共查询到20条相似文献,搜索用时 15 毫秒
1.
Bikram Roy Chowdhury Ethan S. Hecht 《International Journal of Hydrogen Energy》2021,46(23):12311-12319
Liquid hydrogen is increasingly being used as a delivery and storage medium for stations that provide compressed gaseous hydrogen for fuel cell electric vehicles. In efforts to provide scientific justification for separation distances for liquid hydrogen infrastructure in fire codes, the dispersion characteristics of cryogenic hydrogen jets (50–64 K) from high aspect ratio nozzles have been measured at 3 and 5 barabs stagnation pressures. These nozzles are more characteristic of unintended leaks, which would be expected to be cracks, rather than conventional round nozzles. Spontaneous Raman scattering was used to measure the concentration and temperature field along the major and minor axes. Within the field of interrogation, the axis-switching phenomena was not observed, but rather a self-similar Gaussian-profile flow regime similar to room temperature or cryogenic hydrogen releases through round nozzles. The concentration decay rate and half-widths for the planar cryogenic jets were found to be nominally equivalent to that of round nozzle cryogenic hydrogen jets indicating a similar flammable envelope. The results from these experiments will be used to validate models for cryogenic hydrogen dispersion that will be used for simulations of alternative scenarios and quantitative risk assessment. 相似文献
2.
Knowledge of the concentration field and flammability envelope from small-scale leaks is important for the safe use of hydrogen. These small-scale leaks may occur from leaky fittings or o-ring seals on liquid hydrogen-based systems. The present study focuses on steady-state leaks with large amounts of pressure drop along the leak path such that hydrogen enters the atmosphere at near atmospheric pressure (i.e. Very low Mach number). A three-stage buoyant turbulent entrainment model is developed to predict the properties (trajectory, hydrogen concentration and temperature) of a jet emanating from the leak. Atmospheric hydrogen properties (temperature and quality) at the leak plane depend on the storage pressure and whether the leak occurs from the saturated vapor space or saturated liquid space. In the first stage of the entrainment model ambient temperature air (295 K) mixes with the leaking hydrogen (20-30 K) over a short distance creating an ideal gas mixture at low temperature (∼65 K). During this process states of hydrogen and air are determined from equilibrium thermodynamics using models developed by NIST. In the second stage of the model (also relatively short in distance) the radial distribution of hydrogen concentration and velocity in the jet develops into a Gaussian profile characteristic of free jets. The third and by far the longest stage is the part of the jet trajectory where flow is fully developed. Results show that flammability envelopes for cold hydrogen jets are generally larger than those of ambient temperature jets. While trajectories for ambient temperature jets depend solely on the leak densimetric Froude number, results from the present study show that cold jet trajectories depend on the Froude number and the initial jet density ratio. Furthermore, the flammability envelope is influenced by the hydrogen concentration in the jet at the beginning of fully developed flow. 相似文献
3.
《International Journal of Hydrogen Energy》2019,44(17):8874-8885
The thermal hazards from ignited under-expanded cryogenic releases are not yet fully understood and reliable predictive tools are missing. This study aims at validation of a CFD model to simulate flame length and radiative heat flux for cryogenic hydrogen jet fires. The simulation results are compared against the experimental data by Sandia National Laboratories on cryogenic hydrogen fires from storage with pressure up to 5 bar abs and temperature in the range 48–82 K. The release source is modelled using the Ulster's notional nozzle theory. The problem is considered as steady-state. Three turbulence models were applied, and their performance was compared. The realizable k-ε model showed the best agreement with experimental flame length and radiative heat flux. Therefore, it has been employed in the CFD model along with Eddy Dissipation Concept for combustion and Discrete Ordinates (DO) model for radiation. A parametric study has been conducted to assess the effect of selected numerical and physical parameters on the simulations capability to reproduce experimental data. DO model discretisation is shown to strongly affect simulations, indicating 10 × 10 as minimum number of angular divisions to provide a convergence. The simulations have shown sensitivity to experimental parameters such as humidity and exhaust system volumetric flow rate, highlighting the importance of accurate and extended publication of experimental data to conduct precise numerical studies. The simulations correctly reproduced the radiative heat flux from cryogenic hydrogen jet fire at different locations. 相似文献
4.
André Vagner Gaathaug Knut VaagsaetherDag Bjerketvedt 《International Journal of Hydrogen Energy》2012
Two-dimensional numerical simulations of deflagration-to-detonation transition (DDT) in hydrogen–air mixtures are presented and compared with experiments. The investigated geometry was a 3 m long square channel. One end was closed and had a single obstacle placed 1 m from the end, and the other end was open to the atmosphere. The mixture was ignited at the closed end. Experiments and simulations showed that DDT occurred within 1 m behind the obstacle. The onset of detonation followed a series of local explosions occurring far behind the leading edge of the flame in a layer of unburned reactants between the flame and the walls. A local explosion was also seen in the experiments, and the pressure records indicated that there may have been more. Furthermore, local explosions were observed in the experiments and simulations which did not detonate. The explosions should have sufficient strength and should explode in a layer of sufficient height to result in a detonation. 相似文献
5.
S.G. Giannissi A.G. Venetsanos E.S. Hecht 《International Journal of Hydrogen Energy》2021,46(23):12566-12576
Comparison of Computational Fluid Dynamics (CFD) predictions with measurements is presented for cryo-compressed hydrogen vertical jets. The stagnation conditions of the experiments are characteristic of unintended leaks from pipe systems that connect cryogenic hydrogen storage tanks and could be encountered at a fuel cell refueling station. Jets with pressure up to 5 bar and temperatures just above the saturation liquid temperature were examined. Comparisons are made to the centerline mass fraction and temperature decay rates, the radial profiles of mass fraction and the contours of volume fraction. Two notional nozzle approaches are tested to model the under-expanded jet that was formed in the tests with pressures above 2 bar. In both approaches the mass and momentum balance from the throat to the notional nozzle are solved, while the temperature at the notional nozzle was assumed equal to the nozzle temperature in the first approach and was calculated by an energy balance in the second approach. The two approaches gave identical results. Satisfactory agreement with the measurements was found in terms of centerline mass fraction and temperature. However, for test with 3 and 4 bar release the concentration was overpredicted. Furthermore, a wider radial spread was observed in the predictions possibly revealing higher degree of diffusion using the k-ε turbulence model. An integral model for cryogenic jets was also developed and provided good results. Finally, a test simulation was performed with an ambient temperature jet and compared to the cold jet showing that warm jets decay faster than cold jets. 相似文献
6.
P. Hooker J. Hall J.R. Hoyes A. Newton D. Willoughby 《International Journal of Hydrogen Energy》2017,42(11):7577-7588
This paper describes a combined experimental, analytical and numerical modelling investigation into hydrogen jet fires in a passively ventilated enclosure. The work was funded by the EU Fuel Cells and Hydrogen Joint Undertaking project Hyindoor. It is relevant to situations where hydrogen is stored or used indoors. In such situations passive ventilation can be used to prevent the formation of a flammable atmosphere following a release of hydrogen. Whilst a significant amount of work has been reported on unignited releases in passively ventilated enclosures and on outdoor hydrogen jet fires, very little is known about the behaviour of hydrogen jet fires in passively ventilated enclosures. This paper considers the effects of passive ventilation openings on the behaviour of hydrogen jet fires. A series of hydrogen jet fire experiments were carried out using a 31 m3 passively ventilated enclosure. The test programme included subsonic and chocked flow releases with varying hydrogen release rates and vent configurations. In most of the tests the hydrogen release rate was sufficiently low and the vent area sufficiently large to lead to a well-ventilated jet fire. In a limited number of tests the vent area was reduced, allowing under-ventilated conditions to be investigated. The behaviour of a jet fire in a passively ventilated enclosure depends on the hydrogen release rate, the vent area and the thermal properties of the enclosure. An analytical model was used to quantify the relative importance of the hydrogen release rate and vent area, whilst the influence of the thermal properties of the enclosure were investigated using a CFD model. Overall, the results indicate that passive ventilation openings that are sufficiently large to safely ventilate an unignited release will tend to be large enough to prevent a jet fire from becoming under-ventilated. 相似文献
7.
《International Journal of Hydrogen Energy》2020,45(38):19431-19439
Several mixtures of LiAlH4 and Ti salts (TiH2, TiF3, and TiCl4) were produced using short milling times and cryogenic (liquid nitrogen) cooling. The stoichiometric (2:1) and 5 mol% mixtures LiAlH4/TiH2 demonstrated minor improvements on the dehydrogenation temperature of LiAlH4. Conversely, an enhancement of the dehydrogenation reaction was observed in the LiAlH4 added with 5 mol% of TiCl4 and in the stoichiometric mixture 3LiAlH4 + TiF3. In these mixtures, an important reduction of the dehydrogenation temperature was observed (37 °C and 55 °C on-set temperature, respectively). This improvement was promoted by the use of cryogenic ball milling and careful control of the energy added to the mixtures during ball milling. 相似文献
8.
It has been suggested that separation or safety distances for pressurised hydrogen storage can be reduced by the inclusion of walls or barriers between the hydrogen storage and vulnerable plant or other items. Various NFPA codes [1] suggest the use of 60° inclined fire barriers for protection against jet flames in preference to vertical ones. Work by Sandia National Laboratories [2] included experiments and modeling aimed at characterisation of the effectiveness of barrier walls at reducing hazards.This paper describes a series of experiments performed in order to compare the performance of 60° barriers with that of 90° barriers. Their relative efficiency at giving protection from thermal radiation and blast overpressure was measured together with the propensity for the thermal radiation and blast overpressure to be reflected back to the source of the leak.The work was primarily focused on compressed H2 storage for stationary fuel cell systems, which may be physically separated from a fuel cell system or could be on board such a system. Different orifice sizes were used to simulate different size leaks; all releases were made from storage at 200 bar.Overall conclusions on barrier performance were made based on the recorded measurements. 相似文献
9.
The paper presents experimental studies of the liftoff and blowout stability parameters of pure hydrogen, hydrogen/propane and hydrogen/methane jet flames using a 2 mm burner. Carbon dioxide and Argon gas were also used in the study for the comparison with hydrocarbon fuel. Comparisons of the stability of H2/C3H8, H2/CH4 and H2/CO2 flames showed that H2/C3H8 produced the highest liftoff height and H2/CH4 required highest liftoff, blowoff and blowout velocities. The non-dimensional analysis of liftoff height was used to correlate liftoff data of H2, H2/C3H8, H2/CO2, C3H8 and H2/Ar jet flames tested in the 2 mm burner. The suitability of extending the empirical correlations based on hydrocarbon flames to both hydrogen and hydrogen/hydrocarbon flames was examined. 相似文献
10.
Jinyang ZhengHaiyan Bie Ping Xu Pengfei LiuYongzhi Zhao Honggang ChenXianxin Liu Lei Zhao 《International Journal of Hydrogen Energy》2012,37(1):783-790
Characteristics of high-pressure hydrogen jet flames resulting from ignition of hydrogen discharge during the bonfire test of composite hydrogen storage vessels are studied. Firstly, a 3-D numerical model is established based on the species transfer model and SST k − ω turbulence model to study the high-pressure hydrogen jet flow. It is revealed that under-expanded jets are formed after the high-pressure hydrogen discharging from the vessel. Secondly, the mathematical methods are adopted to study the high-pressure hydrogen jet flames. The effects of pressure, initial temperature and the nozzle diameter on the jet flames are investigated. The results show that the jet flame length increases with the increase of discharge pressure, but decreases with the increase of nozzle diameter and temperature difference between the filling hydrogen temperature and the environment temperature. Finally, the simulation models are established to study the characteristics of hydrogen jet flames in an open space. The effects of barrier walls on the distribution of jet flames are also studied. The results show that the barrier walls can greatly reduce the damage from hydrogen jet flames to testers and properties around. 相似文献
11.
This study investigates the simulation of a proposed small-scale laboratory liquid hydrogen plant with a new, innovative multi-component refrigerant (MR) refrigeration system. The simulated test rig was capable of liquefying a feed of 2 kg/h of normal hydrogen gas at 21 bar and 25 °C to normal liquid hydrogen at 2 bar and −250 °C. The simulated power consumption for pre-cooling the hydrogen from 25 °C to −198 °C with this new MR cycle was 2.07 kWh/kgGH2 from the ideal minimum of 0.7755 kWh per kilogram of feed hydrogen gas. This was the lowest power consumption available when compared to today’s conventional hydrogen liquefaction cycles, which are approximately 4.00 kWh/kgGH2. Hence, the MR cycle’s exergy efficiency was 38.3%. Exergy analysis of the test rig’s cycle, which is required to find the losses and optimize the proposed MR system, was evaluated for each component using the simulation data. It was found that the majority of the losses were from the compressors, heat exchangers, and expansion valves. Suggestions are provided for how to reduce exergy in each component in order to reduce the exergy loss. Finally, further improvements for better efficiency of the test rig are explained to assist in the design of a future large-scale hydrogen liquefaction plant. 相似文献
12.
13.
Christophe Proust Didier JamoisEtienne Studer 《International Journal of Hydrogen Energy》2011,36(3):2367-2373
Within the scope of the French national project DRIVE and European project HyPER, high pressure jet flames of hydrogen were produced and instrumented.The experimental technique and measurement strategy are presented. Many aspects are original developments like the direct measurement of the mass flow rate by weighing continuously the hydrogen container, the image processing to extract the flame geometry, the heat flux measurement device, the thermocouples arrangement…Flames were observed from 900 bar down to 1 bar with orifices ranging from 1 to 3 mm. An original set of data is now available about the main flame characteristics and about some thermodynamic aspects of hydrogen releases under high pressure.A brief comparison of some available models is presented. 相似文献
14.
Hydrogen sulfide (H2S) methane (CH4) reformation (H2SMR) (2H2S + CH4 = CS2 + 4H2) is a potentially viable process for the removal of H2S from sour natural gas resources or other methane containing gases. Unlike steam methane reformation that generates carbon dioxide as a by-product, H2SMR produces carbon disulfide (CS2), a liquid under ambient temperature and pressure—a commodity chemical that is also a feedstock for the synthesis of sulfuric acid. Pinch point analyses for H2SMR were conducted to determine the reaction conditions necessary for no carbon lay down to occur. Calculations showed that to prevent solid carbon formation, low inlet CH4 to H2S ratios are needed. In this paper, we analyze H2SMR with either a cryogenic process or a membrane separation operation for production of either liquid or gaseous hydrogen. Of the three H2SMR hydrogen production flowsheets analyzed, direct liquid hydrogen generation has higher first and second law efficiencies of exceeding 80% and 50%, respectively. 相似文献
15.
Andrew H. Weisberg Salvador M. AcevesFrancisco Espinosa-Loza Elias Ledesma-OrozcoBlake Myers 《International Journal of Hydrogen Energy》2009
We are proposing to minimize hydrogen delivery cost through utilization of glass fiber tube trailers at 200 K and 70 MPa to produce a synergistic combination of container characteristics with properties of hydrogen gas: (1) hydrogen cooled to 200 K is ∼35% more compact for a small increase in theoretical storage energy (exergy); and (2) these cold temperatures (200 K) strengthen glass fibers by as much as 50%, expanding trailer capacity without the use of much more costly carbon fiber composite vessels. 相似文献
16.
In this paper, the similarity form is developed of a hydrogen–air buoyant jet ‘forced plume’ resulting from an unignited small-scale hydrogen leakage in the air. As the domain temperature is assumed to be constant and therefore the density of the mixture is a function of the concentration only, the hydrogen–air mixture is assumed to be of a linear mixing type. The rate of entrainment is assumed to be a function of the plume centerline velocity and the ratio of the mean plume and ambient densities. The local rate of entrainment may be considered to be consisted of two components; one is the component of entrainment due to jet momentum while the other is the component of entrainment due to buoyancy. Consequently, the entrainment coefficient is taken as a variable not constant. The density will be considered as a variable in all terms of the equations of continuity, momentum and concentration. The integral models of the mass, momentum and concentration fluxes are obtained. Non-dimensional transformations known as similarity transformations and used to transform the integral model to a set of ordinary differential equations called similarity equations which are solved numerically. Under various values of Froude number, the hydrogen centerline mass fraction, jet width and centerline velocity are introduced and compared with published experimental results for a slow leak vertical hydrogen jet. 相似文献
17.
《International Journal of Hydrogen Energy》2019,44(41):23120-23134
Hydrogen (H2) plays a vital role both as a reactant in petrochemical processes and as an energy carrier and storage medium. When produced from carbon-containing feed stocks, such as fossil fuels and biomass, hydrogen is typically produced as a mixture with carbon dioxide (CO2), and must be subsequently separated by the associated energy, with an invertible energy penalty. In this study, the process for the removal of carbon dioxide from CO2 - H2 mixtures by de-sublimation was analysed. This process is particularly relevant to the production of liquid hydrogen (LH2) at cryogenic temperatures, for which cooling of the H2 stream is already necessary. The solid – gas equilibrium of CO2 - H2 was studied using the Peng-Robinson equation of state which provided a wide range of operating conditions for process simulation. The de-sublimation process was compared with selected conventional separation processes, including amine-based absorption, pressure swing adsorption and membrane separation. In the scenario in which the resulting products, carbon dioxide and hydrogen, were subsequently liquefied for transportation and storage at 10 bar and −46 °C, and 1 bar and −251.8 °C, respectively. The overall energy consumption per kg of CO2 separated (MJ/kgCO2), was found to follow the order: 8.19–11.21 for monoethanolamine (MEA) absorption; 1.81–8.93 for membrane separation; 1.53–5.69 for pressure swing adsorption; and 0.81–3.35 de-sublimation process. Each process was evaluated and compared on the bases of electricity demand, cooling water usage, high-pressure steam usage, and refrigeration energy requirements. Finally, the advantages and disadvantages were discussed and the feasibility and sustainability of the processes for application in the production of liquid hydrogen were assessed. 相似文献
18.
《International Journal of Hydrogen Energy》2022,47(23):11955-11961
The operational flexibility of cryogenic batch distillation may propel its application in the Isotope Separation System of the fusion reactor. The batch distillation, unlike continuous distillation, is not a steady-state process. In order to obtain improved separation efficiency, a reasonable dynamic model of batch distillation should be developed. In this paper, dynamic simulations of the batch distillation separation process of a hydrogen-deuterium mixture were performed utilizing Aspen Plus and Aspen Dynamics. The validity of the established simulation model was firstly verified by our experimental results. Following that, two dynamic control structures, i.e., composition control and temperature control, were added to improve the recovery efficiency of batch distillation light component products. In comparison with the distillation without dynamic control structure, the distillation with composition control and temperature control can improve the H2 recovery ratio by 5.45% and 5.09%, respectively. 相似文献
19.
《International Journal of Hydrogen Energy》2023,48(75):29198-29208
The most challenging aspect of developing a green hydrogen economy is long-distance oceanic transportation. Hydrogen liquefaction is a transportation alternative. However, the cost and energy consumption for liquefaction is currently prohibitively high, creating a major barrier to hydrogen supply chains. This paper proposes using solid nitrogen or oxygen as a medium for recycling cold energy across the hydrogen liquefaction supply chain. When a liquid hydrogen (LH2) carrier reaches its destination, the regasification process of the hydrogen produces solid nitrogen or oxygen. The solid nitrogen or oxygen is then transported in the LH2 carrier back to the hydrogen liquefaction facility and used to reduce the energy consumption cooling gaseous hydrogen. As a result, the energy required to liquefy hydrogen can be reduced by 25.4% using N2 and 27.3% using O2. Solid air hydrogen liquefaction (SAHL) can be the missing link for implementing a global hydrogen economy. 相似文献
20.
《International Journal of Hydrogen Energy》2014,39(35):20554-20559
Self-ignition behaviour of highly transient jets from hydrogen high pressure tanks were investigated up to 26 MPa. The jet development and related ignition/combustion phenomena were characterized by high speed video techniques and time resolved spectroscopy. Video cross correlation method BOS, brightness subtraction and 1-dimensional image contraction were used for data evaluation. Results gained provided information on ignition region, flame head jet velocity, flame contours, pressure wave propagation, reacting species and temperatures. On burst of the rupture disc, the combustion of the jet starts close to the nozzle at the boundary layer to the surrounding air. Combustion velocity decelerated in correlation to an approximated drag force of constant value which was obtained by analysing the head velocity. The burning at the outer jet layer develops to an explosion converting to a nearly spherical volume at the jet head; the movement of the centroid is nearly unchanged and follows the jet front in parallel. The progress of the nearly spherical explosion could be evaluated by assuming an averaged flame ball radius. An apparent flame velocity could be derived to be about 20 m/s. It seems to increase slightly on the pressure in the tank or the related initial jet momentum. Self-initiation is nearly always achieved especially induced the interaction of shock waves and their reflections from the orifice. The combustion process is composed of shell combustion of the jet cone at the bases with a superimposed explosion of the decelerating jet head volume. 相似文献