-speed movies (500 fps) to study initial flame propagation from the ignition source. Measurements of the ignition overpressure, wall deflection, radiative heat flux, and wall and gas temperature were also made at strategic locations. The modeling effort includes three-dimensional calculations of jet flame deflection by the barriers, computations of the thermal radiation field around barriers, predicted overpressure from ignition, and the computation of the concentration field from deflected unignited hydrogen releases. The various barrier designs are evaluated in terms of their mitigation effectiveness for the associated hazards present. The results show that barrier walls are effective at deflecting jet flames in a desired direction and can help attenuate the effects of ignition overpressure and flame radiative heat flux.  相似文献   

13.
Jet flames originated by cryo-compressed ignited hydrogen releases can cause life-threatening conditions in their surroundings. Validated models are needed to accurately predict thermal hazards from a jet fire. Numerical simulations of cryogenic hydrogen flow in the release pipe are performed to assess the effect of heat transfer through the pipe walls on jet parameters. Notional nozzle exit diameter is calculated based on the simulated real nozzle parameters and used in CFD simulations as a boundary condition to model jet fires. The CFD model was previously validated against experiments with vertical cryogenic hydrogen jet fires with release pressures up to 0.5 MPa (abs), release diameter 1.25 mm and temperatures as low as 50 K. This study validates the CFD model in a wider domain of experimental release conditions - horizontal cryogenic jets at exhaust pipe temperature 80 K, pressure up to 2 MPa ab and release diameters up to 4 mm. Simulation results are compared against such experimentally measured parameters as hydrogen mass flow rate, flame length and radiative heat flux at different locations from the jet fire. The CFD model reproduces experiments with reasonable for engineering applications accuracy. Jet fire hazard distances established using three different criteria - temperature, thermal radiation and thermal dose - are compared and discussed based on CFD simulation results.  相似文献   

14.
Stable operation of a hydrogen isotope separation system is one of the most important issues in the sustainable operation of fusion power plants. Owing to the present limitation in retention time of fusion reaction, fusion reactors are run in repeated batch operations, causing large fluctuating flows in the system. Hence, to reliably produce required products, counteractive operational strategies must be devised. To this end, we perform dynamic optimization in this paper to derive an optimal control policy that can minimize the tritium inventory and satisfy the product quality specifications. In addition, a rigorous dynamic model for packed columns is developed to simulate realistic behaviors of cryogenic distillation. We demonstrate that the optimization results yield vital operational strategies, such as operation mode switching, without any expertise provided.  相似文献   

15.
In the frame of the EC-funded project HYPER [1] Pro-Science GmbH performed distribution and combustion experiments on the hazard potential of a severe hydrogen leakage inside a fuel cell cabinet using a generic enclosure model with the dimensions of a commercially available fuel cell application. Hydrogen amounts from 1.5 to 15 g were released within 1 s into the enclosure. In distribution experiments the effects of different venting characteristics and different amounts of internal enclosure obstruction on the hydrogen concentrations measured at fixed positions in- and outside the model were investigated. Subsequently combustion experiments with ignition positions in- and outside the enclosure and two different ignition times were performed. BOS (Background-Oriented-Schlieren) observation combined with pressure and light emission measurements were performed to describe characteristics and hazard potential of the induced hydrogen combustions. The experiments provide new experimental data on the distribution and combustion behaviour of hydrogen releases into a partly vented and partly obstructed enclosure with different venting characteristics.  相似文献   

16.
In the present work release and ignition experiments with horizontal cryogenic hydrogen jets at temperatures of 35–65 K and pressures from 0.7 to 3.5 MPa were performed in the ICESAFE facility at KIT. This facility is specially designed for experiments under steady-state sonic release conditions with constant temperature and pressure in the hydrogen reservoir. In distribution experiments the temperature, velocity, turbulence and concentration distribution of hydrogen with different circular nozzle diameters and reservoir conditions was investigated for releases into stagnant ambient air. Subsequent combustion experiments of hydrogen jets included investigations on the stability of the flame and its propagation behaviour as function of the ignition position. Furthermore combustion pressures and heat radiation from the sonic jet flame during the combustion process were measured. Safety distances were evaluated and an extrapolation model to other jet conditions was proposed. The results of this work provide novel data on cryogenic sonic hydrogen jets and give information on the hazard potential arising from leaks in liquid hydrogen reservoirs.  相似文献   

17.
Several mixtures of LiAlH4 and Ti salts (TiH2, TiF3, and TiCl4) were produced using short milling times and cryogenic (liquid nitrogen) cooling. The stoichiometric (2:1) and 5 mol% mixtures LiAlH4/TiH2 demonstrated minor improvements on the dehydrogenation temperature of LiAlH4. Conversely, an enhancement of the dehydrogenation reaction was observed in the LiAlH4 added with 5 mol% of TiCl4 and in the stoichiometric mixture 3LiAlH4 + TiF3. In these mixtures, an important reduction of the dehydrogenation temperature was observed (37 °C and 55 °C on-set temperature, respectively). This improvement was promoted by the use of cryogenic ball milling and careful control of the energy added to the mixtures during ball milling.  相似文献   

18.
A dynamic model is used to characterize cryogenic H2 storage in an insulated pressure vessel that can flexibly hold liquid H2 and compressed H2 at 350 bar. A double-flow refueling device is needed to ensure that the tank can be consistently refueled to its theoretical capacity regardless of the initial conditions. Liquid H2 charged into the tank is stored as supercritical fluid if the initial tank temperature is >120 K and as a subcooled liquid if it is <100 K. An in-tank heater is needed to maintain the tank pressure above the minimum delivery pressure. Even if H2 is stored as a supercritical fluid, liquid H2 will form as H2 is withdrawn and will further transform to a two-phase mixture and ultimately to a superheated gas. The recoverable fraction of the total stored inventory depends on the minimum H2 delivery pressure and the power rating of the heater. The dormancy of cryogenic H2 is a function of the maximum allowable pressure and the pressure of stored H2; the evaporative losses cannot deplete H2 from the tank beyond 64% of the theoretical storage capacity.  相似文献   

19.
The paper presents experimental studies of the liftoff and blowout stability parameters of pure hydrogen, hydrogen/propane and hydrogen/methane jet flames using a 2 mm burner. Carbon dioxide and Argon gas were also used in the study for the comparison with hydrocarbon fuel. Comparisons of the stability of H2/C3H8, H2/CH4 and H2/CO2 flames showed that H2/C3H8 produced the highest liftoff height and H2/CH4 required highest liftoff, blowoff and blowout velocities. The non-dimensional analysis of liftoff height was used to correlate liftoff data of H2, H2/C3H8, H2/CO2, C3H8 and H2/Ar jet flames tested in the 2 mm burner. The suitability of extending the empirical correlations based on hydrocarbon flames to both hydrogen and hydrogen/hydrocarbon flames was examined.  相似文献   

20.
Measurements were performed in small-scale hydrogen leaks to characterize the dimensional properties and flow characteristics of the resulting ignitable hydrogen cloud. The data are intended to provide a technological basis for determining hazardous length scales associated with the formation of ignitable mixtures due to unintended releases. In contrast to a previous study where momentum-dominated releases were considered, the present study focuses on smaller-scale releases at lower flow rates where buoyancy becomes important. A turbulent jet flow is selected as representative of releases in which the leak geometry is circular. Laser-based Rayleigh scattering is used to characterize the hydrogen concentration field downstream of the leak. Particle Image Velocimetry (PIV) is also used to characterize the flow velocity. Time-averaged mean and fluctuating hydrogen concentration statistics are presented and compared with results in momentum-dominated flows to elucidate the effects of buoyancy on the H2 dispersion process. Over the range of Froude numbers investigated (Fr = 268, 152 and 99), increasing effects of buoyancy are seen as the Fr is reduced and at downstream locations where the influence of buoyancy increases relative to jet momentum. The primary effect of buoyancy is to increase the centerline decay rate of the time-averaged H2 mass fraction relative to momentum-dominated flows. Acceleration due to buoyancy also results in a slower decay of the time-averaged axial velocity component along the centerline. Radial profiles of the time-averaged H2 mass fraction also collapse onto the same curves as results in momentum-dominated flows when plotted against the same similarity/scaling variables. While buoyancy is found to have a negligible effect on centerline velocity fluctuations, the maximum H2 mass fraction fluctuation intensity increases by 70 percent in the buoyant regime and the peak value shifts from the mixing region to the jet centerline. The database presented should provide a good test for the validation of CFD models being developed to predict unintended hydrogen releases under conditions where buoyancy is important.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号