首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A solid oxide fuel cell (SOFC) based combined heat and power (CHP) system in the power range of 1 kWe fed by pure hydrogen stored in a MgH2 tank thermally integrated with the SOFC is presented. Different system configurations were first simulated to compare the system performances in each case. An experimental setup specially designed to test the thermal integration of a magnesium hydride tank with a 1 kWe SOFC stack is fully described. The difficulties encountered during the coupling tests are useful to understand how to solve these technical issues.  相似文献   

2.
Structural stability issues in planar solid oxide fuel cells arise from the mismatch between the coefficients of thermal expansion of the components. The stress state at operating temperature is the superposition of several contributions, which differ depending on the component. First, the cells accumulate residual stresses due to the sintering phase during the manufacturing process. Further, the load applied during assembly of the stack to ensure electric contact and flatten the cells prevents a completely stress-free expansion of each component during the heat-up. Finally, thermal gradients cause additional stresses in operation.The temperature profile generated by a thermo-electrochemical model implemented in an equation-oriented process-modelling tool (gPROMS) was imported into finite-element software (ABAQUS) to calculate the distribution of stress and contact pressure on all components of a standard solid oxide fuel cell repeat unit.The different layers of the cell, i.e. anode, electrolyte, cathode and compensating layer were considered in the analysis by using the sub-modelling capabilities of the finite-element tool. Both steady-state and dynamic simulations were performed, with an emphasis on the cycling of the electrical load. The study includes two different types of cells, operation under both thermal partial oxidation and internal steam-methane reforming and two different initial thicknesses of the air and fuel compressive sealing gaskets.The results generated by the models are presented in two papers: Part I, focuses on the assessment of the risks of failure of the cell, which was performed by Weibull analysis, while the issues related to the other components are discussed in Part II.Only the anode support contributed to the probability of failure, since the other layers underwent compressive stresses independently of the operating conditions. The cell at room temperature after the reduction procedure was revealed as a critical case. Thermal gradients and the shape of the temperature profile generated during transient operation induced high probabilities of failure. The computed reliability is incompatible with commercialisation, but the scatter induced by the experimental data covers several orders of magnitude. Alternatively, the computed required strength of the anode material to fulfil a probability of failure of 10−2 in a 50-cells stack during steady-state operation appears achievable. Finally, extreme care is required when using the maximum thermal gradient or temperature difference over the SRU as an indicator for cell cracking.  相似文献   

3.
During the operation of solid oxide fuel cells (SOFCs), nonhomogeneous electrochemical reactions in both electrodes and boundary conditions may lead to a temperature gradient in the cell which may result in the development of thermal stresses causing the failure of the cell. Thus, in this study, effects of operating parameters (current density, flow configuration and cell size) on the temperature gradient of planar SOFCs are experimentally investigated. Two short stacks are fabricated using a small (16 cm2 active area) and a large size (81 cm2 active area) scandia alumina stabilized zirconia (ScAlSZ) based electrolyte supported cells fabricated via tape casting and screen printing routes and an experimental set up is devised to measure both the performance and the temperature distribution in short stacks. The temperature distribution is found to be uniform in the small short stack; however, a significant temperature gradient is measured in the large short stack. Temperature measurements in the large short stack show that the temperature close to inlet section is relatively higher than those of other locations for all cases due to the high concentrated fuel resulted in higher electrochemical reactions hence the generated heat. The operation current is found to significantly affect the temperature distribution in the anode gas channel. SEM analyses show the presence of small deformations on the anode surface of the large cell near to the inlet after high current operations.  相似文献   

4.
Despite the intense interest in solid oxide fuel cells, many details of their durability remain a mystery. Here, we present the insight see on electrode degradation in thermal cycle processes. Our model interprets the degradation to the stresses induced by thermal expansion mismatch of the electrocatalyst and electrolyte in a composite electrode that undergoes a temperature change. Such stresses might break the particle-particle interfaces (grain boundaries), thus reduce oxygen-ionic conductivity, electronic conductivity, and three-phase boundaries within the electrode, and consequently, degrade its performance. The model formulates the degradation rate as a function of cycle number, thermal expansion coefficient, composition, and particle size, providing a remarkable ability to balance thermal expansion restriction and catalytic activity of electrode materials, to optimize the electrode structure and composition, and to predict thermal-cycle durability. The model explicitly demonstrates that, in addition to their excellent electrochemical activity, nanostructured electrodes exhibit exceptional durability in thermal cycle processes.  相似文献   

5.
The application of infrared thermal imaging to the study of solid oxide fuel cells is demonstrated. The temperature increase accompanying polarisation of gadolinium doped ceria pellet cells is measured and the effect of temperature increase on polarisation characteristics is modelled. Temperature increases of the order of 2.5 °C were measured for heavily loaded pellet cells. Measurement accuracy of 0.1 °C and spatial resolution of 0.5 mm allow temperature distribution heterogeneity to be clearly discerned. A total heat transfer coefficient is derived from experimental results that allow the development of a model that predicts the extent of self-heating. For pellet fuel cells, self-heating is not expected to have a large effect on the polarisation characteristics; however, for thin electrolytes and high current density the effect becomes appreciable.  相似文献   

6.
Structural stability issues in planar solid oxide fuel cells arise from the mismatch between the coefficients of thermal expansion of the components. The stress state at operating temperature is the superposition of several contributions, which differ depending on the component. First, the cells accumulate residual stresses due to the sintering phase during the manufacturing process. Further, the load applied during assembly of the stack to ensure electric contact and flatten the cells prevents a completely stress-free expansion of each component during the heat-up. Finally, thermal gradients cause additional stresses in operation.The temperature profile generated by a thermo-electrochemical model implemented in an equation-oriented process modelling tool (gPROMS) was imported into finite-element software (ABAQUS) to calculate the distribution of stress and contact pressure on all components of a standard solid oxide fuel cell repeat unit.The different layers of the cell in exception of the cathode, i.e. anode, electrolyte and compensating layer were considered in the analysis to account for the cell curvature. Both steady-state and dynamic simulations were performed, with an emphasis on the cycling of the electrical load. The study includes two different types of cell, operation under both thermal partial oxidation and internal steam-methane reforming and two different initial thicknesses of the air and fuel compressive sealing gaskets.The results generated by the models are presented in two papers: Part I focuses on cell cracking. In the present paper, Part II, the occurrences of loss of gas-tightness in the compressive gaskets and/or electrical contact in the gas diffusion layer were identified. In addition, the dependence on temperature of both coefficients of thermal expansion and Young's modulus of the metallic interconnect (MIC) were implemented in the finite-element model to compute the plastic deformation, while the possibilities of thermal buckling were analysed in a dedicated and separate model.The value of the minimum stable thickness of the MIC is large, even though significantly affected by the operating conditions. This phenomenon prevents any unconsidered decrease of the thickness to reduce the thermal inertia of the stack. Thermal gradients and the shape of the temperature profile during operation induce significant decreases of the contact pressure on the gaskets near the fuel manifold, at the inlet or outlet, depending on the flow configuration. On the contrary, the electrical contact was ensured independently of the operating point and history, even though plastic strain developed in the gas diffusion layer.  相似文献   

7.
The present work investigates the effects of the temperature and thermal stress distributions in a planar solid oxide fuel cell (SOFC) unit cell. A computational fluid dynamic (CFD) analysis of a planar anode-supported SOFC that considers electrochemical reactions is performed, and the thermal stresses are calculated. The static friction coefficients are assumed to range from 0.05 to 0.3, and conservatively, a perfectly bonded condition is assumed. The results show that the electrolyte is the weakest component and has the maximum stress because the electrolyte is the thinnest and the Young modulus is the highest. Thus, the contact between the anode electrode and the electrolyte, and between the cathode electrode and the electrolyte, would be the perfectly bonded condition. As a result, this research showed that the stresses induced by constraint forces with various contact conditions were dominant for the structural stability in a SOFC. Therefore, static friction coefficients on operative high temperature conditions are important to predict the structural integrity in a SOFC, and they will be investigated in future works in order to improve the structural stability in a stack design as well as in a SOFC.  相似文献   

8.
The electrical coupling in a 5-cell solid oxide fuel cell (SOFC) stack is investigated in this research. The electrical characteristics tests of a single cell and the stack were performed in an electrical furnace. It was found that the single cell with the highest temperature does not give the highest output voltage in the stack test, which is different from the result that the output voltage increases with temperature in the single cell test. A physical interpretation for this phenomenon is given specifically from the standpoint of electrical coupling on the basis of thermal coupling between cells in the stack. Furthermore, a system level electrical coupling dynamic model is developed to characterize the electrical characteristics of the stack by considering the contact resistance between cells. In addition, the electrical coupling dynamic model is calibrated and validated based on the experimental data. The results demonstrate that the electrical coupling dynamic model can depict and predict accurately the electrical characteristics of SOFC stacks. The accurate electrical coupling dynamic model is important for the system level study of SOFCs, such as the optimization of stack structures and the design of peripheral control systems.  相似文献   

9.
A three-dimensional numerical model based on the finite element method (FEM) is constructed to calculate the thermal stress distribution in a planar solid oxide fuel cell (SOFC) stack with external manifold structure. The stack is composed of 5 units which include cell, metallic interconnect, seal and anode/cathode current collectors. The temperature profile is described according to measured temperature points in the stack. It can be clearly seen that the maximum stress concentration area appears at the corner of the components when the stack is heated from room temperature (RT) to 780 °C. The effects of stack components on maximum stress concentration have been investigated under the operation temperature, as well as the thermal stress simulation results. It is obvious that the coefficient of thermal expansion (CTE) mismatch between the interconnect and the seal plays an important role in determining the thermal stress distribution in the stack. However, different compressive loads have almost no effect on stress distribution, and the influence of glass-based seal depends on the elastic modulus. The simulation results can be applied for optimizing the structural design of the stack and minimizing the high stress concentration in components.  相似文献   

10.
A 5-cell stack with external manifold is thermal cycled between room temperature and 750 °C fifteen times. The electric performances after each cycle are measured and compared. The stack has an initial peak output of 328.44 W and shows excellent stability in thermal cycling. The average operating voltage degradation rate is only 0.8% corresponding each thermal cycle. A cell from the stack is randomly chosen for electrochemical evaluation. Its performance is found to be comparable to a cell which is not thermal cycled. Post-test examination shows deterioration of cathode contact materials at points of contact and cracks throughout the oxide layer between corrugated and bipolar plates to be the main causes of the degradation.  相似文献   

11.
A solid oxide fuel cell based on double-sided cathodes is developed in our group, showing special properties and many advantages under some harsh conditions. To optimize the cell further, a thermo-electro-chemo-mechanical coupled 3D model is developed to simulate the distributions of temperature, current density, fuel gas and thermal stress under different voltages. The numerical results indicate that the temperature distribution, current, fuel gases and thermal stress is non-uniform in the cell at different voltages. The distribution of thermal stress in the electrolyte is also non-uniform because of the un-even electrochemical reaction and convective heat transfer. Furthermore, the result shows that about 47%~54% of maximum 1st principal stress in SOFC is caused by the mismatch of coefficients of thermal expansion (CTEs) among materials, while the other part of the maximum 1st principal stress is mainly caused by temperature gradient.  相似文献   

12.
With the substantial improvement of the direct ammonia fuel cells performance, it has become the key to the further development of ammonia fuel cells to deeply understand the heat and mass transfer process inside the cell and to study the thermal impacts generation mechanism during cell operation. In this paper, a whole-cell model of single tubular direct ammonia cracking solid oxide fuel cell (SOFC) is established, and the generation mechanism of thermal impacts inside the cell is analysed in a data-driven method. The model includes the coupling of chemical-electrochemical reactions, local current, local temperature, mass flow and energy transfer inside the cell. It's identified from model simulations that the key to the thermal impact optimization of direct ammonia cracking SOFCs is to reduce the effect of the excessively fast and unbalanced ammonia cracking reaction on the cell. Both introducing the ammonia pre-reforming reaction and improving the activation energy of the ammonia cracking reaction can increase the overall average temperature of the cell and improve the temperature distribution. The 96% ammonia pre-reforming SOFCs can improve the extreme temperature difference in the anode from 37.71 K to 0.52 K at the operating temperature of 800 °C. Increasing activation energy of ammonia cracking reaction by 1.5 times can also make the ammonia cracking reaction rate distribution more uniform at the fuel channel, it can improve the extreme temperature difference in the anode to 4.49 K. This study can enrich the basic theory and research methods of thermal management of direct ammonia cracking SOFCs, and provide theoretical support for further improving cell performance.  相似文献   

13.
Through mathematical analysis, the performance of micro tubular solid oxide fuel cell (SOFC) is evaluated successfully, which is in good agreement with the experimental data under different fuel flow. The results show that under the condition of high fuel utilization, a part of current path passing through the anode can increase by 16% compared with that under the condition of low fuel utilization, which can reduce the output performance of the cell. In the process of increasing fuel flow, the current gradually increases and reaches the platform value. When the length of cathode is long and the inner diameter of anode is small, the loss can be effectively reduced by changing the thickness of anode tube.  相似文献   

14.
The objective of this paper is to improve the endurance of solid oxide fuel cell (SOFC) against thermal cycles by reducing the stress caused by the difference in thermal expansion coefficients of alloy separator and electrolyte. The thermal cycle characteristics were improved by using a ceramic fiber for the sealing material. The ceramic fiber seemed to play the role of suppressing electrolyte-cracking by relaxing the stress set up during thermal cycles. The appropriate structure for the sealing material was investigated with 200 mm×150 mm×4 combined-cell single-layer modules. The glass was arranged around the internal manifold to suppress gas leakage, and the ceramic fiber was arranged around the electrolyte to prevent the glass from contacting the electrolyte. It was confirmed that the thermal cycle characteristics can be improved and that good cell performance can be maintained by adopting this gas seal structure.  相似文献   

15.
This study investigates the effect of non-uniform distribution of the air inlet flow rate and change of air flowing direction on the thermal stress of a solid oxide fuel cell stack with cross-flow configuration. This study considers three patterns of air inlet flow rate in the transverse direction of each stack, and five patterns of air inlet flow rate in the stacking direction. The software package for simulation is reliable through an accuracy comparison, and it analyzes the current density, temperature, and thermal stress distribution of a SOFC stack with 20 layers. The results show that the progressively increasing profile of the air inlet flow rate along the x direction drops the cell thermal stress of a SOFC unit. Moreover, the non-uniform profile of air inlet flow rate in the stacking direction affects the position of the region with high thermal stress of the SOFC stack, and changing flow direction of the air obviously drops down the thermal stress without affecting the power generation of the SOFC stack.  相似文献   

16.
In this study, the use of metal foam as a flow distributor at cathode is evaluated numerically by a comprehensive three-dimensional solid oxide fuel cell (SOFC) model. The results show that the adoption of metal foam improves the power density by 13.74% at current density of 5000 A m−2 in comparison with conventional straight channel design. It is found that electronic overpotential, oxygen concentration and reaction rates distribute more uniformly without the restriction of ribs. The effects of cathode thickness on the two different flow distributors are compared. Compared with conventional straight channel, the metal foam is found to be more suitable as a distributor for anode supported SOFC with thin cathode gas diffusion layer. Moreover, when metal foam is applied to the fuel cell with a larger reaction area, a more uniform velocity distribution and a lower temperature distribution can be achieved. It is also found that an appropriate permeability coefficient should offer a reasonable pressure drop, which is beneficial for the fuel cell system performance improvement.  相似文献   

17.
This paper presents a three-dimensional model of an anode-supported planar solid oxide fuel cell with corrugated bipolar plates serving as gas channels and current collector above the active area of the cell. Conservation equations of mass, momentum, energy and species are solved incorporating the electrochemical reactions. Heat transfer due to conduction, convection and radiation is included. An empirical equation for cell resistance with measured values for different parameters is used for the calculations. Distribution of temperature and gas concentrations in the PEN (positive electrode/electrolyte/negative electrode) structure and gas channels are investigated. Variation of current density over the cell is studied. Furthermore, the effect of radiation on the temperature distribution is studied and discussed. Modeling results show that the relatively uniform current density is achieved at given conditions for the proposed design and the inclusion of thermal radiation is required for accurate prediction of temperature field in the single cell unit.  相似文献   

18.
An anode-supported micro-tubular solid oxide fuel cell (SOFC) is analyzed by a two-dimensional axisymmetric numerical model, which is validated with the experimental I-V data. The temperature distribution generated by the thermo-electrochemical model is used to calculate the thermal stress field in the tubular SOFC. The results indicate that the current transport in the anode is the same at every investigated position. The stress of the micro-tubular cell occurs mainly because of the residual stress due to the mismatch between the coefficients of thermal expansion of the materials of the membrane electrode assembly. The micro-tubular cell can operate safely, but if there is an interfacial defect or a high enough tensile stress applied at the electrolyte, a failure can arise.  相似文献   

19.
The praseodymium nickelate oxide Pr2NiO4+δ, a mixed conducting oxide with the K2NiF4-type structure, was evaluated as cathode for low temperature solid oxide fuel cells (T = 873 K). The electrochemical performance of the cathode has been improved by optimization of the microstructure of the porous cathode combined with the use of a ceria barrier layer in between the cathode and zirconia electrolyte. Both low polarization and ohmic resistances were obtained using Pr2NiO4+δ-powders with a median particle size of 0.4 μm, and sintering the screen printed layer at a sintering temperature of about 1353 K for 1 h. These manufacturing conditions resulted in a cathode microstructure with well established connections between the cathode particles and good adhesion of the cathode on the electrolyte. Full-sized anode supported cells have been manufactured using the same process conditions for the Pr2NiO4+δ cathode and tested. The best results were obtained when using a dense Ce0.8Gd0.2O1.9 (20CGO) barrier layer. While a complete optimization of the cell preparation has not yet been achieved, the electrochemical performances of anode supported cells with Pr2NiO4+δ are higher than those with the well known state-of-the-art La0.6Sr0.4Fe0.8Co0.2O3−δ (LSFC) material.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号